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Background: GPS2 is a multifunctional protein controlling cellular homeostasis, inflammation, and lipid metabolism.
Results: Arginine methylation modulates GPS2 interaction with TBL1 and prevents its degradation upon Siah2 ubiquitination.
Conclusion: A tightly regulated balance between stabilization and degradation determines GPS2 levels.
Significance: Understanding the molecular mechanisms controlling GPS2 expression and localization is critical for dissecting
its multiple roles in the cell.

G protein pathway suppressor 2 (GPS2) is a multifunctional
protein involved in the regulation of a number of metabolic
organs. First identified as part of the NCoR-SMRT corepressor
complex, GPS2 is known to play an important role in the nucleus
in the regulation of gene transcription and meiotic recombina-
tion. In addition, we recently reported a non-transcriptional
role of GPS2 as an inhibitor of the proinflammatory TNF� path-
way in the cytosol. Although this suggests that the control of
GPS2 localization may be an important determinant of its
molecular functions, a clear understanding of GPS2 differential
targeting to specific cellular locations is still lacking. Here we
show that a fine balance between protein stabilization and deg-
radation tightly regulates GPS2 nuclear function. Our findings
indicate that GPS2 is degraded upon polyubiquitination by the
E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the
exchange factor TBL1 is required to protect GPS2 from degra-
dation, with methylation of GPS2 by arginine methyltransferase
PRMT6 regulating the interaction with TBL1 and inhibiting
proteasome-dependent degradation. Overall, our findings indi-
cate that regulation of GPS2 by posttranslational modifications
provides an effective strategy for modulating its molecular func-
tion within the nuclear compartment.

GPS2 is a small transcriptional cofactor that was originally
identified while screening for suppressors of Ras activation in

the yeast pheromone response pathway (1). The nuclear role of
GPS2 has been reported in numerous studies describing func-
tional interactions between GPS2 and several transcriptional
regulators, including the NCoR-SMRT corepressor complex,
the histone acetyltransferase p300, the DNA repair proteins
MSH4/MSH5, and DNA-binding transcription factors p53,
RFX4 (regulatory factor X4), FXR (farnesoid X receptor), SHP
(small heterodimer partner), HNF4 (hepatocyte nuclear factor
4), LXR (liver X receptor), and PPAR� (peroxisome prolifera-
tor-activated receptor �) (2–9). This body of work implicates
GPS2 in a number of important nuclear functions, including
transcriptional repression and activation, the cell cycle, and
meiosis (2– 4, 6 – 8, 10 –13). In addition, our recent work has
identified an unexpected, non-transcriptional role for GPS2 in
the cytoplasm, specifically linking GPS2 with the modulation of
TNF� signaling and JNK activity (8). Interestingly, our findings
reveal that GPS2 complementary transcriptional and non-tran-
scriptional functions rely on a conserved regulatory strategy on
the basis of the inhibition of ubiquitin-conjugating complexes
that are responsible for the formation of non-degradative
Lys-63 ubiquitin chains (TRAF2/Ubc13 in the cytosol and
RNF8/Ubc13 in the nucleus) (8, 9).

Although this suggests that regulatory mechanisms must
exist to dictate GPS2 intracellular localization and to control
the inhibitory activity of GPS2 on different ubiquitin com-
plexes, not much is known about the pathways and posttrans-
lational modifications that can regulate GPS2 in vitro and/or in
vivo or about the physiological strategies governing GPS2
expression, stabilization, and/or degradation in different cellu-
lar compartments, cell types, or tissues. Other components of
the NCoR-SMRT complex, including NCoR, SMRT, TBL1/
TBLR1, and HDAC3, have been reported to be modified in
response to different signaling pathways via phosphorylation,
sumoylation, and ubiquitination events that contribute to the
regulation of both their function and cellular localization (14 –
18). Recent reports of posttranslational modification by argi-
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nine methylation and sumoylation suggest that a similarly com-
plex picture is likely to emerge for GPS2 as well (19 –21).
Interestingly, GPS2 was linked to cutaneous cancers and T cell
lymphomas caused by human papilloma viruses and human T
cell leukemia virus type 1, with the interaction between GPS2
and the corresponding viral interacting protein promoting the
degradation of GPS2 (3, 22, 23). This suggests that unrelated
viruses may have evolved similar mechanisms to get rid of an
undesired host protein, possibly by hijacking an existing regu-
latory system.

On the basis of our previous work, which characterized an
active derepression mechanism for the dismissal of the NCoR-
SMRT corepressor complex on the basis of TBL1/TBLR1-de-
pendent recruitment of the Siah/UbcH5 ubiquitin machinery
(24 –26), we explored the possibility that the GPS2 protein level
would be modulated similarly. Our results reveal the existence
of a similar but distinct strategy, with nuclear GPS2 levels being
regulated by a fine balance between protein degradation and
stabilization. Unexpectedly, under these circumstances, TBL1
plays a protective role against Siah-dependent degradation,
with GPS2 interaction with TBL1 being modulated by the pro-
tein arginine methyltransferase 6 (PRMT6).

