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We investigated suprathreshold binocular combination,
measuring both the perceived phase and perceived
contrast of a cyclopean sine wave. We used a paradigm
adapted from Ding and Sperling (2006, 2007) to measure
the perceived phase by indicating the apparent location
(phase) of the dark trough in the horizontal cyclopean
sine wave relative to a black horizontal reference line,
and we used the same stimuli to measure perceived
contrast by matching the binocular combined contrast to
a standard contrast presented to one eye. We found that
under normal viewing conditions (high contrast and long
stimulus duration), perceived contrast is constant,
independent of the interocular contrast ratio and the
interocular phase difference, while the perceived phase
shifts smoothly from one eye to the other eye depending
on the contrast ratios. However, at low contrasts and
short stimulus durations, binocular combination is more
linear and contrast summation is phase-dependent. To
account for phase-dependent contrast summation, we
incorporated a fusion remapping mechanism into our
model, using disparity energy to shift the monocular
phases towards the cyclopean phase in order to align the
two eyes’ images through motor/sensory fusion. The
Ding-Sperling model with motor/sensory fusion
mechanism gives a reasonable account of the phase
dependence of binocular contrast combination and can
account for either the perceived phase or the perceived
contrast of a cyclopean sine wave separately; however it
requires different model parameters for the two.
However, when fit to both phase and contrast data
simultaneously, the Ding-Sperling model fails.
Incorporating interocular gain enhancement into the
model results in a significant improvement in fitting both

phase and contrast data simultaneously, successfully
accounting for both linear summation at low contrast
energy and strong nonlinearity at high contrast energy.

Introduction

Having two frontal eyes confers us with a broader
field of view and a spare, in the case of loss; however, as
noted by Blake and Fox (1973), the ‘‘immediate
advantage of having two eyes functioning as one is not
obvious. The simple experiment of closing one eye does
not result in any dramatic change in the appearance of
the visual world.’’ However, based on work over the
last half century, it is now clear that information from
the two eyes is combined in the visual nervous system
(see Blake & Fox, 1973; Blake, Sloane & Fox, 1981;
Blake & Wilson, 2011 for reviews).

Binocular combination has been studied in a wide
variety of different tasks including luminance change
detection (Cogan, 1987; Cohn & Lasley, 1976), contrast
detection (Anderson & Movshon, 1989; Campbell &
Green, 1965; Legge, 1984a), contrast discrimination
(Baker, Meese, & Georgeson, 2007; Legge, 1981, 1984a;
Meese, Georgeson, & Baker, 2006), contrast matching
(Baker et al., 2007; Huang, Zhou, Lu, & Zhou, 2011;
Huang, Zhou, Zhou, & Lu, 2010; Legge & Rubin,
1981), Vernier acuity (Banton & Levi, 1991), orienta-
tion discrimination (Bearse & Freeman, 1994), visual
direction (Mansfield & Legge, 1996), and phase
perception (Ding & Sperling, 2006, 2007; Huang, Zhou,
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Lu, Feng, & Zhou, 2009; Huang et al., 2011; Huang et
al., 2010).

Several models have been proposed to explain
binocular combination. For example, Legge (1984b)
proposed a binocular quadratic summation model,

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
L þ C2

R

q

, to account for binocular contrast

contours for detection. However, Anderson and
Movshon (1989) showed that both added noise and
contrast adaptation could alter the shape of binocular
contrast contour, which could not be explained by a
single channel model like the Legge model. Instead they
proposed a multiple-channel model to interpret their
data. Cohn and Lasley (1976) also provided evidence
that a single channel model was insufficient to predict
the detection of changes of luminance. They proposed a
two-channel model, one channel for summation and
the other for the difference of the two eyes’ inputs, to
account for binocular combination when the two eyes
are presented with luminance changes of the same or
opposite interocular polarity.

Interocular inhibition/gain control

From Fechner’s paradox, the observation that the
perceived brightness or contrast of the binocularly
viewed visual field maybe reduced by giving a weak
stimulus to one eye, Fry and Bartley (1933) inferred the
existence of interocular inhibition in binocular vision.
However, the Legge model failed to explain Fechner’s
paradox because the model does not include any
interocular mechanisms. Cogan (1987) included inter-
ocular divisive inhibition into the summation channel
of a two-channel model for detecting changes of
luminance. Kontsevich and Tyler (1994) proposed a
two-channel model to explain stereothresholds in the
difference channel and binocular contrast summation
in the summation channel. They also included inter-
ocular inhibition before the summation and difference
operations. Li and Atick (1994) proposed a two-
channel theory for efficient stereo coding; the two eyes’
inputs were first added and subtracted to reduce
binocular redundancy and gain control was applied to
the summation and difference signals to optimize their
sensitivities. Indeed recent models for binocular vision
include interocular inhibition to explain binocular
visual direction (Mansfield & Legge, 1996), binocular
rivalry (Wilson, 2003), dichoptic contrast discrimina-
tion (Meese et al., 2006; Meese & Hess, 2004), and the
perceived phase of a cyclopean sine wave (Ding &
Sperling, 2006, 2007; Huang et al., 2010). Moradi and
Heeger (2009) provided fMRI evidence for interocular
inhibition and proposed an interocular contrast nor-
malization model to account for their data.

However, models proposed to account for amplitude
data (contrast, luminance, or neuronal firing) typically

include nonlinear operators to account for the nonlin-
ear transfer function. These nonlinear operators distort
phase information when applied to predict the per-
ceived phase of cyclopean sinusoids. To avoid this
problem, Ding and Sperling (2006) proposed a model
with two paths for each eye: a signal path that is
selective for orientation and spatial frequency including
only linear operations and a gain-control path that
extracts total weighted contrast energy across all
orientations and all spatial frequency channels from
one eye and exerts gain control to the other eye to
account for their binocular combined phase data. They
first tried a model with only one layer of interocular
contrast gain control (Cogan, 1987; Wilson, 2003). The
two eyes inputs are first mutually inhibited and then
sum up linearly, i.e.,

Î ¼ 1

1þ ERðIRÞ
IL þ

1

1þ ELðILÞ
IR; ð1Þ

where IL and IR are the signal inputs to a narrow-band
and orientation-selective spatial frequency channel for
each eye, and EL and ER are the total weighted contrast
energy of two eyes’ images across all orientations and
all spatial frequency channels. However, this one-layer
gain-control model violates contrast constraints in
binocular combination; at high contrast, the model
predicts that the binocular combined contrast would be
much smaller than monocular contrast because of
strong mutual interocular inhibition in binocular
viewing but no inhibition from the other eye in
monocular viewing when the other eye is closed. To
address this violation, they introduced a second layer of
interocular gain control that mutually inhibits the gain
control in the first layer, i.e.,

Î ¼ 1

1þ ERðIRÞ
1þ ELðILÞ

IL þ
1

1þ ELðILÞ
1þ ERðIRÞ

IR: ð2Þ

This successfully predicts that the perceived contrast is
the same whether one eye is closed or both eyes remain
open under normal viewing conditions (at high contrast
for long stimulus durations). To test their model, they
used an adaptive procedure to measure the perceived
phase of a horizontal cyclopean sine wave by indicating
the apparent location (phase) of the dark trough of the
cyclopean sine wave relative to a black horizontal
reference line. They performed six experiments to test
the predictions of this two-layer gain-control model: (a)
At high contrast, the eye with higher contrast
contributes more than predicted by linear summation;
(b) at low contrast, the binocular combination behaves
like linear summation, and when contrast increases, the
behavior of binocular combination becomes more and
more nonlinear; (c) the eye with noise will dominate in
the combination because, with noise contrast, it has
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more total contrast. All these predictions were con-
firmed by their experiments.

However, the contrast constraint proposed by Ding
and Sperling (2006) is based on the assumption of
perceived contrast constancy, whether both eyes are
open (interocular contrast ratio¼ one) or only one eye
is open (interocular contrast ratio ¼ zero or ‘) that
comes from everyday experience. This assumption
should be confirmed empirically. On the other side, the
contrast constraint is not clear when the two eyes are
presented with different contrast (interocular contrast
ratio 6¼ one, zero, or ‘) under normal viewing
conditions.

Phase dependence of binocular contrast
combination

Huang et al. (2010) used the Ding-Sperling paradigm
but measured both the perceived phase and contrast of
cyclopean sine waves in different combinations of base
contrast, interocular contrast ratios, and interocular
phase difference. Under their experimental conditions,
they found that perceived contrast was independent of
the interocular phase difference while the Ding-Sperl-
ing model predicts phase dependent contrast combi-
nation. To account for their data, they elaborated the
Ding-Sperling model, proposing a multipathway con-
trast gain-control model (MCM) in which the compu-
tation of phase and contrast first shares the same cross-
eye contrast-gain controls (Ding-Sperling model) and
then separates into two channels for phase and
contrast, respectively. In the phase channel, the two
eyes’ sine waves are added linearly, making the phase
computation in MCM identical to the Ding-Sperling
model. In the contrast channel, the contrast is first
extracted from each eye, raised to the power of an
exponent, and then summed together (similar to the
Legge model). MCM provided accurate fits to their
data under their experimental conditions (high contrast
and long stimulus duration). However, the assumption
of phase-independent contrast combination is not valid
at low contrast, where the contrast combination is
dependent on the interocular phase difference (Baker,
Wallis, Georgeson, & Meese, 2012). A more elaborate
binocular combination model is needed to account for
this contrast-dependent phase-dependence of contrast
combination.

In this study, in order to provide contrast constraints
for model fitting over a broad range of experimental
conditions, we developed an adaptive procedure to
measure the apparent contrast of a cyclopean sine wave
by matching it to the standard contrast of a monocular
sine wave. We describe five models for binocular
combination and fit the models to both phase and
contrast data simultaneously. In order to account for

the phase dependence of the perceived contrast of
cyclopean sine waves, we included a motor/sensory
fusion mechanism in the models. In the Discussion
section, we compare and contrast our model with
extant models in the literature.

Motor/sensory fusion

Fusional vergence eye movements play a critical role
in binocular vision, serving to align the two eyes’
images of the same object. The initial disparity vergence
responses (DVRs) are elicited at ultra-short latencies in
both humans and monkeys when small binocular
disparities (,28) are applied to large textured patterns
(Busettini, Fitzgibbon, & Miles, 2001; Masson, Buset-
tini, & Miles, 1997; Sheliga, Chen, Fitzgibbon, & Miles,
2005; Sheliga, Fitzgibbon, & Miles, 2006, 2007). By
recording the positions of two eyes with the electro-
magnetic search coil technique, Sheliga et al. (2007)
found that the latencies of DVRs could be as short as
;70 ms when two horizontal 908 out-of-phase sine-
wave gratings were viewed dichoptically.

Sensory fusion, which shares the common primary
stimulus—binocular disparity—with motor fusion, also
plays an important role in binocular vision. With
sensory fusion, misaligned (noncorresponding) retinal
images are perceived as single as long as they are within
Panum’s area (Panum, 1858), and small vergence errors
(fixation disparity, FD), can occur without diplopia
(Fogt & Jones, 1998a; Ukwade, 2000). Fixation
disparity can be measured objectively using eye
movement recording (Fogt & Jones, 1998a; Hyson,
Julesz, & Fender, 1983) or subjectively by aligning
nonius lines (Fogt & Jones, 1998a; Schor, Wood, &
Ogawa, 1984; Ukwade, 2000). Hyson et al. (1983)
recorded eye motions while their observers viewed a
random-dot stereogram and misaligned the stereo
images by moving them apart until fusion was lost.
They found that the vergence error, the difference
between image separation and eye vergence, could be as
large as 38. They postulated that neural remapping
occurs during sensory fusion that compensates for the
retinal misalignment. Fogt and Jones (1998a) compared
fixation disparity obtained by objective and subjective
methods by measuring FD as a function of forced
vergence. They found that the slope of the objective FD
curve was significantly greater than the subjective FD
curve, indicating an alteration in retinal correspon-
dence. Richards (1968) noted that the perception of
objects in space remains constant regardless of the
particular point of fixation. He proposed two spatial
remapping models in the lateral geniculate body to
explain this apparent stability of objects in visual space.
Although the two models were speculative, they
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provided a framework for spatial remapping in the
visual system.

