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Abstract

Background: HIV-1 is a lifelong disease, often without serious symptoms for years after

infection, and thus many infected persons go undetected for a long time. This makes it

difficult to track incidence, and thus epidemics may go through dramatic changes largely

unnoticed, only to be detected years later. Because direct measurement of incidence is

expensive and difficult, several biomarker-based tests and algorithms have been

developed to distinguish between recent and long-term infections. However, current

methods have been criticized and demands for novel methods have been raised.

Methods: We developed and applied a biomarker-based incidence model, joining a time-

continuous model of immunoglobulin G (IgG) growth (measured by the IgG-capture

BED-enzyme immunoassay) with statistical corrections for both sample size and unob-

served diagnoses. Our method uses measurements of IgG concentration in newly

diagnosed people to calculate the posterior distribution of infection times. Time from

infection to diagnosis is modelled for all individuals in a given period and is used to cal-

culate a sample weight to correct for undiagnosed individuals. We then used a bootstrap-

ping method to reconstruct point estimates and credible intervals of the incidence of

HIV-1 in Sweden based on a sample of newly diagnosed people.

Results: We found evidence for: (i) a slowly but steadily increasing trend in both the inci-

dence and incidence rate in Sweden; and (ii) an increasing but well-controlled epidemic

in gay men in Stockholm. Sensitivity analyses showed that our method was robust to

realistic levels (up to 15%) of BED misclassification of non-recently infected persons as

early infections.

Conclusions: We developed a novel incidence estimator based on previously published

theoretical work that has the potential to provide rapid, up-to-date estimates of HIV-1

incidence in populations where BED test data are available.
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Introduction

Knowing the incidence of HIV is essential for determining

the effectiveness of public health campaigns and for tracking

the epidemic as it spreads through populations. Estimating

the incidence for any infectious disease is difficult, but the

long potential delay from infection to characteristic symptoms

complicates incidence inference for HIV. HIV surveillance

and detection have improved, but still a large proportion of

newly diagnosed individuals are diagnosed with CD4 counts

below 350 suggesting that many of these individuals remain

undiagnosed for years following infection.1–4

The need for a better understanding of HIV epidemi-

ology has led to the development of a class of HIV-1 inci-

dence estimators based on determining whether or not a

person was recently infected,5 such as the widely used im-

munoglobulin G (IgG)-capture BED-enzyme immunoassay

(BED assay).6 The most common approach considers peo-

ple with a clinical marker below a given threshold to be

recently infected, where the meaning of ‘recent’ is deter-

mined from the biological dynamics of the marker.6–9 In

that implementation, sample weights are calculated to esti-

mate HIV-1 incidence based on the subset of people with

below-threshold clinical markers. The BED assay has been

used in many countries in both surveillance and research

contexts, but in 2006 a Joint United Nations Programme

on HIV/AIDS (UNAIDS) Reference Group on Estimates,

Modelling and Projections claimed that the current BED-

based methods overestimates incidence10 because of mis-

classification of late-stage HIV infection, impact of sample

storage conditions, viral loads and variation due to HIV-1

subtype.10,11 The Reference Group called for more re-

search on the validity of the BED assay, as well as alterna-

tive assays and modelling methods. Recently, Guy et al.

compared 13 different assays and found that serological

assays, including BED, have reasonable sensitivity for the

detection of recent infection, but are vulnerable to misclas-

sifying established infections as recent.12 This misclassifi-

cation has been directly observed in several African

populations,13,14 and modelling studies have shown that if

misclassification increases with time since infection, the

overall incidence estimates could vary by place, time and

age group.15 Furthermore, the dichotomization of the con-

tinuous optical density reading implies an information

loss, which may lead to statistical inefficiency.5 Thus,

although adding valuable information,12,16,17 there is a

consensus that current serological tests and modelling algo-

rithms urgently need to be improved.12,15,18

To address these issues and propose an alternative

algorithm, in this paper we combine a recently published

model of within-host time-continuous IgG dynamics19

with a Bayesian incidence estimator developed by Sommen

et al.20 to estimate the incidence of HIV-1 in Sweden based

on available BED test results. We reduce critical late-stage

infection misclassification by removing recently diagnosed

individuals with low CD4 counts, and in addition model

increasing levels of remaining misclassifications.