Experimental Procedures

Cells, Antibodies, siRNA, and Other Reagents—The HeLa and
293T human cell lines were grown in DMEM supplemented
with 10% FBS. TBL1 KO ES cells have been generated and
described previously (24). To inhibit proteasomal degradation,
cells were treated with MG132 10 nM (InSolution 474791, Cal-
biochem-EMD) for 4 h. Commercial antibodies used were as
follows: anti-ubiquitin (P4D1 clone, Cell Signaling Technol-
ogy), anti-�tubulin (TUB 2.1 clone, Sigma), anti-HDAC2
(Santa Cruz Biotechnology, catalog no. sc-9959), anti-PRMT6
(catalog no. A300 –929A, Bethyl Labs), anti-H3R17me2a (cata-
log no. ab8284, Abcam), anti-HA-HRP (Roche), and anti-
FLAG-M2 and anti-FLAG-HRP (Sigma). Guinea pig antibody
against TBL1 and rabbit antibodies against GPS2 have been
described previously (8, 24). siRNAs against human TBL1 and
PRMT6 were purchased from Ambion, and Siah1 and Siah2
were from Qiagen. Nonspecific scrambled siRNA and siLUC
were included as negative controls in each experiment.

Cloning and Site-directed Mutagenesis—Deletant expression
vectors for GPS2 were generated by PCR amplification of the
murine full-length GPS2 cDNA and subcloning into the pCMX-
HA-FLAG mammalian expression vector using standard molecu-
lar cloning techniques (49). All vectors were validated by sequenc-
ing prior to use. Transient transfection in mammalian cells was
performed for 24 h using Lipofectamine 2000 reagent according to
the protocol of the manufacturer (Promega).

Protein Extracts, Immunoprecipitation, and Western
Blotting—For fractionated nuclear and cytosolic protein
extraction, cells were rinsed in PBS, harvested, and lysed by
syringe homogenization in hypotonic buffer (10 mM Hepes (pH
7.9), 1 mM EDTA, 210 mM mannitol, 70 mM sucrose, 50 mM

NaF, 0.5 mM PMSF, and protease inhibitor mixture (Roche)).
After precipitation of the nuclei by low-speed centrifugation,
the supernatant containing cytosolic proteins was recovered,
and the nuclear pellet was lysed for 20 min in high-salt buffer

(20 mM Tris-HCl (pH 8), 25% glycerol, 420 mM NaCl, 1.5 mM

MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 2 mM Na3VO4, 50 mM NaF,
1 mM PMSF, and protease inhibitor mixture), followed by
removal of all membrane debris by high-speed centrifugation.
The concentration of fractionated protein extracts was mea-
sured using a colorimetric Bio-Rad assay. Extracts were boiled
in SDS sample buffer and loaded directly onto precast Bio-Rad
gels. For immunoprecipitation, protein extracts were incubated
with the specific antibody overnight at 4 °C after adjusting the
buffer to a final concentration of 150 mM NaCl and 0.5% Non-
idet P-40 and then incubated for 2 h with protein A/G-agarose
beads (Santa Cruz Biotechnology), washed extensively, sepa-
rated by electrophoresis, transferred onto PVDF membranes
(Millipore), and subjected to Western blotting following stan-
dard protocols. For in vivo methylation assays, HEK293T cells
were lysed 48 h after transfection in 20 mM Tris (pH 7.4), 120
mM NaCl, 1% Triton X-100, and EDTA-free protease inhibitors
(Complete, Roche) and sonicated three times for 10 s each. Cell
lysates were immunoprecipitated at 4 °C for 2 h with anti-FLAG
M2-conjugated agarose beads (catalog no. A2220, Sigma). For
protein extraction from the adipose tissue of wild-type and
Siah2 KO mice, the epididymal adipose tissue depot was
homogenized in a denaturing buffer (50 mM Tris-Cl (pH 7.4)
with 150 mM NaCl, 1 mM EDTA, 1% Igepal CA 630, 0.5%
sodium deoxycholate, and 0.1% SDS) with 10 mM NEM (N-eth-
ylmaleimide), 1 mM PMSF, 10 mg/ml aprotinin, 1 mg/ml pep-
statin, 5 mg/ml leupeptin, and 2 mM sodium orthovanadate.
The lysates were centrifuged at 14,000 � g for 10 min at 4 °C,
and the supernatant protein concentrations were determined
by BCA assay (Thermo Scientific) prior to Western blotting.