In summary, binocular alignment through motor/
sensory fusion may be the first step in binocular
combination of two misaligned images. To achieve a
stable cyclopean image, the retinal coordinates are
remapped through motor/sensory fusion to compensate
for any disparity between two eyes’ images. However,
to date, no extant model of binocular combination
includes a motor/sensory mechanism for binocular
alignment.

Interocular contrast gain enhancement

In persons with amblyopia, we found evidence for
interocular contrast gain enhancement (Ding, Klein, &
Levi, 2009) (also see the following article, Ding, Klein,
& Levi, 2013). Specifically, we found an absence of
suppression from the nondominant eye (NDE) to the
dominant eye (DE), which unmasked the NDE-to-DE
enhancement, allowing it to become apparent under
certain conditions. In order to model this, we first
modified the Ding-Sperling model by adding monocu-
lar gain control (Ding et al., 2009). Like the first layer
of interocular gain control, we assumed that the
monocular gain control in one eye was inhibited by the
other eye; therefore, one eye’s gain would be increased
by the other eye because its monocular gain control was
suppressed by the other eye. This modified Ding-
Sperling model was able to predict the apparent
enhancement from NDE to DE and gave much better
fits to the perceived phase data of observers with
abnormal binocular vision (Ding et al., 2009). How-
ever, the modified Ding-Sperling model including
monocular gain control failed to fit both phase and
contrast data simultaneously. In this and the subse-
quent article (Ding, Klein, & Levi, 2013), we propose a
new modified Ding-Sperling model—the DSKL1 model
by explicitly including interocular enhancement—mul-
tiplying the other eye’s contrast in one eye’s gain
operation.

Interstimulus contrast-gain enhancement has been
found in center-surround interactions; when the sur-
round contrast was lower than the central contrast, the
central contrast was enhanced by its surround contrast
(Cannon & Fullenkamp, 1993; Ejima & Takahashi,
1985). Xing and Heeger (2001) proposed a model with
multiplicative enhancement to account for this center-
surround interaction. Unlike the model proposed by
Xing and Heeger (2001) for center-surround interac-
tions, in our model, the gain enhancement from one eye
to the other eye also receives the suppression from the
other eye.

It is parsimonious to assume that the normal visual
system also has interocular gain enhancement that is

not apparent because of stronger interocular gain
control (suppression). In this article, we extend the
Ding-Sperling model with three modifications and
compared each of these with the simplified and original
Ding-Sperling models in a five-model series with a
previous model nested within its following one in fitting
both phase and contrast perception data in normal
binocular combination. In the Discussion section we
also compare our models with several extant models of
binocular combination. In the following article (Ding,
Klein, & Levi, 2013), we compared these five models
with asymmetric model parameters in the two eyes to
account for abnormal binocular combination. Individ-
uals with abnormal binocular vision due to strabismus
and/or amblyopia provide a special challenge to all
models of binocular combination and therefore may be
crucial to discerning amongst different models.

Methods

Stimuli and procedures for Experiment 1, measuring
the perceived phase of a cyclopean sine wave, are
similar to those used in previous studies (Ding &
Sperling, 2006, 2007). For Experiment 2, stimuli were
identical to Experiment 1 but a contrast matching
procedure was used to measure the perceived contrast
of a cyclopean sine wave.

Binocular fusion-assisting frames

Figure 1A shows two frames that were presented to
the two eyes, respectively, at the beginning of each trial.
The two frames were identical except that the half
cross, ‘‘7’’ image without the corner (left in Figure 1A)
was presented to the left eye, and the other half cross,
‘‘L’’ image without the corner (right in Figure 1A) was
presented to the right eye. With appropriate vergence, a
whole cross with a blank square in its center would be
perceived. To assist vergence, a high contrast sur-
rounding frame and four squares were also presented
binocularly.

Stimuli

Horizontal gratings with sinusoidal luminance pro-
files, IL¼ I0þ mL cos(2pfsy þ hL) and IR ¼ I0 þ mR

cos(2pfsyþhR), were used as stimuli. I0 is the luminance
of the background and the mean luminance of the sine-
wave gratings; fs is the spatial frequency, identical in
both eyes; mL and mR are the modulation contrasts of
the left- and right-eye sine-wave gratings, respectively;
hL and hR are the corresponding phases. The stimuli
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were windowed in a rectangular window both spatially
(38 · 38) and temporally (1 s or 117 ms). There were
exactly two cycles visible in each eye’s sine wave.

In Experiment 1, we measured the perceived phase of
the binocular-combined cyclopean sine wave when the
base contrast, m¼max{mL, mR}, varied from 6% to
96%, interocular contrast ratio, d ¼mR/mL, varied
from ¼ to four, the spatial frequency was 0.68, 1.36, or
2.72 cpd (cycles per degree), and the phase difference, h

¼ jhR – hLj, was fixed at 908. Figure 2 shows the 45 test
points of right (RE) versus left eye (LE) contrast at
which the perceived phase was measured. Points in one
solid curve have the same base contrast m and the
points along a dashed line have the same interocular
contrast ratio d that is labeled near the line. For each
base contrast, when d � 1 (vertical solid lines), mL¼m
and mR¼ dm; when d . 1 (horizontal solid lines), mL¼
m/d and mR¼m. When d increases from zero to ‘, the
contrast of the LE’s grating remains constant at base
contrast m while the RE’s contrast increases from zero
to m (points from bottom to top along a vertical line),
and then the RE’s contrast remains constant at base
contrast m while the LE’s contrast decreases from m to
zero (points from right to left in a horizontal line).

For any given combination of m and d, there are
two displays: (a) the phase of the LE’s grating is
lower-shifted (hL¼�h/2) and the phase of the RE’s is
higher-shifted (hR¼ h/2) (Figure 3A); (b) the phase of
the LE’s is higher-shifted (hL ¼ h/2) and the phase of
the RE’s is lower-shifted (hR¼�h/2) (Figure 3B). For
the two displays, two staircases were randomly
interleaved to measure the perceived phases, ĥ1 or ĥ2,
in the cyclopean sine waves (LE þ RE) concurrently.
When only the LE is presented with a grating (i.e., d¼
RE/LE ¼ 0), the perceived phase is the same as in
LE’s, i.e., ĥ1 ¼ hL ¼�h/2 for the display shown in
Figure 3A or ĥ2 ¼ hL ¼ h/2 for the display shown in
Figure 3B. On the other hand, when a grating is
presented only to the RE (i.e., d¼ ‘), the perceived
phase is the same as in RE’s, i.e., ĥ1¼ hR¼ h/2 (Figure
3A) or ĥ2 ¼ hR ¼�h/2 (Figure 3B). To cancel any
possible vertical position bias, the perceived phase is
averaged as ĥ¼ (ĥ1� ĥ2 )/2, which varies from the LE’s
phase (�h/2) to the RE’s phase (h/2) when d increases
from zero to ‘.

Stimuli used in Experiment 2 were identical to
those in Experiment 1. For both experiments, stimuli
were presented on a Sony monitor with a 640 · 480
spatial pixel resolution and 60 Hz vertical refresh
rate. The experiments were controlled by a G4
Macintosh running Matlab (MathWorks, Inc.) with
the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997). A special circuit (Pelli & Zhang,
1991) was used to yield about 12 bits gray-scale
levels. The luminance of the monitor with all pixels
set to the minimum value was 7.8 cd/m2; the
luminance with all pixels set to the maximum value
was 46.0 cd/m2. The background level I0 surrounding
the sine-wave gratings was set to 26.2 cd/m2, and this
was also the average luminance of the sine waves
themselves. Displays were viewed in a mirror
stereoscope and positioned optically at 68 (0.68 cpd
of sine waves), 136 (1.36 cpd of sine waves), or 272
cm (2.72 cpd of sine waves) from the observer.

Figure 1. Binocular-fusion-assisting frames and stimuli. (A) A

dichoptic nonius cross surrounded by a high contrast frame. (B)

A screen with only the surrounding high-contrast frame and

reference horizontal lines lasted for 500 ms. (C) Sine-wave

gratings presented to the two eyes for 1 s or 117 ms. An

observer’s task was to indicate the apparent location of the

center of the dark stripe in the perceived cyclopean sine-wave

grating relative to reference horizontal lines adjacent to its

edge. (D) A blank screen of mean luminance waiting for the

observer’s response.
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Procedure

The procedure for Experiment 1 was identical to
previous studies by Ding and Sperling (2006, 2007).
Each trial began with presentation of a dichoptic
nonius cross surrounded by a high contrast frame
(Figure 1A). Once the dichoptic cross appeared to be
aligned and stable, the observer pressed a key to initiate
the trial. Following the key press, a screen with only the
surrounding high-contrast frame and reference hori-
zontal lines appeared for 500 ms (Figure 1B), followed
by sine-wave gratings presented to the two eyes,
respectively, for 1 s or 117 ms (Figure 1C). Stimulus
presentation was followed by a blank screen of mean
luminance (Figure 1D) until the observer responded.
The observer’s task was to indicate the apparent
location of the center of the dark stripe in the perceived
cyclopean sine-wave grating relative to a black
horizontal reference line adjacent to its edge. The
observer pressed one of two keys to indicate whether
the reference line was judged to be above or below the
dark cyclopean stripe. After the response, the dichoptic
cross reappeared.

For Experiment 2, the procedure was similar to that
used in Experiment 1 except having two stimulus
intervals, one with a standard contrast (48%, 24%,
12%, or 6%) only presented to the LE and the other
with a test contrast presented to both eyes with the
interocular contrast ratio varying from trial to trial.

Each interval lasted for 1 s or 117 ms and the
interstimulus interval was 0.5 s. The observer’s task was
to judge which interval had the sine wave with higher
contrast. At each contrast ratio, two staircases were
interleaved to measure the contrast of the test
cyclopean sine wave depending on whether the
standard contrast was in the first or second interval.
The average of these two measurements was calculated
as the perceived contrast at that contrast ratio. A black
horizontal line was also attached to the side of a sine
wave to make the stimulus identical to those used in
Experiment 1.

Staircases

An adaptive procedure with many concurrent
staircases was used in both experiments. For Experi-

Figure 2. Experimental points in RE vs. LE contrast plane. A solid

line connects points of the same base contrast (0.06, 0.12, 0.24,

0.48, and 0.96), higher contrast in the two eyes, and a dashed

line connects points of the same interocular contrast ratio RE/

LE that is labeled near the line in the range from ¼ to 4.

Figure 3. Stimulus configurations. The sample stimuli shown in

(A) and (B) are for the case when RE/LE ¼ d . 1.
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ment 1, within a staircase, the position of the reference
line was varied according to the response to the
previous trial of that staircase. In each staircase, when
the response was ‘‘Above,’’ the reference line was
moved down on the next trial of that staircase; when
the response was ‘‘Below,’’ the reference line was moved
up in the next trial. Each staircase was run for 50 trials.
For one run, the spatial frequency, phase difference,
and the base contrast were fixed, but interocular
contrast ratio varied, i.e., the points in one solid curve
in Figure 2 were tested in random order. For each
interocular contrast ratio, two staircases were inter-
leaved to measure the perceived phase of the two
displays (Figure 3), and the average perceived phase,
ĥ¼ (ĥ1 � ĥ2 )/2, was calculated as the dependent
variable of the experiment. Typically, for each run,
there were 18 concurrent staircases interleaved to
measure the perceived phase for nine interocular
contrast ratios. Observers JP and MD each ran a total
of 3 (Spatial Frequency) · 6 (Base Contrast) · 9
(Contrast Ratio) · 2 (Displays) · 50 (Repeats)¼
16,200 trials. Observers CF, CG, KT, and JS each ran a
total of 1 (Spatial Frequency) · 3, 4, or 5 (Base
Contrast) · 9 (Contrast Ratio) · 2 (Displays) · 50
(Repeats) ’ 3,600 trials.