Methods

Statistical model of IgG concentration as a

function of time from seroconversion

We modelled the time of HIV-1 seroconversion assuming

logistic growth of within-patient IgG concentration as de-

veloped in Skar et al.19 IgG was measured by the log-scale

optical density as:

Y tð Þ ¼ Kþ Y 0ð Þ � Kð Þexp½ �erð Þt�

where Y(t) is the optical density at time t from infection,

Y(0) is the optical density in a susceptible person, K is the

Key Messages

• Incidences in Sweden as a whole and in MSM in Stockholm show a complex but generally increasing trend over the

period 2002–09.

• Treating IgG measures continuously and accounting for biological variance in IgG response improves incidence

estimation.

• Credibility intervals accounting for variance from data imputation and uncertainty in time of infection given IgG levels

suggested that observed trends were real.

• Differential misclassification of BED results lead to overestimation of the incidence; however, the magnitude of the

bias was small and did not affect trends.
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maximum optical density and r is the log-scale growth

rate. Skar et al. fit this model to cohort data using a mixed

effects model where both the slope and the asymptote had

random effects to account for inter-patient differences. We

will refer to this model as the OD model. The OD model

was trained using meta-cohort data described in Parekh

et al.7 containing BED results from different human popu-

lations as well as humans infected with different HIV-1

subtypes that show different rates of development of BED-

specific IgG in response to HIV-1 infection. As described

below, our Swedish data also consisted of patients of dif-

ferent genetic backgrounds as well as infections with differ-

ent HIV-1 subtypes.21,22 In the fixed effects model, the

maximum OD value is 1.84, which corresponds to sero-

conversion having occurred 711 days from the time of

diagnosis.19 Both the fixed and random effects estimated

by Skar et al. were used to calculate the posterior probabil-

ity of the time of seroconversion for individuals in the

Swedish surveillance dataset.

Study subjects

The study subjects were recruited between mid- 2002 and

mid 2010 as part of a national study on transmitted drug

resistance (TDR) in Sweden, which enrolled 1463 cases

from 2003–10.22 In our expanded set, 660 cases (45%)

were infected while living in Sweden, with the remainder

being infected before immigrating to Sweden.22 Although

persons infected before immigrating to Sweden were not

included directly into the data, secondary infections gener-

ated by these persons are included. Of the cases who were

infected while living in Sweden, 558 (85%) were male,

107 (16%) reported a heterosexual transmission route,

378 (57%) were men who have sex with men (MSM), 130

(20%) were injection drug users, 609 (92%) had a BED

test result and 392 (59%) had a BED test result OD� 1.84

that suggested a high probability of infection within the

previous 711 days.19

The five clinical centres for HIV care in the three largest

Swedish cities (Stockholm, Gothenburg and Malmö) took

part in the study from the start. Fifteen additional HIV centres

were added from 2005 so that 20 of the 29 centres in Sweden

eventually took part in the study. Due to partially incomplete

data, we only estimated Swedish incidence in the period

2003–09, and likewise for MSM in Stockholm 2003–09.

Because late-stage HIV infection is well known to

potentially lower the BED-OD value,6,11,23,24 causing

‘false-recent’ classification, we removed recently diagnosed

patients with AIDS defining or late-stage symptoms from

the BED incidence modelling [Centers for Disease Control

and Prevention (CDC) category C or an AIDS-defining ill-

ness). However, these cases still contain the information

that they are long-term infections, with a known distribu-

tion of time to AIDS,25 and were thus included in the over-

all incidence estimation as described below.

HIV-1 subtype determination

Genetic subtype was determined based on pol sequences

derived by direct population sequencing of patient plasma

within the TDR study.22,26,27 A phylogenetic tree, includ-

ing HIV-1 subtype reference sequences,28 classified each

patient’s HIV-1 sequence into its subtype.

