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Stochasticity and Spatial 
Interaction Govern Stem Cell 
Differentiation Dynamics
Quinton Smith1, Evgeny Stukalin2,3, Sravanti Kusuma1,4, Sharon Gerecht1,3,5 & 
Sean X. Sun2,3,4

Stem cell differentiation underlies many fundamental processes such as development, tissue growth 
and regeneration, as well as disease progression. Understanding how stem cell differentiation 
is controlled in mixed cell populations is an important step in developing quantitative models 
of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in 
determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures 
on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a 
bimodal probability distribution of stem cell fraction on small (80–140 μm diameter) micropatterns. 
On larger (225–500 μm diameter) micropatterns, the variability is also high but the distribution of 
the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation 
dynamics and quantitatively determine the differentiation probability as a function of stem cell 
fraction. Results indicate that stem cells can interact and sense cellular composition in their 
immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial 
cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, 
cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-
cell interactions are important factors in determining cell fate in mixed cell populations.

Cell phenotypic dynamics govern a variety of critical physiological processes ranging from organismal 
development, to cancer/disease biology, and tissue regeneration. Starting from undifferentiated pluripo-
tent stem cells (PSCs), subsequent differentiation and developmental processes have been explored in 
many settings, dating back to the Waddington Landscape1. Recently, multiple experiments have shown 
that differentiated cells can return to the pluripotent state and interconvert to other types of differentiated 
cells2–4. However, quantitative understanding of factors influencing differentiation decisions is still lack-
ing. Developing mathematical models would allow us to quantitatively predict cellular compositions over 
time in different types of environments. In the present paper, we focus on understanding and quantifying 
the role of cell-cell interactions in stem cell fate determination. We examine differentiation dynamics 
of human induced PSC (hiPSCs) in confined adherent cultures on micropatterns of varying sizes (80–
500 μ m, Fig. 1). Many replications of cell cultures in identical conditions are analyzed to obtain statistical 
information. We find that mesoderm stem cell differentiation is highly stochastic, and quantitatively 
described by a probabilistic model. From the data, we are able to discern the differentiation probability as 
a function of the local stem cell fraction and microenvironment. Results show that stem cells surrounded 
by differentiated cells will differentiate faster; undifferentiated status is more likely maintained when 
stem cells only interact with other stem cells. This cell-cell interaction governing differentiation can be 
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Figure 1.  Homogenous hiPSC population matured on circular micropatterns show non-homogeneous 
differentiation dynamics depending on the size of confinement. (A) (i) hiPSCs are plated on fibronectin 
coated circular substrates ranging from 80–500 μ m in diameter. Cell seeding density is 100,000 per coverslip. 
The initial cell hiPSC population is 98.67 + /−  0.39% pluripotent as demonstrated by TRA-1-81 flow 
cytometry and staining data. (ii) Hundreds of identical micropatterns are replicated in the same culture. 
Cells grow and differentiate for 5 days. (B) (i) Differentiation demonstrated by loss of green intensity  
(ii) The cell culture is fixed and stained at regular intervals and images are processed and quantified for each 
micropattern. The number of stem and differentiated cells are recorded to obtain population distributions. 
The image analysis algorithm is discussed in the SM. (C) (i) Representative images of stem cell populations 
grown for 1 day on circular micropatterns. (ii) Probability density functions of stem cell fractions quantified 
from (i) showing bimodal probability distributions of stem cells on smaller (80 and 140 μ m) and unimodal 
distributions on larger (225 and 500 μ m) diameter micropatterns. The 80 and 140 μ m micropatterns show 
that it is very probable to observe a micropattern with 100% stem cells or 100% differentiated cells. For the 
larger 225 and 500 μ m micropatterns, the opposite is true (TRA-1-81 in green; phalloidin in red; nuclei in 
blue; scale bars are 100 μ m).
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partially blocked by interfering with E-cadherin. We show that this cell-cell interaction, coupled with cell 
motility, can generate dynamic spatial patterns of stem and differentiated cells on larger micropatterns.