For Experiment 2, within a staircase, the contrast of
a test sine wave was varied according to the response to
the previous trial of the staircase. Each staircase was
run for 50 trials. For one run, the spatial frequency,
interocular phase difference, and standard contrast
were fixed, but interocular contrast ratios were tested in
random order. Because of an asymmetry in perfor-
mance of the two intervals (Nachmias, 2006; Yeshurun,
Carrasco, & Maloney, 2008), for each contrast ratio,
two staircases were interleaved for the contrast
matching task depending on the temporal positions of
the standard whether it was in the first or second
interval. Indeed, the apparent contrast in the second
interval appeared higher (10.7 6 1.1% across all
conditions and observers) than that in the first interval,
consistent with Klein’s (2001) personal experience. In
order to cancel any interval biases, the average test
contrast that matches the standard was calculated as
the dependent variable of the experiment. There were
22 or 18 concurrent staircases interleaved for each run.
Observers JP and MD each ran a total of 3 (Spatial
Frequency) · 1 (Standard Contrast) · 1 or 2
(Interocular Phase Difference) · 11 (Contrast Ratio) ·
2 (One Staircase for Each Temporal Position of the
Standard) · 50 (Repeats) ’ 5500 trials. Observers CF,
CG, KT, and JS each ran a total of 1 (Spatial
Frequency) · 4 (Standard Contrast) · 3 (Interocular
Phase Difference) · 9 (Contrast Ratio) · 2 (One
Staircase for Each Temporal Position of the Standard)
· 50 (Repeats)¼ 10,800 trials.

We fit cumulative Gaussian distributions to the data
using maximum likelihood estimation. For Experiment
1, the perceived phase of a cyclopean grating was
defined as the point at which the reference line is
equally likely to be judged above or below the center of
the dark band, i.e., 50% ‘‘Above’’ and 50% ‘‘Below’’
responses. The perceived contrast of the cyclopean
grating was defined as the contrast that was equally
likely to be judged above and below the standard
contrast. A bootstrap method was used to estimate the
standard error of the perceived phase and contrast. For
each staircase, the total 50 trials were resampled with
replacement to get 50 bootstrap trials for a bootstrap
session, and the perceived phase or contract was
estimated for each bootstrap session; 2000 bootstrap
sessions were run in order to estimate the standard
error of the perceived phase or contrast.

Observers

Six observers, all in their 20s and with normal or
corrected to normal vision, signed the written consent
forms and participated in the experiment. Before the
experiment, each observer performed one practice
session with the sine-wave grating presented to only
one eye (control condition) to ensure they understood
how to perform the task.

Models

We assume that the perceived cyclopean sine wave has
no distortion in phase, and therefore, the signal path in a
binocular combination model should only have linear
operators. We place all nonlinear operations into a gain
control path that modifies the amplitude of the signal
before binocular combination. After being modified in
their amplitudes, the signals from the two eyes are
linearly summed. In order to try to understand binocular
combination of phase and contrast, we proposed five
models in a series with a previous model nested within its
successor to fit the data.

Model 1: Contrast-weighted summation model
(simplified Ding-Sperling model)

When contrast energy E is large enough, the constant
term ‘‘1’’ in the Ding-Sperling model (Equation 2) can
be neglected, and the gain-control model becomes the
contrast-weighted summation model, i.e.,

Î’
ELðILÞ

ELðILÞ þ ERðIRÞ
IL þ

ERðIRÞ
ELðILÞ þ ERðIRÞ

IR; ð3Þ
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where EL and ER are the total weighted contrast energy
presented to the two eyes which should be summed
over space and time and also over spatial frequency
channels and all orientations. In this study, because the
stimuli are in a narrow spatial frequency band and have
a fixed size and duration at one spatial frequency, the
total contrast energy in one channel can be written as

ER ¼
mR

gc

� �c

and EL ¼
mL

gc

� �c

; ð4Þ

where gc is a gain-control threshold at which the
contrast gain control becomes apparent.

In normal vision, even at low contrast (5%), the
contrast energies are much larger than ‘‘1’’ for 1 s
stimulus duration, and the contrast-weighted summa-
tion model (Equation 3) provides a good fit to the
experimental data (Ding & Sperling, 2006 and 2007).
However, at short stimulus durations (less than 100
ms), the constant term ‘‘1’’ cannot be neglected because
the contrast energy at short durations becomes
comparable to ‘‘1’’ (Ding & Sperling 2007). In this
study, we asked whether the contrast-weighted sum-
mation model can account for both phase and contrast
perception simultaneously in binocular combination.
Considering the two eyes might have different monoc-
ular contrast sensitivities, we introduced contrast
attenuation (l) in the RE, and Equation 3 was
rewritten as follows:

Î’
ELðILÞ

ELðILÞ þ ERðlIRÞ
IL þ

ERðlIRÞ
ELðILÞ þ ERðlIRÞ

lIR: ð5Þ

Model 2: Ding-Sperling model

Figure 4A shows a basic unit of contrast gain
control: the contrast energy E exerts divisive inhibition
to the input I which was repeatedly used in constructing
the Ding-Sperling model (Figure 4B) and DSKL (Ding-
Sperling-Klein-Levi) model (Figure 4E). The Ding-
Sperling model consists of left and right eye channels,
each containing two gain control mechanisms: one
based on total contrast energy (TCE) in the gain-
control layer (blue) which is nonselective for orienta-
tion and spatial frequency and the other which is
selective along those dimensions in the signal layer
(black). The two TCE components exert reciprocal
inhibition on one another in the gain-control layers
(blue) in proportion to their respective TCE outputs,
and the outputs of those TCE components exert gain
control on the other eye’s selective gain control in the
signal layer (black). The outputs are summed linearly
to determine the binocular signal.

With attenuation (l) in the RE, the model output is
given by

Î ¼ 1

1þ ERðlIRÞ
1þ ELðILÞ

IL þ
1

1þ ELðILÞ
1þ ERðlIRÞ

lIR: ð6Þ

When the left eye’s contrast increases, the right eye’s
gain decreases because of increasing gain control from
the left eye, while the left eye’s gain increases through
decreasing gain control from the right eye (and vice-
versa). At high contrast, i.e., mL .. gc and mR .. gc,
the Ding-Sperling model (Equation 6) can be simplified
to the contrast-weighted summation model (Equation
5). In order to fit both the phase and contrast data
simultaneously, we also fit several variations of the
Ding-Sperling model.

Model 3a: Ding-Sperling model with asymmetry
between two gain-control layers to the model

In the Ding-Sperling model, one eye is assumed to
inhibit the other eye equally in the two layers (black
and blue lines in Figure 4B). Generally speaking,
however, the gain-control efficiency in the two layers
might be different. Figure 4C shows a gain-control
operator whose gain-control efficiency is a, which is
assumed to be one in both layers for Ding-Sperling
model. We first modified the model by adding an
asymmetry between the two layers, the gain control and
the gain-control of gain control having different gain-
control efficiency, i.e.,

Î ¼ 1

1þ ERðlIRÞ
1þ aELðILÞ

IL þ
1

1þ ELðILÞ
1þ aERðlIRÞ

lIR;

ð7Þ
where a is the relative gain-control efficiency in the
nonselective layer (blue) when the gain-control effi-
ciency (black) in the selective layer is assumed to be
one.

Model 3b: Ding-Sperling model with interocular
gain enhancement to the model

Studying binocular combination in amblyopic vision
(Ding, Klein, & Levi, 2013), we found apparent
interocular gain enhancement (IGE); the stimulus in
the nondominant eye (NDE) enhanced the dominant
eye’s (DE’s) gain, making the perceived phase further
shifted to the DE when the NDE’s contrast increased.
It is parsimonious to assume that IGE also exists in
normal vision but is not apparent because of stronger
interocular inhibition. For amblyopic vision, however,
because of absent or very weak NDE-to-DE inhibition,
the NDE-to-DE gain enhancement becomes apparent.
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Figure 4D illustrates a gain enhancement operator; its
gain is increased by 1 þ E* where E* is the contrast
energy for gain enhancement. By adding IGE to the
model, we have

Î ¼ 1þ E*
RðlIRÞ

1þ ERðlIRÞ
1þ aELðILÞ

IL þ
1þ E*

LðILÞ

1þ ELðILÞ
1þ aERðlIRÞ

lIR;

ð8Þ

where

E*
R ¼

lmR

ge

� �c*

and E*
L ¼

mL

ge

� �c*

ð9Þ

are contrast energy for gain enhancement with gain-
enhancement threshold ge.

Model 3c: Full model with mutual inhibition to
a gain enhancement (DSKL model)

This model (the full model) includes a mutual
inhibition to the gain enhancement. The model’s output
is given by

Î ¼
1þ E*

RðlIRÞ
1þ bELðILÞ

1þ ERðlIRÞ
1þ aELðILÞ

IL þ
1þ E*

LðILÞ
1þ bERðlIRÞ

1þ ELðILÞ
1þ aERðlIRÞ

lIR;

ð10Þ

where b is the relative gain-control efficiency in the
gain control to the gain enhancement. In the full
model (Figure 4E), there are three layers for each eyes:
(a) the selective signal layer (black) that receives both
gain control (black filled circle) and gain enhancement
(red open circle) from the other eye and outputs the
signal to the binocular summation site; (b) the
nonselective gain-control layer (blue) that first ex-
tracts and sums image contrast energy across frequen-
cy channels and orientations (TCE) and then exerts
gain control to the other eye’s three layers separately
with different gain-control efficiencies (1, a, and b); (c)
the gain-enhancement layer that extracts image
contrast energy (TCE*) and exerts gain enhancement
only to the other eye’s signal layer. Figure 4F
illustrates the left eye’s part of the full model to show
how to calculate the left eye’s output (the first
summand in Equation 10). Before output, the left
eye’s signal receives gain control from the right eye’s
gain-control layer that itself receives gain control from
the left eye and also the left eye’s signal receives gain
enhancement from the right eye’s gain-enhancement
layer that receives gain control from the left eye. The
right eye’s part in the full model is symmetric to the
left eye’s in the normal vision.

Figure 4. Models for binocular combination. (A) The basic unit

of contrast-gain control. (B) Ding-Sperling model for binocular

combination (Model 2). (C) The basic unit of contrast-gain

control with gain-control efficiency of a. (D) The basic unit of

contrast gain enhancement. (E) DSKL model (Model 3c). One

eye receives both gain control and gain enhancement from the

other eye and exerts gain control to the other eye’s signal, gain

control, and gain enhancement layers separately with different

gain-control efficiencies (1, a, and b, respectively). (F) The left

eye’s output of DSKL model (first summand in Equation 10).
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Asymptote of Models 2 and 3a–c at zero
contrast energy

At zero contrast energy, i.e., EL¼ 0, ER¼ 0, E*
L ¼ 0,

and E*
L¼ 0 no gain control or gain enhancement would

be exerted from one eye to the other eye, and Model 2
(Equation 6) and Models 3a–c (Equations 7, 8, 10)
become linear summation models, i.e.,

Î’ IL þ lIR; ð11Þ
which gives the predictions of black dashed curves in
Figures 6 and 7.

Including a motor/sensory fusion mechanism in
the model

When the two eyes are presented with two images
that are identical except for a small offset, motor/
sensory fusion may occur to align the two eyes’ images.
In order to explain the phase dependence of contrast
combination, we include a motor/sensory fusion
mechanism (Figure 5) in our models. After remapping
of corresponding points through motor/sensory fusion,
the interocular phase difference in retinal coordinates
becomes smaller than that in physical coordinates. In

Figure 5, after the interocular interaction, the monoc-
ular outputs are combined in two different ways: (a)
vector linear summation to produce a cyclopean sine
wave, giving form perception such as contrast and
phase and (b) vector cross multiplication to extract
disparity energy, driving the two monocular misaligned
sine waves towards the cyclopean phase (Equation A6)
through eye movements and/or remapping of corre-
sponding points in the two eyes. We suppose that the
extracted disparity energy first undergoes gain control
and then drives motor/sensory fusion that shifts the
two monocular phases towards the cyclopean phase
until reaching a steady state. High disparity energy
could shift monocular phases to be perfectly aligned
with the cyclopean phase. Generally, the shifted phase
in one eye is a fraction of the phase difference between
the sine waves of that eye and the cyclopean eye
(Equation A7). After motor/sensory fusion, the per-
ceived contrast of the cyclopean sine wave becomes
higher than before fusion while its perceived phase
remains almost unchanged (Figure 17B).