Recombinant Protein Expression, in Vitro Binding Assay, and
in Vitro Arginine Methylation Assay—Fusion proteins contain-
ing GST bound to GPS2 or to TBL1 (either full-length, Nt,5 or
Ct) (24) were expressed in Escherichia coli BL21 and purified
from homogenized lysates with glutathione-agarose beads
(Sigma) as described previously (24). For interaction studies,
the immobilized GST-fusion proteins were incubated for 2 h
with HA-GPS2 full-length or mutants that were generated by in
vitro translation-transcription (Promega TNT quick-coupled
transcription/translation system). After extensive washes with
GST binding buffer, the interacting proteins were separated
by SDS-PAGE, and Western blotting was performed with HA-
HRP or FLAG-HRP antibodies. Methylation of GST-GPS2 and
other substrates was performed as described previously (27).
Briefly, 1 �g of substrate was incubated with 1 �l of S-adenosyl-
L-[methyl-3H]methionine (PerkinElmer Life Sciences) and 0.5
�g of purified recombinant enzyme for 1 h at 30 °C. The reac-
tion was stopped by addition of sample loading buffer (80 mM

Tris-HCl (pH 6.8), 30% glycerol, 10% SDS, 0.6 M DTT, and
0.012% bromphenol blue). Samples were separated on a 10%
SDS-polyacrylamide gel and transferred to a PVDF membrane.
EN3HANCETM (PerkinElmer Life Sciences) was added to the

5 The abbreviations used are: Nt, N terminus; Ct, C terminus; NLD, nuclear
localization domain; NE, nuclear extract; CE, cytosolic extract; aa, amino
acid(s); NLS, nuclear localization signal; SUMO, small ubiquitin-like modi-
fier; PRMT, protein arginine methyltransferase; TBL1, transducin �-like 1;
NCoR, nuclear receptor corepressor; SMRT, silencing mediator of retinoic
and thyroid hormone receptor; WT, wild type.
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membrane according to the instructions of the manufacturer.
The PVDF membrane was then exposed to an x-ray film.

RNA Isolation and Quantitative PCR Analysis—Cells were
lysed directly on the plate in the presence of highly denaturing
buffer, and the lysate was homogenized through a QIAshredder
spin column (RNeasy kit, Qiagen). Ethanol was added to adjust
the binding conditions, and the sample was applied to an
RNeasy spin column for binding of total RNA according to the
protocol of the manufacturer (Qiagen). First-strand cDNA syn-
thesis from the total RNA template was performed using iScript
Reverse Transcriptase Supermix (Bio-Rad), followed by SYBR
Green quantitative PCR amplification on a Viia7 thermocycler
(Life Technologies). Normalization was performed using spe-
cific amplification of the Cyclophilin A gene. PCRs were per-
formed in triplicate for each biological replicate, and the results
are presented as mean � S.D. The p value was calculated using
Student’s t test.

Results

Identification of the GPS2 Minimal Nuclear Localization
Domain (NLD)—With the final goal of identifying the molecu-
lar determinants of GPS2 nuclear localization, we first overex-
pressed either HA-tagged GPS2 full-length or deletants corre-
sponding to the Nt and Ct domains in 293T cells. Western blot
analysis of fractionated extracts indicated that full-length pro-
tein and the Nt domain were present in both nuclear extracts

(NEs) and cytosolic extracts (CEs), whereas the Ct domain was
observed only in the cytoplasm (Fig. 1A), suggesting that the
N-terminal domain is required for GPS2 nuclear targeting.

To further investigate the mechanism of GPS2 nuclear localiza-
tion, serial deletions of the Nt domain were generated by progres-
sively removing 20 amino acid sequences. As shown in Fig. 1B,
both GPS2-�1–20 and GPS2-�1–40 are correctly targeted to the
nucleus, indicating that the first 40 aa are dispensable for nuclear
compartmentalization. However, the relevance of the following
residues in terms of nuclear localization could not be evaluated
because no protein expression was detected upon transfection of
the GPS2-�1–60 and GPS2-�1–80 constructs in 293T or HeLa
cells (Fig. 1B and data not shown). Because the very N-terminal
region of GPS2 is critical for interacting with TBL1 (aa 1–53) and
for promoting the correct assembly of the NCoR-SMRT corepres-
sor complex (aa 53–90) (28), we hypothesized that the interaction
with TBL1 might be required for GPS2 stabilization. In support of
this hypothesis, we observed that the expression of GPS2-�1–40 is
also reduced compared with wild-type GPS2 (Fig. 1B), that down-
regulation of TBL1 via small interfering RNA leads to a decrease in
the expression of GPS2 (Fig. 1C), and GPS2 protein level is strongly
reduced upon TBL1 genetic ablation in mouse ES cells (Fig. 1D)
(24). Conversely, coexpression of recombinant GPS2 together
with TBL1 in E. coli results in GPS2 stabilization (Fig. 1E) in a
similar fashion as what has been reported previously (28). Because
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these observations supported the hypothesis that the interaction
with TBL1 via the very N terminus of GPS2 might be required for
GPS2 stabilization, we generated a new construct by reintroducing
amino acids 1–60 in the vector containing the Ct sequence of
GPS2 (Fig. 2A). As expected, introducing this small domain was
sufficient to rescue the binding of GPS2 to the Nt domain of TBL1
in a GST pulldown assay (Fig. 2B). More importantly, expression of
the fusion protein could be detected in both the nucleus and cyto-
sol (Fig. 2C). Therefore, our results confirm that the interaction
with TBL1 is required for protein stabilization and identify aa
40–60 as the minimal NLD required for GPS2 targeting to the
nucleus (as summarized in Fig. 2A).