Data imputation

Missing BED-OD values (n¼51, 7.7%) were imputed

using the multiple imputation method in the library mi-

0.09-1829 for the R programming language.30 The imput-

ation model used age, gender, transmission route, viral

load, CD4 count, viral subtype, indication of primary HIV

infection and time from previous negative test to impute

missing OD values. To again avoid errors related to low

BED-OD values in late-stage HIV infection, the BED re-

sults of people with an AIDS-defining illness at the time of

diagnosis were not used to impute the missing data. All

semi-continuous variables were log-transformed to prevent

imputation of negative OD values. The imputation method

was run until convergence five times, to generate independ-

ently imputed datasets.

Incidence estimator

The incidence estimator we developed is based on the esti-

mator described in Sommen et al.20 and contains three

components: (i) the posterior density of infection times

given an observed or imputed OD value; (ii) the probability

of being diagnosed in a specified interval conditional on in-

fection having occurred in the same interval; and (iii) infer-

ence to the target population. The posterior density of

infection times determines the probability that a person in

the study was infected in a specific interval. The condi-

tional probability of being diagnosed determines a set of

sampling weights to account for infections that occurred in

a specific interval but were not diagnosed until later.

To obtain the posterior density of infection times, we

first integrated out the random effects of the OD model to

get the conditional density of the OD measurement:

f y j r;l;uð Þ ¼
ð1

�1

1

2pr2
e

exp �
y� g r� u; að Þ2
� �

2r2
e

0
@

1
Afa da

where y is the OD measurement, u is the time of infection,

r is the time at diagnosis, l is the time of the previous
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negative test, gðt; aÞ is the mean dynamics of IgG measure-

ments according to the OD model at time t given random

effects r2
e is the variance of the normally distributed error

in the OD model, and fa is the density of the random ef-

fects also obtained from the OD model. If no known nega-

tive test existed, the person was assumed to have ‘tested’

negative 12 years before they were diagnosed. The poster-

ior density of infection times is obtained from Bayes rule:

f u j r;l;yð Þ ¼
fyjr;l;ufrjuðr

l

fyjr;l;u frju du

The prior probability of diagnosis given infection frju was

assumed to be a Gamma distributed random variable fit to

times from infection to diagnosis based on the fixed effects

OD model for individuals with observed OD values.

Many persons who are infected in a given year are un-

likely to be diagnosed in that same year. To account for

this, we developed a weighting method that models the

number of infected persons in a given interval based on the

probability that that a person would be infected and diag-

nosed in the same interval. Each person diagnosed in the

specific interval is weighted by the inverse probability of

having been infected in that interval. That probability was

determined by the time from infection to diagnosis for all

persons diagnosed in the specific interval. With respect to

infection times, there are three types of diagnosed people:

(i) people with OD� 1.84 without AIDS; (ii) people with

OD> 1.84 without AIDS; and (iii) people with AIDS

regardless of OD value. For type 1 people, we drew a ran-

dom infection time from the posterior distribution of infec-

tion times as an estimate of time from infection to

diagnosis, and for types 2 and 3 people we drew a random

infection time from the previously published Gamma dis-

tributed estimates of time from infection to AIDS.25 The

scale parameter for each type 2 person was found numeric-

ally such that 99% of the probability density was between

the last negative test and diagnosis dates. The motivation

for partitioning persons into these groupings is that be-

tween; (i) individuals that have BED results without AIDS;

(ii)people with AIDS at diagnosis; and (iii) people with pre-

vious negative tests, most of the sampled cases have useful

information about the time they were infected, which

allowed us to estimate the probability that an infected per-

son would be diagnosed in given interval.

We estimated the yearly incidence and the 95% credible

intervals by generating a bootstrap sample that accounted

for variance from: (i) the data imputation method; (ii) the

time of infection; (iii) the conditional probability of being

diagnosed; and (iv) the sample size. An explicit specifica-

tion of the full algorithm that we used to get the point

estimates and credible intervals is given in the online sup-

plementary materials, available as Supplementary data at

IJE online.