To examine mesoderm differentiation dynamics, we utilized a previously established adherent culture 
differentiation scheme, which directs hiPSCs towards vascular lineages5,6 and followed the expression 
of a pluripotency marker after 1, 2 and 5 days in culture. By systematically changing the cell substrate 
size and exchanging differentiation media daily, we can control the spatial extent of cell-cell interactions 
while limiting cytokine-mediated responses. For example, on small 80 μ m micropatterns, there are at 
maximum, 3–5 cells. Since cells can move freely within the pattern any individual cell is in contact 
with all other cells. In contrast, on large 500 μ m micropatterns, cells can only explore their immediate 
neighborhood within the first day of differentiation. While previous studies have examined the effects 
of micropattern size on stem cell differentiation7–9, they have been limited in exploring osteo/adipogenic 
potential in heterogeneous mesenchymal stem cell populations. Using a similar micropatterned array we 
have recently shown the role of confinement in lineage specification of differentiating vascular cells10, 
however incorporating an additional layer of computational based predictive models will lead to higher 
differentiation efficiency and understanding of fate decision. Although modeling stem cell population 
dynamics11–15 including feedback and feed-forward mechanisms in tissues based on mean-population 
models have been explored16,17, stochastic population models based on constant differentiation probabil-
ity have only been applied in epidermal stem cell differentiation18,19. Here we focus on exploring stochas-
tic behavior in homogeneous stem cell populations during the loss of pluripotency, where large variations 
in population composition are observed. Since our differentiation conditions consistently induce vascular 
lineages, the stochasticity is not about variations in the final cell type. Rather, the stochasticity is inher-
ent in the population dynamics during the mesoderm differentiation process. Experimentally obtained 
statistical distributions of pluripotent and differentiated cell types allowed us to develop a quantitative 
probabilistic model to understand stem cell differentiation kinetics. We demonstrate that the stochastic 
differentiation model gives qualitatively different results than a mean population model. The model is 
able to explain the bimodal probability distribution of stem cell fractions seen on small micropatterns, 
and can also predict average cell populations in the micropatterns over time as well as statistical fluctu-
ations of the population. The simple generalization of the model that introduces spatial compartments 
can also explain results on larger micropatterns. Cell-cell interaction together with cell motility can 
develop spatial cell patterns on larger substrates, which may explain patterns seen in other developmental 
systems.

Results
Stem cell differentiation dynamics on spatially confined culture substrates.  In our established 
step-wise differentiation strategy we observe an increase in mesodermal gene expression, stagnant neu-
ronal expression, and loss of pluripotency six days post differentiation. To elucidate the kinetics of mes-
oderm induction, we differentiated hiPSCs using our established protocol6,20 on identical 2D fibronectin 
circular micropatterned surfaces (Fig.  1A and SM) ranging from 80–500 μ m in diameter, and tracked 
the loss of pluripotency. In comparison to mesencyhmal stem cells, hiPSCs are advantageous in studying 
differentiation dynamics in that there is very little heterogeneity in the starting population (SM Fig. S2). 
With this system, we are able to quantify the differentiated state on tens to hundreds of identical cul-
ture conditions, differing only in pattern size (Materials and Methods). Undifferentiated stem cells were 
identified by immunostaining for pluripotent marker, tumor rejection antigen 1-81 (TRA-1-81), and the 
total cell number was enumerated by staining the cell nuclei (Fig. 1Bi). For each circular micropattern, 
we obtained the number of undifferentiated stem cells and differentiated cells after 1, 2 and 5 days of 
culture using a custom MATLAB image processing program (Fig. 1Bii).