Inspection of the short amino acid sequence of the GPS2
minimal NLD revealed a classic nuclear localization signal
(NLS) located between aa 49 –56. To test whether this motif is
responsible for GPS2 targeting to the nucleus, we generated a
specific mutation of the NLS (ERRKKKE to ERRAAKE) by site-
directed mutagenesis and tested it in 293T cells. Surprisingly,
both the wild-type GPS2 (WT) and the NLS mutant (NLS-mut)
were equally able to localize to the nucleus (Fig. 2D). Because sim-
ilar results were obtained upon additional mutation of a close, but
less conserved, NLS located between aa 98–104 (data not shown),

we conclude that nuclear targeting of GPS2 is not prevented by the
removal of specific nuclear localization signals. This suggests that
GPS2 nuclear localization could be unregulated or could depend
on the interaction with other nuclear factors, i.e. other compo-
nents of the NCoR-SMRT complex like TBL1, rather than being
mediated by a classic NLS.

GPS2 Protein Stability Is Regulated by Interaction with TBL1
and Proteasomal Degradation via Ubiquitination of the C-ter-
minal Domain—To further investigate how the interaction
with TBL1 affects GPS2 stability and cellular localization, we
focused on a recent paper reporting that sumoylation of GPS2
on Lys-45 and Lys-71 participates in regulating GPS2 interac-
tion with TBL1 and repressive activity in the nucleus (19).
Interestingly, substitution of Lys-45/71 with arginine residues
(2KR mutant) appeared to affect GPS2 shuttling between the
nucleus and cytoplasm (19). Because Lys-45 is located within
the newly identified NLD, we considered the possibility that
sumoylation contributes to regulating GPS2 stabilization
and/or nuclear localization via interaction with TBL1. How-
ever, in our hands, down-regulation of the SUMO-conjugating
enzyme Ubc9 by siRNA has no effect on GPS2 nuclear expres-
sion or on the interaction with TBL1 (Fig. 2F), indicating that
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sumoylation is not required for GPS2 nuclear localization or for
the interaction with TBL1. To better understand these discrep-
ancies, we tested sumoylation mutants equivalent to those
described previously (K45R, K71R, and 2KR or K45/71R) (19)
for direct interaction with TBL1. As shown in Fig. 2F, mutating
K71R significantly decreases the direct interaction between
GPS2 and TBL1 in a GST pulldown assay, whereas no changes
were noticed upon mutation of K45R alone. Together, these
data indicate that the integrity of Lys-71 is required for the
direct interaction between GPS2 and TBL1 and confirm that
the reported decreased half-life of the double mutant (19) is
likely caused by decreased interaction between GPS2 and TBL1
but in a sumoylation-independent manner.

Stabilization of GPS2 upon coexpression with TBL1 in bac-
teria (Fig. 1E), together with the report of a tight association
between TBL1 and GPS2 in the assembly of the NCoR-SMRT

core complex (28), suggests that the interaction among these
cofactors may be required for proper protein folding and that
GPS2-unregulated destabilization in the absence of TBL1 may
result from reduced complex formation. However, the alterna-
tive hypothesis of GPS2 being actively degraded by the 26S protea-
some via an ubiquitination-dependent mechanism also exists (3, 8,
19, 22). To directly assess whether GPS2 instability in the absence
of TBL1 was mediated by proteasomal degradation, we first looked
for GPS2 polyubiquitination. Highly stringent immunoprecipita-
tion of GPS2 from cells overexpressing HA-tagged ubiquitin or
from untransfected cells confirmed that GPS2 is polyubiquitinated
in both cases (Fig. 3, A and B).