Sensitivity analysis

A concern with the BED test is that people deemed by the

BED assay to have been recently infected could have, in

fact, been infected for a long time.10 To test if our method

was robust to this violation, we changed the time from

infection to diagnosis for a random subset of recently in-

fected persons. In each of 10 000 bootstrap samples,

5–20% of recently infected persons were selected and had

their estimated time from infection to diagnosis switched

with a randomly selected non-recently infected person

(OD> 1.84 or AIDS). Their BED value was unchanged.

Thus, this method produced random datasets where we

could examine the conclusion our analysis would have

come to if this kind of misclassification had been present.

We also tested the assumption that persons who were not

found to be recently infected and did not have AIDS at the

time of diagnoses were infected no more than 12 years

from the time of diagnosis, by changing that parameter to

25 years.

Results

Increased HIV-1 incidence in Sweden

Figure 1 shows the relationship between the estimated inci-

dence, the sum of posterior probabilities of infection times

in the study, and the individual posterior distributions of

infection times for diagnosed persons. The overall trend in

HIV-1 incidence from 2003 was slightly increasing, with a

clear spike consistent with an outbreak beginning in 2006

and peaking in 2007 (Table 1). The per capita incidence

rates also showed a slightly increasing trend, with the ex-

ception of the 2006–07 elevated incidence. The total num-

ber of estimated new infections (n¼ 1459) was greater

than the number of actual diagnoses (n¼1190). The differ-

ence is due to cases that were infected in 2003–09, but not

diagnosed during the study period.

There was no significant trend of changing viral loads

(VL) in diagnosed persons over time (overall linear regres-

sion slope¼ 92 VL units/year, R2¼ 0.0006, P¼ 0.16; frac-

tion VL<10 000 in 2002–04 and in 2009–10 both at

20%; and loess and moving average showing no trends),

and thus potential problems relating to VL trends mislead-

ing incidence did not occur.15 However, 14% of cases

were diagnosed with an AIDS-defining illness, meaning

that they could have been infected for a decade or longer

when diagnosed. Likewise, the long time from infection to
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diagnosis means that in a given year a large proportion of

incident cases are unlikely to be diagnosed. The overall me-

dian time from infection (seroconversion) to diagnosis was

2.5 years, which is consistent with previous estimates.31

Interestingly, these trends were robust to altering by simu-

lation the rate of misclassified recent infections at diagno-

sis. Misclassifying recently infected persons as, in fact

long-term infections but with OD< 1.84 of up to 15%,

had minor effects on the incidence trends, not changing the

overall pattern of slowly increasing incidence from 2003

onwards, with a clear spike in 2006–07 (Table 1). Higher

rates of misclassification led to a higher degree of bias, but

the qualitative features of the trends were unaffected. This

suggests that our novel incidence algorithm likely could be

used in other populations with different diagnosis response

times from those in Sweden.

Figure 1. Incidence of HIV-1 in Sweden 2003–09. This shows the yearly incidence of HIV-1 infections adjusted for the probability of being diagnosed

(estimate, solid red line; 95% credible intervals, dashed red lines; right scale), the posterior density of infection times for all diagnosed persons with a

usable BED test (grey lines, not shown to scale), the incidence rate per day unadjusted for unknown cases and the probability of being diagnosed

(solid black line; left scale), and the time of diagnosis for each individual with a measured BED test below 1.84 (blue rug), and imputed BED results

below 1.84 (red rug).