Results from these quantitative experiments show a striking feature. Under mesoderm inducing dif-
ferentiation media, for small 80 and 140 μ m micropatterns, it is highly likely to observe either 100% stem 
cells or 100% differentiated cells (Fig.  1Ci). Here, the stem cell fraction for each pattern is defined as 
χ =  ns/(ns +  nD), where ns and nD are the number of stem cells and differentiated cells on each pattern, 
respectively. Experimentally, the fraction of stem cells is also the percentage of cells expressing pluri-
potent marker TRA-1-81 in each of the analyzed micropatterns. The total population for each pattern 
is counted from DAPI nuclear staining and the percentage or fraction of TRA-1-81 positive cells is 
recorded as χ. This observed distribution of stem cells can be characterized as bimodal, i.e., it is strongly 
peaked at χ =  0 and χ =  1 (Fig. 1Cii). The probability of observing some mixture of stem and differenti-
ated cells is smaller. In contrast, for larger 225 and 500 μ m substrates, the probability distribution shows 
a qualitatively different behavior: it is highly likely to observe micropatterns with a mixture of undif-
ferentiated and differentiated cells (Fig. 1C). Consistent with unconfined differentiation, the probability 
of observing differentiated cells increases over time, and by day five, a large fraction of micropatterns 
have differentiated completely (Fig.  1Cii, bottom), although a large variability from pattern to pattern 
still remains. Although the influence of microenvironment size on stem cell differentiation has been 
noted before17, statistical information such as presented in Fig. 1, has not been reported in a controlled 
adherent differentiation scheme. While each culture micropattern of a particular size is identical, except 
for some variations in the initial number of seeded cells, these results show that the kinetics of loss of 
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pluripotency during differentiation is highly stochastic. Therefore, stem cells do not execute determinis-
tic responses to microenvironmental signals. Within this system, stem cell differentiation decisions are 
probabilistic and the population behaves stochastically, as noted in other contexts such as differentiation 
in the intestinal crypt21,22.

Model for understanding stem cell differentiation dynamics.  In order to reconcile the disparate 
stem cell fraction distribution observed for different micropattern sizes, we consider a stochastic popu-
lation model where stem cell growth and differentiation events are governed by transition probabilities 
(Fig. 2). There is also some probability of cell loss from detaching from the substrate. The central quantity 
in this minimal model is the probability of observing a particular number of stem and differentiated cells 

Figure 2.  Model and experimental comparison. (A) Quantitative modeling shows that the form of the 
differentiation transition probability, Eq. (2), affect the stem cell fraction distribution. From Eq. (1), if the 
differentiation probability r, is a constant (brown line), then the stem cell fraction distribution only shows a 
single peak around 50% (brown histogram). In contrast, if r is a declining function of local stem cell fraction 
in the micropattern, i.e., differentiation is more likely when pluripotent cells are surrounded by differentiated 
cells (green line), then the stem cell population shows bimodal behavior (green histogram). (B) Comparisons 
of experimental probability density function of stem cell fraction (blue) with mathematical model results 
(red). The form of the stem cell differentiation probability, r in Eq. (2), that best explain the experiment 
is also shown. This function is relatively independent of the micropattern size, which is consistent with 
modeling assumptions. (C) The model also explains the average populations of stem and differentiated cells, 
as well as population fluctuations. The shaded region represents the range of population fluctuation, defined 
by the computed standard deviation. The computed average population is the solid line and the data are 
symbols with measured standard deviation.
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at time t on each micropattern: P(ns, nD, t), where ns and nD are the numbers of stem and differentiated 
cells on each micropattern, respectively. This probability density evolves in time according to a master 
equation (or fundamental conservation of probability)23,24:
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where uS,D are the symmetric cell division rates for stem cells and differentiated cells, r is the differenti-
ation conversion rate from stem to differentiated cells, and w is the rate of cell loss. The quantity we will 
try to clarify in this paper is that the differentiation rate, r, is not a constant but depends on the character 
and composition of the local cell culture environment, i.e., r ∫ r(nS, nD). The cell division rates, uS,D, are 
also not constants and depend on the cell population size. This is because there is cell-cell competition 
and each micropattern can support a finite number of cells (see SM text). For smaller 80 and 140 μ m 
micropatterns, cells are able to move sufficiently to make contact with other cells in the same culture 
micropattern. Therefore, dynamics governed by Eq. (1), which describes a well-mixed population of stem 
and differentiated cells, is reasonable. From these cell-cell interactions, the signaling pathway governing 
stem cell differentiation obtains information about the composition of the local cell neighborhood and 
makes decisions accordingly.