Next we screened for polyubiquitination sites by comparing
the predicted molecular weight of full-length GPS2 and differ-
ent deletants of the Nt and Ct domains with the size of their
products when expressed by in vitro TNT and assessed by West-
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ern blot analysis. Constructs containing only the Nt domain (aa
1–99 and 1–155) generate protein fragments of the expected
size in addition to a single higher molecular weight band, which
could correspond to the sumoylation described previously (19)
or to monoubiquitination. Constructs encompassing the Ct
domain (aa 155–327 and 212–327), instead, are translated into
proteins with a smear of high molecular weight modifications,
which could correspond to ladders of polyubiquitination (Fig.
3C). On the basis of these results, we reasoned that the C-ter-
minal domain of GPS2 is likely encompassing one or more sites
of polyubiquitination. In support of this hypothesis, the Ct frag-
ment of GPS2 was significantly less stable than the full-length
protein when expressed alone (Fig. 1A), further supporting a
role for the C terminus of the protein in regulating GPS2 sta-
bility. Indeed, specific mutation of the three lysines present
within the C terminus of GPS2 (Lys-254, Lys-300, and Lys-327)
is sufficient to increase protein stabilization, suggesting that
they serve a degradative role (Fig. 3D). Accordingly, the triple
mutant (GPS2 K254A/K300A/K327A) is more efficient than
the wild type when used to rescue the hyperinflammatory
response that is activated, as reported previously, by specific
down-regulation of GPS2 (8) (Fig. 3E). Therefore, our results
indicate that GPS2 instability is promoted by an active degra-
dation strategy that is mediated by polyubiquitination occur-
ring within the C-terminal domain.

GPS2 Ubiquitination and Degradation by Siah2—Previous
work from others and by us indicate that Drosophila seven-in-
absentia homolog 2 (Siah2)-dependent ubiquitination pro-
motes the dismissal of the NCoR-SMRT corepressor complex
from target genes and is required for NCoR proteasomal deg-
radation (24, 29). Because GPS2 and TBL1 are core compo-
nents of the NCoR-SMRT corepressor complex, we hypothe-
sized that Siah2, or the highly conserved homolog Siah1, could
be responsible for catalyzing GPS2 polyubiquitination and deg-
radation. To test this hypothesis, we looked at the stability of
GPS2 in 293T cells either overexpressing or lacking these E3
ligases. As predicted by our hypothesis, the expression of GPS2
is significantly down-regulated upon overexpression of HA-
tagged Siah ligases (HA-Siah1 and HA-Siah2), whereas TBL1
overexpression has a stabilizing effect (Fig. 4A). Conversely,
transient transfection of a mixture of specific siRNA against
Siah1 and Siah2 is sufficient to observe increased expression of
GPS2 (Fig. 4B), confirming that Siah proteins endogenously
regulate GPS2 protein levels. More importantly, the effect of
Siah proteins is mediated by the ubiquitination of the lysines
identified within the C terminus of GPS2, as indicated by the
fact that overexpression of Siah1/2 does not induce destabiliza-
tion of the triple mutant, whereas it is sufficient to prevent
expression of the wild-type construct (Fig. 4C). Finally, we took
advantage of the Siah2 KO mouse model (30) to assess whether
Siah2 was the specific E3 ligase regulating GPS2 stability, as
proposed previously for NCoR (29). As shown in Fig. 4D, the
GPS2 protein level is increased significantly in the adipose
tissue of Siah2 KO mice compared with their wild-type litter-
mates. Therefore, these data demonstrate that GPS2 protea-
somal degradation is mediated by Siah2-dependent polyubiq-
uitination of the GPS2 C terminus.

GPS2 Is Methylated in Vivo on Arg-312 and Arg-323—Inter-
estingly, the three lysines required for GPS2 dependent
polyubiquitination are flanking an arginine residue (Arg-323)
that has been described recently as a site of differential dimeth-
ylation in a study on the human leukocyte antigen peptidome of
melanoma cells (20). Methylation of GPS2 on Arg-312 has also
emerged in large-scale studies of protein methylation (21, 31),
suggesting that arginine methylation could be an important
aspect of GPS2 posttranslational regulation. Because pep-
tidomes are often the result of proteasomal degradation, we
hypothesized that GPS2 methylation could contribute to regu-
lating its stability. To address this question, we first confirmed
that GPS2 is methylated in vivo by performing immunoprecipi-
tation of HA-GPS2-FLAG followed by Western blotting for
arginine methylation in 293T cells. Interestingly, even though
several pan-arginine methyl-specific antibodies were tested,
only an antibody raised against H3R17me2a worked well in
recognizing methylated GPS2 (Fig. 5A). Alignment of the
motifs around Arg-312 and Arg-323 with known arginine meth-
ylation sites on histone H3 and H4 confirms that the sequence
around H3R17 most closely resembles the putative methylation
sites on GPS2, with the conserved P in position �1 potentially
being an important determinant of antibody specificity (Fig.
5B). Next we used the same strategy to validate the sites of
methylation by comparing the GPS2 wild type with the R312A/
R323A mutant. Loss of methylation signal upon mutagenesis of
both arginines confirmed that Arg-312 and Arg-323 are the
main methylation sites in vivo (Fig. 5C). In addition, the consis-
tently lower expression level of the mutant protein compared
with wild-type GPS2 suggests that loss of methylation pro-
motes protein destabilization. To further explore this hypoth-
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esis and test whether methylation of both residues was required
for protein stabilization, we generated single Arg-to-Ala
mutants and tested their expression in 293T cells. Interestingly,
mutation of Arg-312 did not affect GPS2 stability, whereas
ablation of the Arg-323 methylation site alone was sufficient to
destabilize GPS2 expression. As expected, expression of the
R323A mutant was fully rescued by the specific proteasome
inhibitor MG132 (Fig. 5D).