Below we show how the predictions of these models
fit both the perceived phase and contrast data for a
cyclopean sine wave (The Appendix shows how these
predictions were deduced.).

Figure 5. A remapping mechanism for motor/sensory fusion. After interocular interactions, the two eyes inputs are combined in two

different ways: (a) vector linear summation to produce a cyclopean image from which form perceptions, such as position (phase) and

contrast (amplitude), are perceived; (b) vector cross multiplication to calculate disparity energy for motor/sensory fusion. The

disparity energy is supposed to go through a gain control first and then to drive each eye’s sine wave towards the cyclopean sine

wave by a phase angle of the fraction of the phase difference between that eye and the cyclopean eye.
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Figure 6. Results of Experiment 1. Perceived phase ĥ of binocular-combined cyclopean sine waves as a function of RE/LE contrast ratio

(d) when the base contrast m is 96% (*), 48% (x), 24% (*), 12% (,), or 6% (u), and the spatial frequency is 0.68 (top), 1.36 (middle),

or 2.72 cpd (bottom). The stimulus duration was fixed at 1 s. The phase difference in the two eyes was fixed at 908; the arrows on the

left side indicate the phase of the LE’s sine-wave gratings (�458), and the arrows on the right side indicate the phase of the RE’s (458).

All test points are shown in Figure 2. When d increased, the perceived phase ĥ shifted from the LE to the RE. When d � 1 the LE’s

grating contrast is fixed at the base contrast m0 and the RE’s grating contrast dm varies. When d . 1 , the RE’s grating contrast is fixed

at m and the LE’s grating contrast m/d varies. The solid curves are the best fits from Model 3c (the DSKL model). The black dashed

curve is the prediction from linear summation with attenuation in the RE for ocular imbalanced contrast perception, the asymptote of

Models 2 and 3a–c at zero contrast energy.

Journal of Vision (2013) 13(2):13, 1–37 Ding, Klein, & Levi 11



Results

Experiment 1: Phase combination

Figure 6 shows how perceived phase (ĥ) of a cyclopean
grating varies as a function of the interocular contrast
ratio (d). The (physical) phase difference in two eyes was
fixed at 908 (hL¼�458 and hR¼458 indicated by arrows on
the sides of Figure 6), the base contrast was 96% (*), 48%
(·), 24% (*), 12% (,), or 6% (u), and the spatial
frequency was 0.68 (top), 1.36 (middle), or 2.72 cpd
(bottom).When the interocular contrast ratio d increased,
the perceived phase of the cyclopean sine waves shifted
systematically from the left eye’s phase (�458) to the right
eye’s phase (458). The results are consistent with previous
studies (Ding&Sperling, 2006, 2007). The solid curves are
the best fits from the DSKLmodel (Model 3c). The black
dashed curve is the prediction from algebraic (linear)
summation of two eyes’ sine waves with attenuation in the
right eye for ocular imbalanced contrast perception (the

asymptote ofModels 2 and 3a–c at zero contrast energy—
seeModels section).All data points except equal-physical-
contrast (d¼ 1) points are shifted away from this linear-
summation line, biased to the eye presented with stronger
contrast (to theLEwhen d , 1 and to theREwhen d . 1).
This bias toward the eye with stronger contrast (beyond
linear summation) demonstrates interocular contrast gain
control. At the lowest spatial frequency (0.68 cpd), all
curves (solid and dashed) intercept almost at the same
point, with almost no perceived phase shifted at equal
physical contrast (d¼ 1, dashed vertical line), indicating
almost no eye-bias or balanced vision when the two eyes
are presented with identical contrast. However, at the
highest spatial frequency (2.72 cpd), both observers
showed some eye bias; JP biased toward the LE and MD
biased toward the RE.

Figure 7 shows results of Experiment 1 for four other
observers with spatial frequency of 0.68 cpd; two at the
standard stimulus duration (1000 ms), and two at a
stimulus duration of 117 ms, too brief for eye-move-
ments. These four observers also performed Experiment

Figure 7. Results of Experiment 1 of four other observers when stimulus spatial frequency was at 0.68 cpd and stimulus duration was

1000 ms for two observers (CG and CF) and 117 ms for another two observers (KT and JS).
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2 at multiple contrast levels and multiple interocular
phase differences. The DSKL model was used to fit the
data from the two experiments simultaneously.

Experiment 2: Contrast combination

Contrast combination at different spatial frequencies

Figure 8 shows equal perceived binocular contrast
contours (physical contrast 48%) drawn across different
interocular contrast ratios d for gratings of 0.68, 1.36,
and 2.72 cpd when stimulus duration was 1 s and
interocular phase difference was either 08 (blue circles) or

908 out of phase (red stars). The contrast of the two eyes’
sine waves was normalized by the standard contrast. The
contours are almost symmetrical across the d ¼ 1 line
(dashed 458 black line) at 0.68 and 1.36 cpd, and they are
very similar when the interocular phase difference varies
from 08 to 908. The DSKL model (Model 3c) with an
added motor/sensory fusion mechanism with the same
model parameters used for fitting the phase data
(Experiment 1) accurately predicts this phase-indepen-
dence of binocular contrast combination at high
contrast levels (solid curves). The horizontal and vertical
dashed lines are predictions from the winner-take-all
model; the stimulus in the eye with stronger contrast
wins the competition to give the contrast percept of the
binocular-combined gratings while completely ignoring
the other eye’s stimulus. Interestingly, this winner-take-
all model also provides a reasonable fit to the data,
reflecting binocular perceived contrast being nearly
constant at all interocular contrast ratios.

Phase-dependence of contrast combination

Although Figure 8 shows phase-independence of
contrast combination at a high contrast level (48%)
and a long stimulus duration (1 s), the model with a
motor/sensory fusion mechanism predicts that the
contrast combination is phase-dependent at a low
contrast level when disparity energy is close to
threshold and becomes more and more phase-inde-
pendent as contrast (and therefore disparity energy)
increases. To test this prediction, we performed
Experiment 2 for two observers with the standard
grating varying in contrast from low (6%) to high
(48%) with a one second stimulus duration (Figure 9)
and for another two observers with a stimulus duration
too brief for vergence eye movements (117 ms—Figure
10). The spatial frequency was fixed at 0.68 cpd. At
high contrast (48%), similar to Figure 8, the binocular-
perceived contrast was almost independent of inter-
ocular phase difference for both long (1 s) and short
(117 ms) stimulus durations. However, at low contrast
(6%), the phase dependence of contrast combination
could be observed. At the short duration (117 ms,
Figure 10), the phase dependence was very obvious at
6% contrast, and the data became more phase-
independent as the standard contrast increased to 48%,
as predicted by DSKL model (solid curves).

Model fitting

Comparison of models

We tested five models of binocular combination of
both phase and contrast. Let Np be the number of

Figure 8. Results of Experiment 2 at different spatial frequencies

when the standard contrast was 48% and the stimulus duration

was 1 s. Binocular equal-contrast contours by comparing the

contrast of binocular-combined sine-wave grating with the

contrast of standard grating that was always in LE when RE/LE

contrast ratio was 0, 0.125, 0.25, 0.5, 0.707, 1, 1.414, 2, 4, 8, or

‘. The contrast of the two eyes’ sine waves was normalized by

the standard contrast. The sine waves presented to the two

eyes were either 08 (blue circles) or 908 out of phase (red stars).

The solid curve is the best fit from Model 3c with the same

model parameters for fitting data from Experiment 1.
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Figure 9. Results of Experiment 2 at different contrast levels

when stimulus spatial frequency was 0.68 cpd and stimulus

duration was 1 s. The contrast of the two eyes’ sine waves was

normalized by the standard contrast. The sine waves presented

to the two eyes were 08 (blue circles), 908 (red stars), or 1358

(black squares) out of phase, and RE/LE contrast ratio was 0,

0.25, 0.5, 0.707, 1, 1.414, 2, 4, or ‘. The solid curve is the best

fit from DSKL model with the same model parameters for fitting

data from Experiment 1.

Figure 10. Results of Experiment 2 at different contrast levels

when stimulus spatial frequency was 0.68 cpd and stimulus

duration was 117 ms. The contrast of the two eyes’ sine waves

was normalized by the standard contrast. The sine waves

presented to the two eyes were either 08 (blue circles), 908 (red

stars), or 1358 (black squares) out of phase, and RE/LE contrast

ratio was 0, 0.25, 0.5, 0.707, 1, 1.414, 2, 4, or ‘. The solid curve

is the best fit from DSKL model with the same model

parameters for fitting data from Experiment 1.
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model parameters and Ndata be the number of observed
data points. We have the number of degrees of freedom
m¼Ndata�Np, and the reduced chi-square is given by v2m
¼ v2/m. If Model A is nested within Model B, the F test
that tests whether Model B significantly improves data
fitting is given by

Fa;b ¼

v2ðaÞ � v2ðbÞ
mðaÞ � mðbÞ

v2ðbÞ
mðbÞ

; ð11Þ

which compares the variance between Models A and B
with the variance inside Model B and has an F
distribution with [m(a) – m(b), m(b)] degrees of freedom.
When the F-value is large enough, Model A can be
rejected at a small false-rejection probability p(F).

Table 1 shows chi-square values for model fitting
and statistical comparisons of Models 1, 2, 3a, 3b, and
3c (M1–3c), in which a previous model is nested within
its successor. The comparison of two neighboring
models was made through an F test with the F-value
given in the row of the second model. With three steps
of modification (Models 3a–c) of the Ding-Sperling
model (Model 2), Models 3a and 3c achieved significant
improvement in data fitting; the previous model could
be rejected with a very small (,0.001) probability of
false rejection. However, without gain control of the
gain enhancement (Model 3c), the gain enhancement
itself in Model 3b failed to further improve the data
fitting in three observers.

In order to get a better understanding of why the
Ding-Sperling model failed in fitting both phase and
contrast data simultaneously, we first fit the model only
to the phase data and used the best fitting model
parameters to predict the contrast contour. We then fit
the model only to the contrast data and predicted the
perceived phase shift. To be clear in visualization, we
reduced the data set to include only one spatial
frequency (0.68 cpd) and base contrast (48%) for model
fitting for two observers JP and MD. Because both eyes
had similar contrast sensitivity for our observers at 0.68
cpd, the attenuation (l) was assumed to be one; Model
1 has one parameter (c) and Model 2 has two
parameters (c and gc). The top-left panels in Figures
11A and B demonstrate that fitting Model 1 only to the
phase data (blue curve) provides a reasonable fit, but its
prediction of the contrast contour (blue curve in top-
right) is far removed from the data. The predicted
contrast contour shows a strong Fechner’s paradox,
i.e., inhibition of one eye’s monocular contrast
perception by a small input in the other eye; however,
the observed data shows a winner-take-all phenome-
non, with no apparent inhibition from the other eye’s
image (which has smaller contrast). When fitting Model
1 only to the contrast data (red curve in top-right of
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Figure 11. Fitting a model only to phase (blue solid curve), only to contrast (red solid curve), or to both phase and contrast (black solid

curve). The best fitting to both phase and contrast of the full model, Model 3c, is also given (black dashed curve).
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Figures 11A and B), the fit again seems reasonable, but
with different model parameters from fitting the phase
only. However, the predicted phase (red curve in top-
left) switches from one eye to the other much more
rapidly than shown by the data. Although the same
model can fit either phase or contrast data separately,
the best fitting model parameters are not consistent,
large c values (12.5 for JP; 3.9 for MD) for contrast
fitting and small c values (1.3 for JP and 0.8 for MD)
for phase fitting. When fitting Model 1 to the two data
sets simultaneously (the black curves), with a trade-off
c value (2.6 6 0.5 for JP and 1.7 6 0.3 for MD), the fits
to both data sets are poor. When fitting Model 2 to
either phase or contrast data separately, similar to
fitting Model 1, the best fitting model parameters are
not consistent although each separate fit appears
reasonable. However, when fitting Model 2 to both
phase and contrast data, the goodness of fit was
improved in comparison to Model 1.