Stem cell-mediated inhibition of differentiation.  Starting with Eq. (1), for given functional forms 
of r, uS,D and w, and an initial cell number distribution P0(nS, nD), we can compute the theoretical num-
ber of stem and differentiated cells (see SM). The initial cell number distribution is Poissonian, and is 
given by the seeding density (100,000 per slide, see SM). We also do not assume confluent cell number 
in each patch. The computational analysis shows that the functional form of r has a strong influence on 
the distribution of stem cell fractions (Fig. 2). For instance, in a well-mixed system, the differentiation 
rate could be a function of the fraction of stem cells: χ =  nS/(nS +  nD).

From our experimental data, we reason that r must be a declining function of the stem cell fraction 
(Fig. 2): if there are large fractions of stem cells, then differentiation is less likely. If there are large frac-
tions of differentiated cells, then the remaining stem cells will differentiate faster. This type of differen-
tiation probability is sufficient to generate the bimodal probability distribution seen in 80 and 140 μ m 
micropatterns (Fig. 1). Computational analysis confirms that in order to generate the bimodal probability 
distributions of stem cell fractions seen in Fig. 1, r must be a declining function of χ . If r is independent 
of χ , then the stem cell fraction distribution is unimodal (Fig.  2A and SM). Additionally, quantitative 
fitting to the data suggest that the differentiation probability is a slight nonlinear function of χ, i.e.,

r r f f 20 1 2
2χ χ= − + ( )

where r0 is the differentiation rate at zero stem cell fraction and (f1, f2) are constants. This result is not sur-
prising since signaling pathways governing differentiation likely contain cooperative behavior, probably 
in the form of Hill functions that generates switch-like behavior. The molecular details of the signaling 
pathway are still unclear and require further investigation.

Model predictions of long-term growth dynamics on small micropatterns.  As time progresses, 
experiments show that the proportion of stem cells and differentiated cells change. The total cell popu-
lation also generally increases (Fig. 2C), features captured by our model (Fig. 2C). The total population 
change depends on cell division, cell loss, and differentiation rates. Since cells are grown on finite size 
micropatterns, the total cell population must be limited. Cells must compete for space, and therefore uS 
and uD also depend on the current population size. We use a logistic growth type of expression to model 
this, i.e., uS =  vS −  γS(nS +  nD −  1) and uD =  vD −  γD(nS +  nD −  1) where vS,D are growth rates in absence 
of competition (total cell number is zero) and γS,D are competition or crowding parameters. For cell loss, 
no visible cell death occurred during our experiment. However, some cells do detach from the substrate. 
Therefore we consider a constant cell loss rate, w.

We considered three different modes of stem cell division in our model to capture their unique 
properties of self-renewal and differentiation. Discussions on possibilities of symmetric and asymmetric 
cell division, or direct conversion without division in stem cells have been extensively reviewed25. The 
notion of asymmetric stem cell division via cell polarity has been extensively examined, with highly 
conserved mechanisms between vertebrates and invertebrates. The primary evidence of asymmetric stem 
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cell differentiation relies on the well-studied Drosophila germ stem cell niche. However adult stem cells 
have been shown to exhibit this ability as well26,27.