PRMT6-mediated Methylation of Arg-323 Prevents Pro-
teasome-dependent Degradation of GPS2—To further probe
into this regulatory mechanism, we looked for the specific
enzyme responsible for Arg-323 methylation of GPS2. Protein
arginine N-methyltransferases (PRMTs) that can catalyze
monomethylation and asymmetric dimethylation reactions
belong to the type I PRMT family. PRMT1 is the major source
of type I methyltransferase activity in mammalian cells. How-
ever, previous work has already eliminated PRMT1 as a candidate
enzyme for Arg-323 methylation (20). Among the remaining type
I PRMTs, PRMT6 stands out as an exclusively nuclear enzyme,
whereas the others are mainly cytosolic or membrane-associated
(33–36). Upon testing it in an in vitro methylation assay with
recombinant proteins, we found that PRMT6 can directly methyl-
ate GPS2, whereas no effect was seen using PRMT1, as expected
on the basis of published data (Fig. 6A) (20). Methylation is mainly
observed on GPS2 fragments containing the C-terminal part of the
protein (as indicated by Western blotting with an antibody
directed against the last 20 aa) rather than on the full-length pro-
tein. This may depend on an allosteric effect with dimerization, as
mediated by the GPS2 N terminus (37) or by the GST moiety,
inhibiting full accessibility of the methylation site. Importantly, it
also confirms that methylation occurs over the C terminus of the
protein.

Next, on the basis of the instability observed when methyla-
tion of Arg-323 is impaired by mutagenesis (Fig. 5D), we tested
whether down-regulation of PRMT6 in HeLa cells would also
impair GPS2 stability. As shown in Fig. 6, reduced expression of

both endogenous (Fig. 6D) and HA-tagged GPS2 (Fig. 6, B and
C) was observed upon specific down-regulation of PRMT6 by
siRNA but not upon down-regulation of PRMT1 (Fig. 6B).
Importantly, the reduction in protein level is due to protea-
somal degradation and not to changes in gene expression, as
proven by the following observations. Expression of the HA-
GPS2 vector is rescued upon proteasome inhibition by MG132
(Fig. 6C), and mRNA expression of endogenous GPS2 is not
affected by PRMT6 ablation, as measured by quantitative RT-
PCR (Fig. 6E). Therefore, or results show that GPS2 is methy-
lated in vivo on Arg-312 and Arg-323 and that methylation of
Arg-323 by PRMT6 is required to prevent proteasomal degra-
dation of GPS2.

TBL1 Protective Role toward GPS2 Proteasomal De-
gradation—Finally, because both the interaction with TBL1
and arginine methylation appear to regulate GPS2 stability in
the nucleus, we asked whether the two mechanisms are linked,
with methylation regulating the interaction with TBL1. As
shown in Fig. 7, A and B, both mutation of R323A and down-
regulation of PRMT6 by siRNA are sufficient to significantly
impair the interaction with TBL1 when GPS2 expression is sta-
bilized by MG132. Therefore, our results reveal a highly specific
strategy, with the regulation of GPS2 stability by TBL1 being
modulated via posttranslational modifications.