By selecting a suitable gain-control threshold gc (0.22
6 0.02 for JP; and 0.14 6 0.03 for MD), the monocular
contrast perception in one eye would not be suppressed
by the other eye’s small input if its contrast is smaller
than gc, resulting in a better fit to the data. However,
when gc is not zero (as supposed in Model 1) or small
enough, the predicted binocular-combined contrast

when both eyes are presented with identical images
(contrast ratio¼ one) would not be the same as the
contrast in monocular view; the prediction falls far
from the observed data, as shown in the bottom-left
panels of Figures 11A and 11B. To solve this problem,
we introduced interocular gain enhancement (Model
3c, dashed black curves in Figure 11). By selecting
suitable gain-control and gain-enhancement thresholds,
gc and ge, and suitable a, b, and c values, interocular
gain control and gain enhancement maintain a
reasonable balance in binocular vision, achieving
constant contrast perception (apparent winner-take-all
phenomenon) and smoothly shifting phase perception
(with a reasonable exponent parameter) when inter-
ocular contrast ratio varies. To better understand how
Model 3c works this way, we simulated the model using
model parameters fitted to both phase and contrast
data.

Figure 12A shows the perceived contrast predicted
from Model 3c (solid black curve) as a function of
interocular contrast ratio when the base contrast (the
maximum of the two eyes’ contrast) was 48%.
Monocular inputs (dashed colored curves) and outputs
(solid colored curves) of the model are also shown as
functions of contrast ratio. Model 3c maintains
constant contrast perception (solid black curve)

Figure 12. Simulation of the DSKL model (Model 3c) for observer JP. (A) Binocular combined contrast (solid black curve) predicted

from the DSKL model when interocular contrast ratio varies and the base contrast, the maximum of two eyes’ contrast, is 48% (see

Figure 2). The two eyes’ input contrast (dashed blue curve: left eye; dashed red curve: right eye) and their model outputs (apparent

contrast) (solid blue curve: left eye; solid red curve: right eye) predicted from Model 3c after interocular interaction are also

shown. The black vertical short bar shows the ratio at which the RE’s contrast reaches the gain-control threshold gc, and the red

vertical short bar shows the ratio at which the RE’s contrast reaches the gain-enhancement threshold ge in Model 3c. The

horizontal dotted black line indicates half of the base contrast (0.24). (B) The left eye’s model output (apparent contrast)

(normalized by base contrast) predicted from the DSKL model when the base contrast is 96% (red), 48% (black), 24% (green), 12%

(yellow), 6% (magenta), or 3% (blue) and interocular contrast ratio, RE/LE, varies from 0.125 to 8. Left eye’s input contrast is also

shown (blue dashed line).
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through balancing gain control (its threshold is
indicated by a short black vertical bar) and gain
enhancement (its threshold is indicated by a short red
vertical bar) to cancel the increase in the RE’s apparent
contrast (red solid curve) by decreasing the LE’s
apparent contrast (blue solid curve); both the LE’s and
RE’s apparent contrast vary smoothly (exponent c
value is reasonable for binocular phase combination)
when the contrast ratio RE/LE increases. Note that this
is quite different from winner-take-all models (e.g., the
Legge model with an infinite exponent), which fail to
predict the smooth phase shift in binocular phase
combination. However, at low base contrast, Model 3c
predicts binocular linear summation. Figure 12B shows
the LE’s apparent contrast predicted from Model 3c
when the base contrast decreases from 96% to 3%.
When the base contrast is above 12%, the normalized
LE apparent contrast curves are almost overlaid. When
the base contrast decreases to 6% and 3%, the LE’s
apparent contrast curves shift toward the LE’s input
curve (dashed blue curve) and is almost identical to the
input curve at 3% base contrast, because the system
becomes more linear at lower base contrast.

Table 2 shows the parameters of Model 3c that
best fit both phase (Figures 6–7) and contrast
(Figures 8–10) data sets in binocular combination.

For each spatial frequency (fs) channel, there are
seven model parameters for binocular summation but
four of them are shared across different frequency
channels. For the disparity energy calculation in the
motor/sensory fusion mechanism, there are two
model parameters. Therefore, for observers CG, CF,
JS, and KT who were tested only at 0.68 cpd, there
are nine parameters in total. For observers JP and
MD who were tested at three spatial frequencies,
there were 13 parameters in total; parameters for
disparity energy were fixed (gf ¼ 0.038 averaged from
observers CG and CF and cf ¼ 1).

Discussion

Winner-take-all and constant contrast
perception under normal viewing conditions

As noted by Blake and Fox (1973), ‘‘The simple
experiment of closing one eye does not result in any
dramatic change in the appearance of the visual
world.’’ Indeed, under normal viewing conditions (high
contrast and long duration), our contrast combination

Stimulus duration fs (cpd) l gc a c ge/gc b c* gf cf

JP

1000 ms 0.68 1.0 0.013 7.87

6 0.01 6 0.005 6 2.91

1.36 0.93 0.027 0.84 2.35 9.72 0.12 1.48 0.038 1

6 0.013 6 0.007 6 0.05 6 0.15 6 4.2 6 0.043 6 0.28

2.72 0.80 0.042 9.39

6 0.03 6 0.008 6 3.79

MD

1000 ms 0.68 0.97 0.012 4.70

6 0.014 6 0.005 6 1.54

1.36 0.98 0.021 0.47 2.30 4.94 0.10 1.98 0.038 1

6 0.01 6 0.007 6 0.09 0.22 6 1.64 6 0.04 6 0.29

2.72 1.28 0.03 4.79

6 0.02 6 0.012 6 1.53

CG

1000 ms 0.68 0.97 0.029 1.01 1.94 3.16 0.77 1.64 0.040 0.59

6 0.01 6 0.02 6 0.07 6 0.11 6 2.73 6 0.65 60.19 6 0.01 6 0.29

CF

1000 ms 0.68 1.06 0.007 0.85 1.71 4.43 0.38 1.61 0.035 0.41

6 0.01 6 0.02 6 0.08 6 0.10 6 5.17 6 0.45 60.12 6 0.01 6 0.11

KT

117 ms 0.68 1.01 0.053 0.58 2.12 1.83 0.52 2.21 0.071 0.62

6 0.01 6 0.005 6 0.09 6 0.20 6 0.23 6 0.17 60.16 6 0.01 6 0.16

JS

117 ms 0.68 1.10 0.053 0.50 2.05 1.57 0.46 2.08 0.066 0.54

6 0.01 6 0.01 6 0.08 6 0.20 6 0.16 6 0.12 60.14 6 0.01 6 0.09

Table 2. Parameters of Model 3c.

Journal of Vision (2013) 13(2):13, 1–37 Ding, Klein, & Levi 18



results are apparently consistent with a winner-take-all
model (horizontal and vertical dashed lines in Figures
8–9), reflecting constant contrast perception in normal
binocular vision at all interocular contrast ratios.
However, this apparent winner-take-all behavior is not
the outcome of a winner-take-all mechanism because
the apparent switch behavior is not observed in the
perceived phase of a cyclopean sine wave, which shifts
continuously from left to right eye when the contrast
ratio RE/LE increases from zero to infinity (Figure 6).
As shown in Figure 12A, this winner-take-all phe-
nomenon under normal viewing conditions is the
approximate outcome of more complex interocular
interactions, including both gain controls and gain
enhancements as described in the DSKL model.

The nearly constant contrast perception under
normal viewing conditions places a strong constraint
on modeling binocular combination. Our model fitting
shows that the DSKL model (Model 3c), which
maintains the balance between interocular suppression
and enhancement, successfully predicts both the
winner-take-all feature (Figures 8–9) in contrast
combination under normal viewing conditions and the
smooth phase shift in phase combination (Figures 6–7),
improving model fitting significantly compared with
Model 2.

Through balancing mutual interocular suppression
and enhancement, under normal viewing conditions,
the normal visual system achieves constant binocular
contrast perception at all interocular contrast ratios,
which extends our everyday experience that the world
looks the same whether one eye is closed or both eyes
remain opened (Ding & Sperling, 2006), while shifting
visual direction smoothly from one eye to the other eye
depending on the interocular contrast ratio. More
interestingly, even observers with abnormal binocular
vision achieve constant contrast perception, although
not perfect for some individuals, through balancing
interocular inhibition and enhancement; the contrast
loss in the nondominant eye is compensated for by the
contrast gain in the dominant eye (see figure 16 in the
following article, Ding, Klein, & Levi, 2013).

Contrast-dependence of the linearity of
binocular combination

Ding and Sperling (2007) have previously reported
the linear summation of binocular phase combination
at low contrast energy (at low contrast and short
duration), and when the contrast energy increased, the
combination became more and more nonlinear. In this
study, we confirmed this contrast-dependence of the
linearity of binocular combination in binocular con-
trast combination (Figure 10). Figure 13 demonstrates
the simulation of perceived phase (left column, phase

deviation from linear summation is shown) and
contrast (right column) predicted from Model 3c using
fitted model parameters for two observers at a duration
too brief for vergence eye movements (117 ms). When
base contrast increased from 0% to 48%, binocular
combination became systematically more nonlinear in
both phase and contrast perception. However, at low
contrasts near detection threshold, the matching task
was more challenging, especially for phase perception,
and we were unable to collect useful phase data at 6%
and contrast data at 3%. Interestingly, Fechner’s
paradox, which was observed by Legge and Rubin
(1981) at low contrast and short stimulus duration, was
not evident in the present study for any of our
experimental conditions for all normal observers.
However, Fechner’s paradox was evident for observers
with asymmetric interocular suppression (see the
following article). Figure 12B demonstrates that the
shape of the monocular output of the model depends
on base contrast; at 3% base contrast, the output is
almost identical to the input.

Comparison with other models

Several models have been proposed to account for
binocular combination. Typically, one model was
proposed to explain data collected from one specific
experiment. Comparison among models in data fitting
was seldom done (Blake & Wilson, 2011). Here we
compare several influential models deduced from
contrast matching or contrast discrimination experi-
ments (Legge, 1984b; Meese et al., 2006; Meese & Hess,
2004; Moradi & Heeger, 2009) with the models
proposed in this article and the MCM, recently
proposed by Huang et al. (2010). Typically, these
contrast-deduced models included nonlinear operators
for binocular contrast perception. In order to account
for phase data without nonlinear phase distortion, we
assumed that the operations in these models only apply
to contrast, and the phase remains unchanged.

Figure 14 shows the schematic diagrams of those
contrast-deduced models. Let d¼mR/mL be interocular
contrast ratio, from the Appendix, the perceived phase
and contrast from the Legge model (Figure 14A) are
given by

ĥ ¼ tan�1
dc � 1

dc þ 1
tan

h
2

� �

ð12Þ

and

m̂ ¼ ðmc
L þmc

RÞ
1=c; ð13Þ

respectively. When c¼1, the Legge model is identical to
the linear summation model; when c . 1, the model
predicts that the eye with higher contrast would have
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more weight in binocular combination than would be
predicted by the linear summation; when c ¼ ‘, the

model is identical to the winner-take-all model,
predicting the perceived phase switching from one eye

to the other at d ¼ 1 and the perceived contrast is the
higher contrast of the two eyes.