Within Eq. (1), the first term in the equation describes symmetric cell division where nS −  1 stem cells 
is replaced by nS stems cells and nD remains unchanged. The third term describes direct conversion where 
nS +  1 stem cells and nD −  1 differentiated cells is replaced by nS stem cells plus nD differentiated cells. 
The relative probability of symmetric division versus direct conversion depends on the ratio between uS 
and r. We can also consider asymmetric cell division, i.e., a stem cell divides to form a stem cell and a 
differentiated cell. In this case, the third term would be replaced by rnSP(nS, nD −  1, t) and other terms 
remain the same. Notice that with asymmetric cell division, the number of stem cells generally does not 
decrease. Under our controlled differentiation scheme we expect a complete loss of stem cells, evidenced 
by our experimental data. As a result we considered direct stem cell conversion in our system. Stem cells 
could also divide to form two differentiated cells. In this case, the third term would modify slightly to 
r(nS +  1)P(nS +  1, nD −  2, t). We find that the solution of the equation is essentially the same for this case. 
It is also possible that asymmetric cell division and direct conversion are occurring simultaneously. Our 
results cannot distinguish this possibility, but adding this complication does not change the qualitative 
picture, especially the obtained form of the differentiation probability, r in Eq. (2).

Average cell population and fluctuations in cell composition.  Eq. (1) is able to predict not only 
the average population in the micropatterns, but also the variation (fluctuation) in populations of differ-
ent types of cells. The average populations are computed as:
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comparisons between model predictions and experimental data are shown in Fig.  2C. We see that the 
expected population fluctuations are generally well captured by the stochastic model. In the SM, we also 
discuss a mean population model, which can compute the average cell populations. However, the mean 
population model is quantitatively different from the stochastic model, and cannot compute population 
fluctuations or distributions of stem cell fractions.

Cell motility plus differentiation forms spatial patterns.  For the larger 225 and 500 μ m culture 
micropatterns, global stem cell fractions collected over the whole micropattern no longer exhibit bimodal 
behavior (from Fig. 1). One possibility is that the well-mixed assumption in Eq. (1) is no longer valid and 
cells do not explore the complete micropattern. We hypothesize that differentiation is governed by local 
cell composition, and on larger micropatterns cells are unable to move sufficiently to sample the whole 
space. To test this, we recorded time-lapse movies of differentiating stem cells on these micropatterns 
and collected mean squared displacement data (Fig. 3A). We tracked single cells over 24 hrs and meas-
ured their averaged mean squared displacement. We find that cells generally move randomly and travel 
about 100 μ m over 24 hrs. This translates to a diffusion coefficient of ∼ 1.5 μ m2/min. The time scale of 
diffusion over 100 μ m is comparable to the time scale of cell division and differentiation. We incorporate 
cell spatial diffusion using a simple extension of our model in Eq. (1). For the 225 μ m micropattern, we 
model it as four connected compartments, each about 100 μ m in size (Fig. 3B). Within each compart-
ment, cells divide and differentiate according to the local composition of the compartment. In addition, 
cells can move from compartment to compartment according to stochastic transitions from random 
diffusion. This model can completely explain the observed histograms for 225 and 500 μ m micropatterns 
(Fig. 3). Within each compartment, the stem cell composition still follows the bimodal distributions seen 
in smaller micropatterns; but when the compartments are summed to generate the total histogram for 
the larger micropattern, the total histogram reflects an average of the compartment histograms. From 
simulations, we see that individual compartments can still be dominated by either stem cells or differen-
tiated cells. This is also seen in experimental images (Fig. 3), where we can observe spatial domains of 
differentiated and pluripotent cells.