Table 1. Swedish incidence estimation and model sensitivity analyses

Sample characteristics 2003 2004 2005 2006 2007 2008 2009

Enrolleda 52 64 79 84 124 94 87

Diagnosed (%)a 152 (0.25) 144 (0.24) 140 (0.40) 168 (0.41) 230 (0.51) 176 (0.43) 180 (0.39)

BED (<1.84)a 39 (24) 55 (30) 73 (55) 75 (57) 120 (73) 91 (51) 86 (53)

AIDSa 2 2 6 8 7 9 7

Incidence estimateb

Count 188 (159,214) 177 (148,204) 188 (168,207) 221 (197,244) 262 (234,289) 208 (180,236) 215 (187,241)

Rate 2.10 1.96 2.08 2.43 2.86 2.25 2.30

Sensitivity analysisb

25 yearsc 194 (164,222) 183 (153,211) 191 (170,210) 228 (203,252) 271 (242,300) 216 (186,244) 223 (194,251)

5% misclass.d 198 (165,235) 185 (152,220) 197 (174,223) 232 (204,262) 275 (243,308) 220 (187,256) 225 (194,258)

10% misclass.d 208 (172,253) 196 (159,239) 208 (181,239) 244 (212,281) 290 (253,330) 233 (196,277) 238 (202,279)

15% misclass.d 220 (175,278) 207 (166,262) 219 (187,257) 258 (220,302) 305 (264,355) 248 (204,302) 251 (210,302)

20% misclass.d 234 (183,309) 221 (174,287) 232 (195,279) 274 (230,327) 324 (276,382) 265 (214,332) 267 (219,328)

Individuals who had no reported location of infection were assumed to have been infected in Sweden with the marginal probability of being infected in Sweden

for each year.
aThe rows ‘Enrolled’, ‘Diagnosed’, ‘BED’ and ‘AIDS’ refer to the number of people in the study, the proportion of all diagnosed cases (infected in Sweden) in

the sample, the number of people with a BED assay result, and the number of people with AIDS at the time of diagnosis, respectively.
bThe incidence rate is expressed per 100 000 person years. For the incidence estimates and sensitivity analysis, values in parentheses are 95% credible intervals.
cThe row ‘25 years’ shows the incidence estimate under the assumption that non-recent, non-AIDS cases could have been infected up to 25 years ago (rather

than the 12 we assumed).
dThe rows ‘% misclass.’ give the incidence estimates for a given degree of misclassification of recently infected persons.
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Increased HIV-1 incidence in gay men in

Stockholm

Figure 2 shows the estimated incidence in gay men in

Stockholm 2003–10, with grey envelopes indicating 95%

credible intervals and red dots indicating the number diag-

nosed (numbers in Table 2). The trend is generally increas-

ing although, given lower numbers of incident cases in

2006 and 2009 and the generally low number of incident

cases, it is not possible to rule out random year-to-year

variation as the cause of the apparent pattern. In general

the number of diagnosed cases was not greatly lower than

the estimated number of incident cases, which is consistent

with the low average time from infection to diagnosis (2.1

years) in this subpopulation. The main exception is 2005,

where the estimated incidence was 44% higher than the

number diagnosed. The cause of this effect was the large

number of recently infected persons diagnosed later in the

year who, by definition, have a high probability of being

infected in that year. Given that we assume a constant

probability within a given interval, the only way to observe

this pattern is with a large number of new infections occur-

ring in 2005. An alternative explanation for this pattern

that cannot be ruled out with the available data is an

increasing probability of diagnosis from the beginning to

the end of 2005.

Differential misclassification of BED results

To study the role of differential misclassification of BED

results, we generated a dataset with different proportions

of persons misclassified as being recently infected. The re-

sults show a clear trend that this kind of misclassification

Figure 2. Incidence of HIV-1 in MSM in Stockholm. Red dots show number of diagnosed cases per year. Black lines, with grey 95% credible intervals,

show our yearly incidence estimates. Red arrows indicate the increase over the number of diagnosed cased that our novel method infers based on

BED results and corrections for number of unknown cases.