Figure 14B shows the contrast normalization model
proposed by Moradi and Heeger (2009) to explain their

fMRI data in binocular combination. The contrast is
first extracted from both eyes and pooled together and

then the pooled contrast exerts gain control to the two
eyes separately before binocular combination. From

the Appendix, the perceived phase from the normali-
zation model is also given by Equation 12, and the

perceived contrast is given by

m̂ ¼ mc
L

rc þmc
L þmc

R

þ mc
R

rc þmc
L þmc

R

¼ ðmc
L þmc

RÞ
rc þ ðmc

L þmc
RÞ
: ð14Þ

However, as shown in the Appendix, the formula for
fitting data from contrast matching tasks deduced from
the normalization model is identical to that deduced
from the Legge model. Actually, it becomes obvious
that the normalization model is equivalent to the Legge
model in binocular combination if we redraw the
normalization model in Figure 14B0; the two eye’s
inputs are first combined and then the combined
contrast energy exerts gain control to the combined
signal as shown in the second equation of Equation 14.
Because the calculations after binocular combination

Figure 13. Simulation results of Model 3c when base contrast varies from 0% to 48% at stimulus duration of 117 ms. To better

illustrate the linearity of phase perception, the phase deviation from linear summation is plotted as a function of contrast ratios when

the base contrast is 0% (dashed line), 3% (black), 6% (magenta), 12% (green), 24% (blue), or 48% (red).
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have no effect on the perceived phase and the contrast
matching, the normalization model performs the same
way as the Legge model in binocular combination,
making model parameter r insignificant in data fitting.
In other words, the gain control in the normalization
model could be considered as a binocular contrast gain

control, which accounts for the contrast transfer
function in monocular and binocular vision. Therefore,
its behavior in fitting our data is identical to the Legge
model; its gain-control path plays no role in binocular
combination. However, if different weights are as-
sumed for monocular and interocular gain controls in

Figure 14. Model comparison. (A)–(D) Models originally deduced from contrast experiments were modified to account for both phase

and contrast binocular combination by assuming that all operations only act on contrast and have no effect on the phase.
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the normalization model, the model would contain
both monocular and interocular mechanisms. From
this modified normalization model, the perceived
contrast is given by

m̂ ¼ mc
L

rc þmc
L þ wmc

R

þ mc
R

rc þ wmc
L þmc

R

; ð15Þ

where w is the relative weight for interocular gain
control when the weight for monocular gain control is
assumed to be one. The perceived phase is given by
Equation A18 with apparent contrast ratio calculated
by Equation A49.

In contrast, the gain control in the Ding-Sperling
model (Model 2) could be considered as an interocular
contrast gain control without any monocular mecha-
nism. When contrast m is presented in one eye only, the
perceived contrast predicted from the Ding-Sperling
model or any other model in this study always equals to
m, i.e., m̂¼ m when one eye is closed. Without adding
monocular mechanisms, it is impossible to account for
contrast discrimination data from our models.

The Meese-Hess model (Figure 14C) looks similar to
the normalization model except that the signal and
control paths take different power operations. Again,
the perceived phase is also given by Equation 12, and
the model could be redrawn in Figure 14C0. The
perceived contrast is given by

m̂ ¼ mc
L

Zþmq
L þmq

R

þ mc
R

Zþmq
L þmq

R

; ð16Þ

which could also be considered as a binocular
contrast gain control without interocular mecha-
nisms. When fitting the phase data only, model
parameters in the control path could have any value,
having no effect on the fitting results. When fitting
both phase and contrast data, the model should be
reduced to a two-parameter model, either with a fixed
gain-control constant Z, which might be determined
from contrast transfer function or with the power in
the control path q depending on the power in the
signal path c. We reduced the model by letting q¼ c�
1, and we have

m̂ ¼ mc
L

Zþmc�1
L þmc�1

R

þ mc
R

Zþmc�1
L þmc�1

R

: 160ð Þ

To include interocular mechanisms in the model,
different weights should be assumed for monocular
and interocular gain controls. We have

m̂ ¼ mc
L

Zþm
q
L þ wm

q
R

þ mc
R

Zþ wm
q
L þm

q
R

: ð17Þ

The perceived phase is given by Equation A18 with
apparent contrast ratio calculated by

d̂ ¼ Zþm
q
L þ wm

q
R

Zþ wm
q
L þm

q
R

mc
R

mc
L

: ð18Þ

The two-stage model (Figure 14D) was proposed by the
same group as the Meese-Hess model to extend it to
account for the finding of less nonlinearity at lower
contrast, using gain control with an exponent near-to-
one in the first stage before binocular combination and
to account for high nonlinearity at higher contrast
using the gain control in a second stage after binocular
combination. However, like the Meese-Hess model, the
gain control in the first stage could be considered as a
binocular contrast gain control after the binocular
combination as shown in Figure 14D0. The parameters
in the control path have no effect on the prediction of
perceived phase, which is also given by Equation 12
deduced from the Legge model. When fitting both
phase and contrast data, the model has to be reduced to
a two-parameter model with only the first stage; the
parameters in the second stage couldn’t be determined
from our data. From this reduced model, the perceived
contrast is given by

m̂ ¼ mc
L

SþmL þmR
þ mc

R

SþmL þmR
: ð19Þ

Again, to include interocular mechanism, different
weights are assumed for monocular and interocular
gain controls. We have

m̂ ¼ mc
L

SþmL þ wmR
þ mc

R

Sþ wmL þmR
: ð20Þ

The perceived phase is given by Equation A18 with
apparent contrast ratio calculated by

d̂ ¼ SþmL þ wmR

Sþ wmL þmR

mc
R

mc
L

: ð21Þ

Without the asymmetry assumption of monocular and
interocular gain controls, all these models deduced
from contrast combination have no effective interocu-
lar mechanisms. The contrast gain control in the
normalization, Meese-Hess, or two-stage model is
actually a binocular gain control because both eyes
gains increase or decrease in exactly the same way no
matter which eye’s contrast increases or decreases. The
perceived phase is only determined by the signal path of
the model; all four models give the same prediction of
the perceived phase given by Equation 12. On the other
side, in the Ding-Sperling model, increasing the left
eye’s contrast would decrease the right eye’s gain but,
at the same time, it would increase the left eye’s gain
through suppressing the gain control from the right
eye, and vice versa.

In the following, we compare the models we
proposed in this article and the MCM proposed by
Huang et al. (2010) with those models deduced from
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binocular contrast combination of two in-phase sine
waves for fitting our data. To make things simple and
to be clear in visualization, we only fit each model to a
reduced data set when two eyes’ sine waves have the
spatial frequency of 0.68 cpd and they are in phase for
contrast combination. We assumed l¼1 for all our five
models and c* ¼ c for Models 3b and 3c.

We used the Akaike information criterion (AIC), a
measure of the relative goodness of fit of a statistical
model developed by Akaike (1974), to compare
different models. Let Np be the number of model
parameters and LMax hais the maximized value of the
likelihood function for the estimated model; AIC is
defined as AIC ¼ 2Np – 2 ln LMax. Assuming that the
errors are normally distributed and independent, after
ignoring the constant term, AIC is given by AIC¼ v2þ
2Np.

Table 3 shows the statistical results of fitting twelve
models, five proposed in this article and seven from the
literature, to the data. Both the Legge model (Equa-
tions 12 and 13, Figure 14A) and Model 1 (Equation 3)
have only one parameter. They give similar phase
predictions (Equation A18 vs. Equation A40) but
different contrast predictions (Equation A20 vs.
Equation A41). At high base contrast (48%, observers
JP and MD), the AIC scores of the fits are much
reduced for Model 1 compared to the Legge model,
indicating a significantly better fit. However, when the
base contrast was tested at several levels from 6% to
48% (observers CG, CF, JS, and KT), the AIC scores
of the fits are much reduced for the Legge model.
Because Model 1 is a reduced gain-control model with
an assumption of zero gain-control threshold, i.e., gc¼
0, giving the same prediction at all contrast levels, it
would give a better fit only at high contrast than the
Legge model. When fitting a range of contrast levels,
the data was more linear at lower contrast levels and
became more nonlinear as contrast increased. Model 1
failed to pick up the linear feature at low contrast,
making it worse in data fitting than the Legge model.
For the purpose of fitting our data, the normalization
model (Figure 14B) is essentially identical to the Legge
model, and both models have the same chi-squared
statistics.

Next, we compared two-parameter models, the
Meese-Hess model (Figure 14C), the two-stage model
(Figure 14D), and Model 2 (the original Ding-Sperling
model, Figure 4B). Model 2 provided a much better fit
to the data than the other two-parameter models for
observers JP, MD, JS, and KT. However, for observers
CF and CG, both the two-stage and Meese-Hess
models provide a much better fit than Model 2. Adding
an additional parameter to make the gain controls of
the two layers asymmetric, Model 3a provided signif-
icantly improved fits over Model 2. Also, the modified
normalization model and the modified Meese-Hess M
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model with asymmetric monocular and interocular gain
controls significantly improved data fitting over the
original models (see statistics of the Legge model for
the original normalization model). However, the
modified two-stage model failed to improve data fits for
observers JP and KT although it significantly improved
data fitting for four other observers.

Interestingly, by adding an extra exponent parameter
only for contrast perception, the MCM significantly
improved the data fits over Model 2 for four observers
who collected data at a long stimulus duration (1 s), but
it failed to improve the fits for observers JS and KT
who collected data at a short stimulus duration (117
ms). Model 3a seems adequate for fitting this reduced
dataset for observers JP, MD, and CG; the reduced chi

square for observer JP is less than one, indicating a very
good fit. Adding enhancement (Model 3b) did not
further improve the fitting performance for this small
data set; the chi-square is the same as in Model 3a for
three observers. The addition of enhancement and gain
control of the enhancement (Model 3c—the DSKL
model) further improved the fit for observers JP and
MD but not for observer CG. For fitting the full data
set (Table 1) or for fitting the data of observers with
abnormal binocular visual experience (see the following
article), the modifications in Models 3a and 3c
significantly improved data fitting.

Figure 15 shows fitting results from these models to
both phase and contrast data for observers JP and MD
at spatial frequency of 0.68 c/8, base contrast of 48%,

Figure 15. Model predictions from Legge, modified two-stage (Two Stage 2), modified Meese & Hess (Meese & Hess 2), Ding &

Sperling, MCM, and DSKL (Model 3c). Model fits to both phase (left) and contrast (right) data for observers JP and MD at 48% of base

contrast, 1 s of stimulus duration, and 0.68 cpd. The interocular phase difference was fixed at 908 for phase perception, but the two

eyes sine waves were in phase for contrast perception.
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and stimulus duration of 1 s. Fitting either the phase or
contrast data separately, each of these models provides
a reasonable fit (data not shown, see discussion of
Figure 11), but with different fitted exponent gamma
values for the Legge, modified two-stage, modified
Meese-Hess, and Ding-Sperling models. By adding an
additional exponent parameter to the Ding-Sperling
model only for the contrast perception, the MCM
successfully predicts both phase and contrast data (red
dashed curve in Figure 15) under normal viewing
conditions (high stimulus contrast and long stimulus
duration), consistent with a previous study (Huang et
al., 2010). However, MCM is based on the assumption
of phase-independent binocular contrast combination
that was shown not to be valid at low contrasts (Baker

et al., 2012) and therefore failed to pick up the phase-
dependence shown in Figures 9 and 10. By adding
interocular enhancement to the Ding-Sperling model,
the DSKL model (Model 3c—black dashed curve in
Figure 15) also provides a good fit to both phase and
contrast data. The phase data fits are very similar
among these models for normal vision because they
have the same or similar apparent interocular contrast
ratio. However, the contrast data fits are quite
different; with the constraints of perceived phase, the
Legge model (blue curve) fails to account for the data
of binocular combined contrast.

Figure 16 compares contrast fitting results of these
models when fitting them to both phase and contrast
data for observer JS at 117 ms stimulus duration and

Figure 16. Model predictions from Legge, modified two-stage (Two Stage 2), modified Meese & Hess (Meese & Hess 2), Ding &

Sperling (Model 2), MCM, and DSKL (Model 3c). Model fits to both phase (not shown) and contrast data for observer JS at 6%–48% of

base contrast, 117 ms of stimulus duration, and 0.68 cpd. The interocular phase difference was fixed at 908 for phase perception, but

the two eyes sine waves were in phase for contrast perception.