From results of the smaller micropatterns, the form of the differentiation probability, r, suggests that 
cell-cell spatial interaction is important. Therefore, together with cell diffusion, spatial patterns can form 
in differentiating populations of stem cells. If stem cells are surrounded by other stem cells, the probabil-
ity of differentiation is low. If differentiated cells surround a stem cell, then it is more likely for stem cells 
to differentiate. From our experiments, it is possible to see these spatial domains on larger micropatterns 
(Fig. 3). These micropatterns often show a localized region where stem cells are clustered, approximately 
100 μ m in size. The spatial patterns observed in our experiment are not Turing-like patterns, which 
typically arise from substantially different diffusion constants of different species. Here, stem and differ-
entiated cells have a similar diffusion constant. Rather, these patterns arise from cell-cell spatial coupling 
and the nonlinear nature of the differentiation probability. These spatial patterns are also reminiscent 
of patterns seen in differentiation on similar micro domains in the presence of BMP426. Mathematical 
modeling using a mean population approximation of the stochastic master equation in the spatial regime 
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also cannot capture these patterns (see SM). These patterns appear naturally from fluctuations and stabi-
lization of fluctuations due to cell-cell interaction.

The role of E-cadherin in stem cell differentiation.  E-cadherin is essential in not only maintain-
ing cell-cell interactions, but also pluripotency in stem cells. To elucidate this role of cell-cell interactions 
in stem cell differentiation kinetics within confined geometric domains, 50 μ g/mL of anti-E-cadherin 
antibody (clone 67A4; Millipore) was incubated with freshly dissociated hiPSCs for 2 hrs28. As evidence 
suggests disruption of E-cadherin signaling leads to increased stem cell death29, 500,000 cells were sub-
sequently seeded onto the micropatterns, cultured for an additional 24 hrs, prepped for immunoflu-
orescence, and subsequently analyzed for differentiation kinetics. We see that treated cells on 140 μ m 
domains after one day exhibited qualitatively different behavior than the control experiment. There is 
a significantly larger portion of differentiated cells when E-cadherin is inhibited (Fig. 4A). Quantitative 
analysis of the data shows that the differentiation probability, r, is a flatter function of stem cell frac-
tion when E-cadherin is blocked (Fig. 4B). At χ  =  1, for example, the differentiation probability in the 
presence of anti E-cadherin antibody is more than two times larger than the control. At χ  =  0, the 
differentiation probabilities are nearly identical. Similar results are also observed for 80 μ m domains. 
For larger domains, the spatial patterns are also significantly different in the presence of anti E-cadherin 
when compared with the control. These results suggest that when E-cadherin is blocked, a stem cell 
surrounded by other stem cells no longer recognizes the local environment effectively, and differentiates 
with a similar probability as when it is surrounded by differentiated cells (χ  =  0). Note that even with 
anti E-cadherin, r as a function of χ  is not completely flat, suggesting that stem cells are still recogniz-
ing their neighbors to some extent. This could be due to inefficient E-cadherin blocking through anti-
body incubation or that other independent signaling mechanisms allow for cell-cell interactions. Taken 
together, we conclude that cell-cell interaction, partially mediated by E-cadherin related cell signaling, 

Figure 3.  Cell motility and cell-cell interaction can explain spatial patterns seen on larger 
micropatterns. (A) Measured means squared displacement versus time for stem and differentiated cells, 
giving a diffusion constant of 1.5 μ m2/min. (B) A compartment model for large micropatterns. A 225 μ m 
pattern can be viewed as four, 80 μ m patterns connected together. Cells within each compartment are well 
mixed and interact with each other. Cells can also migrate between adjacent compartments, modeled by 
stochastic hopping rates kh. (C) Computed stem fraction probability distribution for a single compartment 
within the large micropattern. The compartment shows the same identical bimodal behavior as the 
smaller micropatterns. (D) Computed stem cell fraction distribution for the large micropattern when four 
compartments are summed. This distribution is unimodal, in accord with observations in Fig. 1C. (E) An 
example immunofluorescence image showing spatial domains within the 225 μ m micropattern. Lower half 
are dominated by stem cells. (F) A sample simulated 225 μ m micropattern, showing similar micro domains 
dominate by stem cells. The simulations are performed using a Gillespie algorithm described in the SM. 
Additional examples of immunofluorescence images of spatial patterns seen (G) on 225 μ m and (H) 500 μ m 
micropatterns after one day of differentiation. (TRA-1-81 in green; phalloidin in red; nuclei in blue; scale 
bars are 100μ m).
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is critical in regulating the stem cell early differentiation events. Note that the inhibition of E-cadherin 
also influences cell proliferation parameters. The actual observed population distributions result from a 
combination of these parameters.