Table 2. Stockholm MSM incidence estimation

2003 2004 2005 2006 2007 2008 2009

Incidencea 33(27,38) 42(34,49) 62(56,67) 40(35,45) 64(56,70) 67(58,76) 47(39,54)

Enrolledb 25 30 43 34 46 54 38

Diagnosedc 27 33 43 35 50 59 43

BED (<1.84)d 24(17) 30(18) 42(35) 32(26) 46(35) 52(30) 38(30)

AIDSe 1 1 2 1 3 4 3

aEstimated number of new infections (95%CI).
bNumber of persons enrolled in the study.
cNumber of persons reported to have been diagnosed.
dNumber of persons with BED results (number below 1.84).
eNumber of persons with AIDS at the time of diagnosis.

International Journal of Epidemiology, 2015, Vol. 44, No. 3 1003



would lead to an overestimation of the incidence compared

with the actual analysis (Table 1). This overestimation is

caused by the fact that in the misclassified dataset, the

average time from infection to diagnosis is longer and

therefore the sample weights are higher. Recently infected

individuals who are likely to have been infected in the

interval of interest will have a disproportionate contribu-

tion to the incidence from the increased sample weights.

Although the estimator is sensitive to this kind of mis-

classification, the magnitude is relatively small even at

15% misclassification. With 15% misclassification, the

average overestimation was 36 cases per year, i.e. less than

17% overestimation. The qualitative features of the trend

(increasing with a drop in 2008) are robust to this kind of

misclassification. Given these facts we believe that, where-

as our estimator might slightly overestimate the number of

infected cases, our results are robust to this kind of mis-

classification at realistic levels. Note also that in the

Swedish data we removed persons with low CD4 counts

from the BED results, so the actual misclassification level is

likely well below 15%.

Table 1 also shows that our algorithm is robust to the

assumption that persons who were not found to be recently

infected and did not have AIDS at the time of diagnosis

were infected no more than 12 years from the time of diag-

nosis. Relaxing this assumption to 25 years only increased

the estimated incidence slightly.

Discussion

Because HIV-1 infection often goes undetected, it is com-

mon that positive diagnosis occurs with a considerable

delay relative to the time of infection. Therefore, number

of diagnoses per unit time, e.g. per year, is a poor estimator

of the spread dynamics in a population. Here we present

an incidence estimator based a time-continuous growth

model of a biomarker (BED) with corrections for undiag-

nosed cases and sample size. We show that the incidence in

Sweden in general and in gay men in Stockholm in particu-

lar has increased over the past decade, although to a mod-

est degree.

Previous studies have shown that false-recent misclassifi-

cation may occur at 1.7–15.1%,11,32 and in African settings

it has been shown that the traditional recent/long-term cut-

off interpretation of BED results may overestimate incidence

by as much as 360%.33 Our incidence estimation, based on

a time-continuous BED growth model, only overestimates

incidence by 17% when false-recent misclassifications occur

at 15%. Furthermore, in our analysis of the Swedish HIV-1

epidemic, we avoided known problems associated with

‘false-recent’ classification5,6,11,23,24 by removing individuals

with clinical symptoms (low CD4 counts or AIDS-defining

illness) from the posterior OD model-based incidence esti-

mation. Thus, using additional data to reduce the false-

recent rate improves BED-based incidence estimations, but

even if misclassifications should remain at up to 15%,

we show by simulation that our new method robustly infers

incidence trends in Sweden.

Arneborn and Blaxhult reported that there had been a

dramatic increase of reported diagnoses in 2007.34 They

noticed that the increase was primarily among MSM and

injecting drug users (IDU). Our estimates of the overall in-

cidence of HIV in Sweden are consistent with this observa-

tion as we find elevated incidence in both 2006 and 2007.

The increase in 2006–07 is possibly explained by an out-

break among IDU infected with HIV-1 CRF01 in 2006,

linked to a Finnish IDU outbreak around 2003.35 Our

analysis also found some evidence for increasing HIV inci-

dence in gay men in Stockholm. These results are surpris-

ing, as most diagnosed cases in Sweden have successful

therapy (in 2012, 87% of diagnosed patients were on anti-

retroviral therapy (ART) and 92% of these had <50 RNA

copies/ml36), essentially making them non-infectious.37

Factors such as spread from undiagnosed, and therefore

untreated, individuals as well as episodic high viral loads

in treated individuals probably contribute disproportion-

ally to the epidemic. Overall, the peak of reported cases in

200734 was preceded by elevated incidence in 2006.