Journal of Vision (2013) 13(2):13, 1–37 Ding, Klein, & Levi 25



6%–48% of base contrast. Phase fittings (not shown)
were very similar to those in Figure 15. When base
contrast varies from 6% to 48%, the contrast
combination data demonstrate nearly linear summa-
tion at 6% base contrast and highly nonlinear
summation at 48%; the nonlinearity of the contrast
contours increases when the base contrast increases.
However, with only one model parameter, the Legge
model failed to pick up this feature; the fitted curves
are overlaid for all base contrasts. All other models
correctly pick up this feature. However, for the
modified two-stage model (Two-Stage 2) and modified
Meese-Hess model (Meese & Hess 2), the model is not
sufficiently nonlinear at high contrast levels to fit the
nonlinear contour data at 48% while at low contrast it
is not linear enough to fit the linear summation at 6%.
Although the two models include a constant term in
their gain-control path, giving no gain controls at low
contrast, their signal paths also include nonlinear
terms in order to account for nonlinear features at
high contrast which results in their failure to predict
the linear summation contour at low contrast. The
Ding-Sperling model, which has only linear operators
in its signal path, correctly predicts the binocular
linear summation at low contrasts when the contrast
energy is lower than its gain-control threshold,
therefore improving the data fit at 6%, but it still
misses data points at a higher contrast. It is not
sufficiently nonlinear at high contrasts to account for
the data. By adding an additional exponent gamma
value to the Ding-Sperling model only for contrast
perception, the MCM seems somewhat limited,
although it does provide a reasonable fit at high
contrast levels (Figure 15). By adding interocular
enhancement to the Ding-Sperling model, making it
more nonlinear at high contrast while still keeping it
linear at low contrast when the contrast energy is less
than both gain-control and gain-enhancement
thresholds, the DSKL model successfully predicts
both high nonlinear contrast contour at 48% and
linear contrast summation at 6%. Importantly, while
there may be other ways to achieve this in observers
with normal vision, the gain enhancement is necessary
for fitting the highly nonlinear data of observers with
abnormal binocular vision (see subsequent article,
Ding, Klein, & Levi, 2013).

Phase-dependence of binocular contrast
combination

The Ding-Sperling model was originally developed
to explain and predict the results of binocular phase
combination experiments. An important prediction of
the model was the phase dependence of binocular

combination, which was confirmed experimentally
(Ding & Sperling, 2006, 2007; Huang et al., 2009;
Huang et al., 2011; Huang et al., 2010) (also see the
following article). However, binocular contrast combi-
nation is phase independent under normal viewing
conditions (high contrast and long stimulus duration)
(Huang et al., 2010, 2011), but is phase dependent at
low contrast (Baker et al., 2012). In order to account
for their data, Huang et al. (2010, 2011) elaborated the
Ding-Sperling model by adding an additional channel
for contrast perception after first processing the two
eyes’ inputs through the Ding-Sperling model and
assuming phase-independent contrast power summa-
tion in the contrast channel (MCM). Although the
MCM achieves a satisfactory fit to their data under
normal viewing conditions, it fails to predict the phase
dependence of contrast combination at low contrasts
(Baker et al., 2012), fails to predict contrast combina-
tion over a broader range of contrast levels even when
the two eyes’ sine waves were always in phase (see the
bottom-left panel in Figure 16), and also fails to
account for binocular combination in abnormal bin-
ocular vision (see the following article). One possible
reason for the differences between their data and ours
may be because they used the method of adjustment
with viewing durations as long as 10 s.

A motor/sensory fusion mechanism

We incorporated a motor/sensory fusion mechanism
into our binocular combination model to account for
both phase and contrast data when interocular phase
difference varied. Under normal viewing conditions,
when the two eyes are presented with two images that
have a small offset in position, disparity vergence
(motor fusion) operates through a visual feedback
control system to minimize binocular disparity with an
appropriate binocular convergence or divergence.
However, motor fusion may not be sufficient to
eliminate the physical disparity, especially when bin-
ocular fusion locks are presented in the surround, as
was the case in this study (Schor et al., 1984). Typically,
physical disparity is larger than the vergence (vergence
error or fixation disparity). A sensory process (sensory
fusion) is needed to compensate for the remaining
vergence error to align the two eyes images.

We assume that the brain performs sensory fusion
through remapping of the corresponding points of the
two eyes (Fogt & Jones, 1998a, 1998b; Hyson et al.,
1983). The site for remapping has been proposed to be
as early lateral geniculate nucleus, which has multiple
layers that have different maps from the retina
(Richards, 1968). In a control experiment, we measured
vergence subjectively (using nonius lines) when an
observer viewed 908 out-of-phase dichoptic sine waves
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in the same setup (with strong binocular fusion locks in
the surround) as in Experiments 1 and 2. We found that
for normal observers, vergence eye movement could
only compensate for ’ 10% of the physical offset of
the two sine waves; the rest must be compensated by
sensory fusion. Model 3c, which includes a motor/
sensory fusion mechanism, is able to account for the
phase dependency of binocular contrast summation
(Figures 9 and 10).

Here, we simulate Model 3c (Figure 17A) using the
fitted parameters for perceived contrast when the
eyes’ sine waves have identical contrast but with

different phases (Baker et al., 2012). The simulation
captures some features of the data from Baker et al.
(2012). At low standard contrast (2%), their data
showed linear summation when the interocular phase
difference was less than 908, and the perceived
contrast was strongly dependent on interocular phase.
However, when standard contrast increases, their data
showed that the binocular summation became more
and more independent of phase, and at 32% contrast,
the perceived contrast became almost completely
independent of phase, even at 1808 of the phase
difference. Although the simulation in Figure 17A
captures most features when the phase difference is
less than 1358, it fails to predict the perceived contrast
at 1808 out of phase when the two sine waves have
identical contrast: The model gives zero output at all
contrast levels while the data from Baker et al. (2012)
showed no complete cancelation—actually one eye’s
contrast was perceived at 32% contrast. Indeed, at
1808 out of phase, binocular rivalry occurs. Unlike
binocular combination, in which the binocular com-
bined sine wave is perceived, in binocular rivalry, the
perceived sine wave is either the LE’s or the RE’s but
not combined. Although we are not clear whether the
binocular combination and rivalry share the same
circuit or a part of the circuit for the interocular
interactions, a different mechanism related to binoc-
ular rivalry should be included in a model in order to
also account for the perceived contrast when the two
sine waves are 1808 out of phase. Baker et al. (2012)
proposed a model that also includes inhibition across
different phase channels to account for their binoc-
ular-contrast-combination data when interocular
phase difference varied from 08 to 1808. Their model
simulation provides a reasonable explanation of their
data.

Although the remapping through motor/sensory
fusion altered the perceived contrast dramatically, it
only changed the perceived phase very slightly. Figure
17B shows a simulation of Model 3c for perceived
phase before (dashed colored curves) and after (solid
colored curves) motor/sensory fusion. At both low
(6%, blue) and high (48%, red) contrast, the perceived
phases are very close to each other at all interocular
contrast ratios.

Model behaviors of the Ding-Sperling and DSKL
models

To further clarify the behavior of the DSKL model
(Model 3c) and to help visualize how it differs from the
original Ding-Sperling model (Model 2), we simulated
the contrast outputs of the two models (Figure 18). We
first simulate both models keeping one eye’s (LE’s)

Figure 17. Simulation results of the DSKL model (Model 3c) for

binocular combination. (A) Simulation of contrast combination

as a function of interocular phase difference at several standard

contrast levels (Baker et al., 2012) when two sine waves with

identical contrast but with different phases were presented to

the two eyes. (B) Simulation of phase combination before

(dashed colored curves) and after (solid colored curves) motor/

sensory fusion when the base contrast is 6% (blue) or 48% (red).

The linear summation curve is also shown (dashed grey curve).
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Figure 18. Model simulations of Ding-Sperling and DSKL models using fitted model parameters. (A) The LE’s model output in contrast

units (before binocular combination) (top) and the binocular model output in contrast units (bottom) are simulated when the RE’s

input contrast increases but the LE’s input remains unchanged at 3%, 6%, 12%, 24%, or 48%. The vertical solid bars in the top panels

indicate the amount decreased from the input levels (indicated by horizontal dashed lines) in the LE when the RE’s input reaches the

input contrast of the LE. The black dotted line indicates the decrease by a factor of two (or half) of the LE’s output. (B) Model

simulations of binocular (solid black) and monocular (solid red) output (contrast units) when both eyes have identical contrast inputs.

The dashed black diagonal indicates the equality of the output with the input. The short black bar indicates the gain-control

threshold, and the short red bar in the right panel indicates the gain-enhancement threshold. The two vertical dashed lines separate

the model output into three different behaviors: (1) linear binocular summation at low contrast, apparent exponent ’1 (for Legge

model, i.e., Binocular ’ LEþ RE); (2) constant contrast perception at high contrast, apparent exponent ’ ‘; (3) smooth transition

from the linear-summation behavior to the constant-contrast behavior, changing apparent exponent from one to ‘.
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input constant while varying the other eye’s (RE’s)
contrast (Figure 18A). Both models show interocular
suppression; the LE’s model output (the apparent
contrast) decreases from its input levels (indicated by
horizontal dashed colored lines) when the RE’s input
increases (top panels). However, when the RE’s input
further increases, the two models show different
behaviors: In the Ding-Sperling model, the LE’s model
output decreases further, while in the DSKL model,
interocular gain enhancement slows the decrease of the
LE’s model output, and it becomes flat. The binocular
outputs (the perceived contrast) of the two models are
shown in the bottom panels of Figure 18A. They
behave very similarly: At low contrast, the perceived
contrast increases when RE’s input increases, while at
high contrast, the perceived contrast shows apparent
winner-take-all behavior, flat when RE , LE and then
following the RE’s input when RE � LE. However, the
DSKL model provides a more accurate description of
these winner-take-all phenomena than the Ding-Sperl-
ing model. Note however, the winner-take-all behavior
is not an outcome of a specific winner-take-all
mechanism. Rather, at high contrast, the model output
of the LE decreases by about half (indicated by the
vertical colored bars in the top panels of Figure 18A) of
its input when the RE’s input reaches the input contrast
of the LE, making the binocular output (combined two
halves of the input) equal the monocular input when
both eyes receive identical contrast under normal
viewing conditions. The DSKL model achieves this
constant contrast perception over a larger range of
contrasts (.12%) than that of the Ding-Sperling model
(.24%).

In order to get a better view of this model behavior,
we simulate the models when the two eyes receive
identical contrast inputs (Figure 18B). The model
outputs demonstrate that both DSKL and Ding-
Sperling models have three distinct behaviors (sepa-
rated by two vertical dashed lines): (a) linear summa-
tion (apparent exponent ’ 1 for Legge model, i.e.,
Binocular ’ LEþ RE ) at low contrast; (b) constant-
contrast perception at high contrast (apparent expo-
nent ’ ‘); (c) smooth transition from linear-summa-
tion to constant-contrast perception, changing the
apparent exponent from one to ‘. However, with both
interocular gain control (its threshold is indicated by a
short black bar) and gain enhancement (its threshold is
indicated by a short red bar), the DSKL model has a
sharper transition between linear summation and
constant-contrast perception, more consistent with the
experimental data (bottom-right panel in Figure 16)
than the Ding-Sperling model with only interocular
gain control, which failed to fit the data when the input
contrast varied over a broad range (middle-right panel
in Figure 16). For the DSKL model (right panel in
Figure 18B), when the input contrast is lower than half

of the gain-control threshold (indicated by a short
vertical black bar), the model shows linear behavior
without any interocular interaction; the monocular
model output (solid red curve) is identical to the input
and the binocular model output (solid black curve)
doubles the monocular input, a linear summation of the
two monocular inputs. When the input contrast is
higher than twice the gain-control threshold or a little
bit higher than the gain-enhancement threshold, the
DSKL model achieves constant contrast perception,
binocular output (solid black curve) equals monocular
input, through decreasing monocular output contrast
(solid red curve) by factor of two.

Any model with a nonlinear operator in its signal
path (with a nonlinear numerator), such as the
normalization, two-stage, and Meese-Hess models that
originate from a nonlinear contrast transducer, would
have trouble explaining the linear behavior in binocular
combination at low contrast (see Figure 16). This linear
summation at low contrasts also constrains the MCM
with the exponent in its additional contrast channel
very close to one (’0.98 for the bottom-left panel in
Figure 16), making it no different from the original
Ding-Sperling model. Although the Legge model with
different apparent exponents at different contrast levels
might be able to explain binocular contrast combina-
tion, it failed to explain both phase and contrast
combination simultaneously (see discussion of Figures
11, 12, and 15). The DSKL model successfully explains
both linear behavior at low contrast and constant-
contrast perception at high contrast and provides a
sharp but smooth transition between the two behav-
iors.