Discussion and Conclusions
By analyzing stem cell differentiation dynamics in many spatially defined microenvironments, we found 
strong stochastic behavior during the differentiation process. The composition of individual micropatterns 
varied dramatically over the time course of the differentiation. On smaller micropatterns, we observe that 
the most probable composition is either 100% stem cells or 100% differentiated cells. Moreover, the phys-
ical dimensions of the microenvironment can influence stem cell differentiation in significant ways. We 
propose a stochastic differentiation model frame-work, and showed that stem cell differentiation proba-
bility is a strong function of local stem cell fraction within the immediate cell vicinity. When stem cells 
are surrounded by other stem cells, the differentiation decision is slow; whereas, when differentiated cells 
surround stem cells, then the differentiation rate is faster by nearly three fold. This result is consistent 
with the previous proposal that there are feedback signals between differentiated cells and stem cells16. 
The proposed stochastic modeling framework should be applicable in other settings for understanding 
differentiation dynamics.

We also found that the cell-cell interaction during differentiation is partially mediated by an E-cadherin 
governed signaling mechanism. Although, cell-cell interaction is not completely inhibited in our experi-
mental conditions, we are able to manipulate, observe, and quantify variances in differentiation kinetics 
when the roles of cell contact in spatially confined domains are altered. It is possible that E-cadherin 
affects multiple sensing mechanisms in stem cells and there are redundant mechanisms that reinforce 
cell-cell interaction in stem cell niches.

For larger micropatterns, we see that because differentiation decisions are mediated by cell-cell inter-
action and cell motility is on a similar time scale as cell differentiation, this leads to coarsening and 
spatial pattern formation where domains of stem and differentiated cells appear. Similar observations of 

Figure 4.  Uncoupling the role of cell-cell contact and differentiation in micropatterns with E-cadherin 
antibody treatment. Cell seeding density is 500,000 per cover slip. (A) In the presence of E-cadherin 
antibody, the fraction of differentiated cells increases after 24 hrs in culture on 140 μ m diameter patterns. 
(B) Quantitative analysis shows that E-cadherin changes differentiation kinetics so that a larger percentage 
of cells are differentiating when compared to the control. (C) Modeling results show that the differentiation 
probability, r in Eq. (2), has changed significantly. In the control experiment, the differentiation probability 
at 100% stem cell fraction is less than 3 times the probability at 0% stem cell fraction. With the addition of 
an E-cadherin antibody, the differentiation probability at 100% stem cells is substantially higher.
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these stem cell patterns have appeared recently for in vitro systems30. Mathematically, the domain size 
is governed by cell motility and the dependence of differentiation rates on local cell composition. We 
believe that the type of spatial patterns is driven by stochastic fluctuations, and cannot be captured by 
mean population of models. The patterns are also not consistent with the Turing-type, where differential 
diffusion constants of multiple species play a major role in establishing pattern length scales31. Rather, 
the patterns are driven by nonlinearities in the kinetic rate parameters.

These results suggest that stem cell differentiation is reminiscent of dynamics seen during phase tran-
sitions in mixed systems. Here, stem cell differentiation is partially nucleated by existing differentiated 
cells. Therefore, domains of differentiated cells will likely grow. However, cell motility and diffusion 
is relatively slow, therefore domains do not grow from coalescence of smaller domains. For systems 
with complex geometries, and/or changing microenvironments, more complicated spatial patterns may 
appear, and can even exist as steady state configurations. Therefore, cell-cell interaction may explain 
spatial patterns of differentiation and growth seen during developmental processes. Further quantitative 
studies may allow us to manipulate patterns by modifying these interactions.
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