Our estimator is different from both the method pro-

posed in Sommen et al.20 and the method also based on

BED measurements detailed in Karon et al.38 Both the

Sommen et al. and Karon et al. methods divide the popula-

tion into a group of regular and non-regular testers, based

on the existence of a previous negative test. In regular test-

ers (individuals with a previous negative test), the condi-

tional density of the time of testing, given infection, is

derived from the assumption that testing is a Poisson pro-

cess with intensity determined by the time from the previ-

ous negative test to diagnosis. For the non-regular testers,

the hazard of infection is assumed to be constant and esti-

mated from other data such as proportion of AIDS diag-

noses. We believe that the assumptions of (i) stable testing

rates in all individuals with a previous negative test and (ii)

a constant hazard of testing in individuals without a nega-

tive test are not realistic.19 Our method exploits the fact

that in a given interval, most infected persons have some

information about the time from infection to diagnosis for

that interval. Even for individuals with OD> 1.84 and no

indication of an AIDS-defining illness, we know that they

were likely to have been infected between their last nega-

tive test (if it exists) and diagnosis. There is no optimal a

priori distribution of times to diagnosis for this group of

people; however, the uncertainty of infection times for

these individuals is incorporated into the credible intervals.
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The credible intervals around our point estimates in-

clude variance from the data imputation method, probabil-

ity of the infection time, and the distribution of time from

infection to test. Additional sources of variance should be

included in future work, to gain potentially more accurate

credible intervals such as uncertainty in the BED measure-

ment, uncertainty in the number of diagnosed cases due to

reporting delays and uncertainty in time of previous nega-

tive test. Increasing the number of random quantities in the

estimator increases the necessary size of the bootstrap sam-

ple to obtain good point estimates increasing the computa-

tional requirements. The ability to explicitly model

uncertainty in both the data and the posterior distribution

of infection times in a Bayesian context is a strength of our

method.

Because we allow the probability of being diagnosed to

vary between time intervals, we mitigated some of the pos-

sible effects of changing patterns of testing and diagnosis.

Although we assume that the probability of being diag-

nosed is constant within a time interval, time units can be

subdivided further to reduce the strength of this assump-

tion. However, the trade off in subdividing time intervals

is that small sample numbers may lead to poor estimates

of the sample weights and therefore unreliable point

estimates.

Parekh et al. have shown that the BED test may perform

differently in different human populations as well as in

humans infected with different HIV-1 subtypes.7 The par-

ameter values of our logistic model were informed by the

same data (provided by Dr Parekh) and thus, as in Skar

et al.,19 both the model calibration and the Swedish data

reflect human and HIV-1 variation, because the HIV-1 epi-

demic in Sweden is small but diverse, involving most HIV-

1 subtypes.21 We note that adjusting for human and HIV

genetic variation would be difficult because such a model

would require massive and typically unavailable data, and

differences within HIV-1 subtypes appear to affect BED

results as much as between subtypes.7 Nevertheless, it is

possible that future biomarkers will be less sensitive to

human and HIV genetic variation. Our model was based

on BED assay results because it is currently the most used

biomarker for recency estimation. However, our model

could be adjusted to other available and future serological

biomarkers as well as be included in multi-assay approach-

es.16,39,40 Motivated by the fact that all natural systems

have limited resources, we model the HIV-specific bio-

marker growth within a patient by logistic growth up to a

carrying capacity.19 Other researchers have tested alterna-

tives based on statistical arguments, reaching similar de-

scriptions of biomarker development.20,31

Incidence estimation using time-continuous biomarker

data makes a fast and powerful combination to monitor

spread dynamics. Further development of the methods pre-

sented here could allow for rapid and up-to-date estimates

of HIV incidence in a broad variety of settings.
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