These findings of a TBL1 protective role toward GPS2 deg-
radation upon Siah2-dependent ubiquitination were initially
surprising since we had previously reported TBL1 being
required for the ubiquitination and degradation of other com-
ponents of the NCoR-SMRT complex (24). However, similar
opposing roles have been reported for TBL1 in the regulation of
�-catenin protein levels (16, 38 – 40). In particular, Dimitrova et
al. (38) propose that TBL1 prevents polyubiquitination and
degradation of �-catenin via competition between Siah-1 and
TBL1 for binding to the region of �-catenin. To directly test
whether the TBL1 protective role depends on preventing the
polyubiquitination of GPS2 or the degradation of polyubiquiti-
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nated GPS2, we inhibited proteasome-dependent degradation
with MG132 and then immunoprecipitated GPS2 from 293T
cells in which we had selectively down-regulated TBL1 or
PRMT6. As shown in Fig. 7C, the dramatic decrease in GPS2
polyubiquitination observed in the absence of TBL1 is fully res-
cued upon proteasome inhibition. This indicates that polyubiq-
uitination itself is not impaired by lack of TBL1 but, rather, that
TBL1 prevents the degradation of the polyubiquitinated pro-
tein. Furthermore, a similar decrease in the accumulation of
polyubiquitinated GPS2 is observed upon PRMT6 down-regu-
lation (Fig. 7C). Under these conditions, the polyubiquitination
of GPS2 is also rescued by proteasome inhibition, although to a
lesser extent, confirming that impairing the interaction with
TBL1 by inhibiting GPS2 methylation provokes the same effect
as down-regulating TBL1 itself.

Combined, our results indicate that methylation of GPS2 by
PRMT6 is required to stabilize the interaction between TBL1
and GPS2 and to protect GPS2 from proteasomal degradation.
Interestingly, specific motifs have been reported as having a
special affinity for methylated residues, including WD40
domains like the one present in the C-terminal of TBL1 (32),
suggesting that the TBL1 WD40 domain might act as a reader
for methylated arginines in the C terminus. This would further
stabilize the direct interaction between the N-terminal regions
of GPS2 and TBL1 and provide a regulatory switch for modu-
lating GPS2 stability upon cellular needs. Importantly, our
results indicate that the regulated interaction with TBL1 does
not prevent the ubiquitination of the GPS2 C terminus by Siah2
but, rather, that it appears to play a protective role against pro-
tein degradation by the proteasome (Fig. 7C).

Discussion

GPS2 is involved in a variety of important cellular processes,
including gene expression, cell division, programmed cell
death, and transduction of a number of signaling pathways. In

particular, it has recently emerged as an important regulator of
metabolic and inflammatory pathways in key organs, including
the liver, adipose tissue, and the immune system (4, 6, 8, 11, 41).
Previous work from our laboratory indicates that GPS2 rele-
vance in many of these processes stems from its ability to coop-
eratively regulate ubiquitin signaling in different cellular com-
partments (8, 9). This suggests that strategies regulating GPS2
intracellular localization could have a profound effect on cellu-
lar homeostasis. In this study, we set out to dissect the molec-
ular mechanisms controlling GPS2 intracellular localization
and discovered that GPS2 nuclear targeting depends on a min-
imal NLD located at the very N terminus. Moreover, our results
indicate that GPS2 nuclear localization does not require a clas-
sic NLS and suggest that it could be regulated via interaction
with other nuclear proteins, possibly including components of
the NCoR-SMRT corepressor complex, such as the exchange
factor TBL1. However, because of the small size of GPS2, it is
also possible that nuclear localization is achieved via passive
diffusion through the nuclear membrane (Figs. 1 and 2).

Characterization of the interaction between GPS2 and TBL1
confirms that the interaction is mediated via a small N-terminal
domain that is critically important for both GPS2 stability as well
as the correct assembly of the NCoR-SMRT corepressor complex
(28). In addition, our results indicate that residues outside of the
core binding motif identified previously are important to mediate
the direct interaction between GPS2 and TBL1. They also suggest
that sumoylation does not play a critical role in regulating GPS2-
TBL1 interaction in the nucleus, which is not surprising consider-
ing that only a small fraction of GPS2 is sumoylated at any given
time, whereas GPS2 association with TBL1 is constantly required
to prevent its destabilization.

In an effort to understand whether GPS2 instability in the
absence of TBL1 was caused by an active degradative mecha-
nism or by problems with correct protein folding, we observed
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that GPS2 was polyubiquitinated and subjected to proteasome-
dependent degradation (Fig. 3). To our surprise, we found that
Siah2 was responsible for GPS2 ubiquitination (Fig. 4). Siah2 is
an E3 ubiquitin ligase mediating the ubiquitination of a number

of key targets in cells, including the nuclear receptor corepres-
sors NCoR and HDAC3 (29, 42). In particular, our previous
work indicated that TBL1, together with its close homolog
TBLR1, is required for the ubiquitination and the dismissal of
the NCoR-SMRT corepressor complex from target genes upon
induced gene activation. On the basis of these observations, we
proposed previously that the F box domain in the N terminus of
TBL1 was required to recruit the Siah2-UbcH5 complex to the
NCoR complex in vivo in a similar fashion as the role reported
for Ebi, the Drosophila homolog of TBL1, during the regulation
of Tramtrack88 in Drosophila and �-catenin in mammalian
cells (17, 24, 39, 40). Interestingly, the regulation of �-catenin
activity by the SCF (Skp, Cullin, F-box containing )/TBL1 com-
plex turned out more complex than initially envisioned because
a later study suggests an unexpected role for TBL1 as a “protec-
tor” of �-catenin during Wnt signaling and indicates that Siah1
alone is able to ubiquitinate �-catenin, at least in vitro (38). This
clearly raised the question of whether TBL1 function is to pro-
mote or antagonize polyubiquitination and degradation by the
Siah complex. In the case of GPS2, the results presented here
indicate that GPS2 is degraded rapidly in the absence of TBL1,
supporting the idea that the regulated binding of TBL1 to GPS2
exerts a protective role toward degradation. However, the
mechanism underlying the protective function of TBL1 seems
to differ among different targets. In both cases, the recruitment
of the E3 ligase complex seem to occur independently of TBL1,
but our data indicate that GPS2 polyubiquitination is not
affected by down-regulation of TBL1 (Fig. 7), implying that
binding between TBL1 and GPS2 is not mutually exclusive with
Siah2-dependent polyubiquitination, as reported previously in
the case of �-catenin (38). Although further studies are
required to address the molecular mechanism of the TBL1 pro-
tective role on different substrates, we speculate that, in this
case, TBL1 interaction with GPS2 might allosterically prevent
the recognition and binding of the polyubiquitinated protein to
the proteasome.

Another outstanding question to be investigated further is
whether the phenotypic effects observed upon down-regula-
tion of TBL1 might be partially explained by reduced GPS2
levels (as shown in Fig. 1 in TBL1�/Y embryonic stem cells). For
example, it is striking that TBLR1 adipose-specific knockout
mice are defective in fasting-induced lipid mobilization
because of inhibited lipolysis, which is reminiscent of the GPS2
requirement for the expression of the lipolysis rate-limiting
enzymes ATGL (adipose triglyceride lipase) and HSL (hor-
mone-sensitive lipase) in adipocytes (9, 43). Similarly, TBL1 has
been proposed to promote the recruitment of NF-�B to target
promoters in a similar fashion as GPS2 pioneering activity
toward promoter-specific recruitment of PPAR� to a selected
subset of target genes (9, 44). So far, GPS2 has been mainly
associated with a repressive role, as part of the NCoR-SMRT
complex, in the regulation of proinflammatory genes. However,
it is possible that GPS2 also contributes to the activation of a
subset of NF-�B targets, as described in the case of nuclear
receptors (8, 9, 11).

Finally, our work identifies the arginine methyltransferase
PRMT6 as a critical regulator of GPS2 protein stability and
indicates that the TBL1-mediated protective effect is modu-
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lated by posttranslational modification of GPS2, making this
regulatory network tightly controlled by the local nuclear envi-
ronment. Asymmetric dimethylation of GPS2 on Arg-323 was
originally discovered while analyzing the human leukocyte
antigen peptidome of melanoma cells with the ultimate goal of
identifying modifications that are specific to tumor cells and
can be specifically recognized by the immune system (20). How-
ever, the enzyme responsible for modifying GPS2 was unknown.
Here we show that GPS2 is methylated in vivo on Arg-312 and
Arg-323, that recombinant PRMT6 can methylate GPS2 in vitro,
and that the methylation of Arg-323 by PRMT6 is required to
promote protein stabilization by TBL1 (Figs. 5 and 6). Although we
cannot exclude that other type I methyltransferases might contrib-
ute to GPS2 methylation under certain conditions, i.e. in other
cellular compartments or in a tissue-specific manner (33), our data
suggest that PRMT6 is the main enzyme regulating GPS2 methyl-
ation and stability in the nucleus. Intriguingly, PRMT6 has been
implicated in many processes related to GPS2 functions, including
chromatin remodeling, cell cycle regulation, p53 activity, and tran-
scriptional regulation by the NF-�B pathway (45–48), suggesting,
as in the case of TBL1, that some of the effects observed when
modulating PRMT6 levels may be attributed to changes in GPS2-
mediated functions.

Overall, although our results confirm that the direct interaction
of GPS2 with TBL1 occurs via the very N terminus region of GPS2,
as reported previously (28), our data also indicate that the interac-
tion between TBL1 and GPS2 is stabilized by the presence of a
methylated arginine on the opposite end of GPS2, possibly because
of the TBL1 WD40 domain acting as a “reader” of methylated
arginine residues (32). Accordingly with this interpretation,
PRMT6 down-regulation by siRNA leads to the rapid degradation
of polyubiquitinated GPS2 in a manner closely mimicking what is
observed upon transfection with siRNA against TBL1. In conclu-
sion, our results reveal that a tightly regulated degradation process,
promoted by the E3 ubiquitin ligase Siah2 and antagonized by the
cofactor TBL1 in a PRMT6-dependent manner, defines GPS2 pro-
tein levels in the nucleus.
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