Our experiments and modeling show that binocular
combination is more complex than previously thought.
However, the range of binocular interactions in normal
vision may not be sufficiently large to fully distinguish
amongst the many extant models of binocular combi-
nation. In the subsequent article we show that
observers with abnormal binocular vision may, like
dichromats in color vision, place additional constraints
on the models, and provide new insight into the nature
of binocular interaction.

Keywords: interocular inhibition, interocular en-
hancement, motor/sensory fusion, disparity energy, phase
dependency of binocular contrast combination, cyclopean
sine wave, contrast constant perception, visual direction,
binocular contrast contour
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Appendix: Calculations of the
perceived phase and contrast of a
cyclopean sine wave from a
binocular combination model

Linear summation model

Let IL and IR be the stimuli presented to the left and
right eyes, respectively, given by

IL ¼ I0 þmLcosð2pfsxþ hLÞ ðA1Þ
and

IR ¼ I0 þmR cosð2pfsxþ hRÞ: ðA2Þ
The perceived sine wave is supposed to be the
arithmetic summation of the two eyes’ sine waves, i.e., Î
¼ ILþ IR. Figure A1 shows vector presentations of sine
waves and their arithmetic summation in the complex
plane. We have

Î ¼ Î0 þ m̂ cosð2pfsxþ ĥÞ; ðA3Þ
where Î0 ¼ 2I0,

m̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
L þm2

R þ 2mLmR cosðhR � hLÞ
q

; ðA4Þ

and

ĥ ¼ tan�1
mL sin hL þmR sin hR
mL cos hL þmR cos hR

: ðA5Þ

Remapping corresponding points through
motor/sensory fusion

After remapping of the two eyes’ corresponding
points through motor/sensory fusion, the misaligned
two eyes’ sine waves shift their phases towards the
perceived phase to align with each other. Figure A1
demonstrates that, after remapping, the left eye phase
shifts from hL (black) to h

0

L (blue), rotating an angle of
the frction of the phase difference between the left eye
and the cyclopean eye, and the right eye phase shifts
from hR (black) to h

0

R(blue), rotating an angle of the
fraction of the phase difference between the right eye
and the cyclopean eye. We assume that the disparity
energy, given by

D ¼ mLmR sinðhR � hLÞ; ðA6Þ
first goes through a gain control to calculate the
fraction of disparity remapping demand,

a ¼ Dcf

ðg2f Þ
cf þDcf

; ðA7Þ

that drives motor/sensory fusion to align two eyes’
images as shown in Figure 5. We have

h0
L ¼ hL þ aðĥ� hLÞ and

h0
R ¼ hR þ aðĥ� hRÞ: ðA8Þ

In Equation A7, gf is the contrast threshold at which
the motor/sensory fusion becomes apparent and cf is
the exponent value for the gain control in the motor/
sensory fusion mechanism. At very low contrast, when
D ,, g2f , no motor/sensory fusion occurs and we have
h

0

L ’ hL and h
0

R ’ hR, and the perceived contrast and
phase are still given by Equations A4 and A5,
respectively. At very high contrast, when D .. g2f , the
motor/sensory fusion results in perfect binocular
alignment, i.e., h

0

L ’ h
0

R ’ ĥ, and the perceived contrast
is given by m̂

0 ¼mLþmR but the perceived phase is still
given by Equation A5. Generally, after motor/sensory
fusion, the perceived contrast is given by

m̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
L þm2

R þ 2mLmR cosðh0
R � h0

LÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
L þm2

R þ 2mLmR cosð1� aÞðhR � hLÞ
q

;

ðA9Þ
and the perceived phase is given by

ĥ
0 ¼ tan�1

mL sin h0
L þmR sin h0

R

mL cos h0
L þmR cos h0

R

: ðA10Þ

Figure A1. Vector presentations of sine waves and their

arithmetic summation in the complex plane before (black) and

after (blue) motor/sensory fusion.
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Let hR¼ h/2, hL¼�h/2, and mR¼ dmL, where h¼ hR –
hL is the phase difference between two eyes and d¼mR/
mL is interocular contrast ratio, then the perceived
contrast and phase before motor/sensory fusion are
given by

m̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
L þm2

R þ 2mLmR cos h
q

; ðA11Þ

ĥ ¼ tan�1
d� 1

dþ 1
tan

h
2

� �

: ðA12Þ

After motor/sensory fusion, the perceived contrast is
given by Equation A9 and the perceived phase is given
by

ĥ
0¼ tan�1 sin a tan�1

d� 1

dþ 1
tan

h
2

� �

� ð1� aÞ h
2

� ��

(

þ d sin a tan�1
d� 1

dþ 1
tan

h
2

� �

þ ð1� aÞ h
2

� ��

‚ cos a tan�1
d� 1

dþ 1
tan

h
2

� �

� ð1� aÞ h
2

� ��

þ d cos a tan�1
d� 1

dþ 1
tan

h
2

� ��

þ ð1� aÞ h
2

��

)

: ðA13Þ

When only the left eye is presented with the sine wave,
i.e., mR¼ 0 or d¼ 0 , the perceived phase is the same as
the input from the left eye, i.e., ĥ

0 ¼ ĥ ¼ hL¼�h/2.
When only right eye is presented with the sine wave,
i.e., mL¼ 0 or d¼ ‘, the perceived phase is the same
as the input from the right eye, i.e., ĥ

0 ¼ ĥ¼ hR ¼ h/2.
When the two eyes are presented with the sine waves
with identical contrast, i.e., mL¼ mR or d ¼ 1, the
perceived phase is zero, i.e., ĥ

0 ¼ ĥ¼ 0. When
interocular contrast ratio varies from zero to ‘, the
perceived phase varies from the phase of the left eye
sine wave,�h/2, to the phase of the right eye sine wave,
h/2. As shown in Figure 17B, before and after motor/
sensory fusion the perceived phases are very close to
each other, i.e., ĥ

0
’ ĥ, for all interocular contrast

ratios at all contrast levels.

Model 1: Contrast-weighted summation model
(simplified Ding-Sperling model)

After being weighted by contrast energy, the
monocular signals become

ÎL ¼ Î0 þ m̂L cosð2pfsxþ hLÞ ðA14Þ

and

ÎR ¼ Î0 þ m̂R cosð2pfsxþ hRÞ: ðA15Þ
From Equations 4 and 5, we have

m̂L ¼
mc

L

mc
L þ ðlmRÞc

mL and

m̂R ¼
ðlmRÞc

mc
L þ ðlmRÞc

lmR: ðA16Þ

Therefore the apparent interocular contrast ratio is
given by

d̂ ¼ m̂R

m̂L
¼ lmR

mL

� �cþ1
¼ ðldÞcþ1: ðA17Þ

When hR¼ h/2, hL¼�h/2 (the case for Experiment 1),
the perceived phase of a cyclopean sine wave is given by

ĥ ¼ tan�1
d̂� 1

d̂þ 1
tan

h
2

 !

: ðA18Þ

With the fraction of the disparity remapping demand
given by

a ¼ ðm̂Lm̂R sin hÞcf
ðg2f Þ

cf þ ðm̂Lm̂R sin hÞcf : ðA19Þ

After remapping of two eyes’ corresponding points
through motor/sensory fusion, the perceived contrast
and phase are given by

m̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂2
L þ m̂2

R þ 2m̂Lm̂R cosð1� aÞh
q

ðA20Þ

ĥ
0 ¼ tan�1 sin a tan�1

d̂� 1

d̂þ 1
tan

h
2

 !

� ð1� aÞ h
2

 !"(

þ d̂ sin a tan�1
d̂� 1

d̂þ 1
tan

h
2

 ! 

þ ð1� aÞ h
2

!#

‚ cos a tan�1
d̂� 1

d̂þ 1
tan

h
2

 !

� ð1� aÞ h
2

 !"

þ d̂ cos a tan�1
d̂� 1

d̂þ 1
tan

h
2

 ! 

þ ð1� aÞ h
2

!#)

: ðA21Þ
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Model 2: Ding-Sperling model

Using the same way as in Model 1, from Model 2
(Equations 4 and 6), after interocular interaction, the
monocular contrast becomes

m̂L ¼
1þ mL

gc

� �c

1þ mL

gc

� �c
þ lmR

gc

� �c mL and

m̂R ¼
1þ lmR

gc

� �c

1þ lmR

gc

� �c
þ mL

gc

� �c lmR: ðA22Þ

Therefore, the apparent interocular contrast ratio is
given by

d̂ ¼ m̂R

m̂L
¼

1þ lmR

gc

� �c

1þ mL

gc

� �c
lmR

mL
: ðA23Þ

Using Equations A22 and A23, we can calculate the
perceived contrast and phase after motor/sensory
fusion from Equations A18–A21.

Model 3a: Adding asymmetry between two
gain-control layers to the model

From Model 3a (Equations 4 and 7), we can deduce
its output monocular contrast to be

m̂L ¼
1þ a mL

gc

� �c

1þ a mL

gc

� �c
þ lmR

gc

� �c mL and

m̂R ¼
1þ a lmR

gc

� �c

1þ a lmR

gc

� �c
þ mL

gc

� �c lmR: ðA24Þ

Therefore, the apparent interocular contrast ratio is
given by

d̂ ¼
1þ a mL

gc

� �c
þ lmR

gc

� �c

1þ a lmR

gc

� �c
þ mL

gc

� �c

1þ a lmR

gc

� �c

1þ a mL

gc

� �c
lmR

mL
: ðA25Þ

Again, using Equations A24 and A25, the perceived
contrast and phase after motor/sensory fusion can be
calculated from Equations A18–A21.

Model 3b. Adding interocular gain
enhancement to the model

From Model 3b (Equations 4, 8, and 9), we can
deduce its output monocular contrast to be

m̂L ¼
1þ a mL

gc

� �c

1þ a mL

gc

� �c
þ lmR

gc

� �c 1þ lmR

ge

� �c*
 !

mL and

m̂R ¼
1þ a lmR

gc

� �c

1þ a lmR

gc

� �c
þ mL

gc

� �c 1þ mL

ge

� �c*
 !

lmR:

ðA26Þ
Therefore, the apparent interocular contrast ratio is
given by

d̂ ¼
1þ a mL

gc

� �c
þ lmR

gc

� �c

1þ a lmR

gc

� �c
þ mL

gc

� �c

1þ a lmR

gc

� �c

1þ a mL

gc

� �c

1þ mL

ge

� �c*

1þ lmR

ge

� �c*

·
lmR

mL
: ðA27Þ

Again, using Equations A26 and A27, the perceived
contrast and phase can be calculated from Equations
A18–A21.

Model 3c: Full model (DSKL model): Adding a
mutual inhibition to a gain enhancement

From Model 3c (Equations 4, 9, and 10), we can
deduce its output monocular contrast to be

m̂L ¼
1þ a mL

gc

� �c

1þ a mL

gc

� �c
þ lmR

gc

� �c

1þ b mL

gc

� �c
þ lmR

ge

� �c*

1þ b mL

gc

� �c mL

and

m̂R ¼
1þ a lmR

gc

� �c

1þ a lmR

gc

� �c
þ mL

gc

� �c

1þ b lmR

gc

� �c
þ mL

ge

� �c*

1þ b lmR

gc

� �c lmR:

ðA28Þ

Therefore, the apparent interocular contrast ratio is
given by
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d̂ ¼
1þ a mL

gc

� �c
þ lmR

gc

� �c

1þ a lmR

gc

� �c
þ mL

gc

� �c

1þ a lmR

gc

� �c

1þ a mL

gc

� �c

·
1þ b lmR

gc

� �c
þ mL

ge

� �c*

1þ b mL

gc

� �c
þ lmR

ge

� �c*

1þ b mL

gc

� �c

1þ b lmR

gc

� �c
lmR

mL
:

ðA29Þ
Similarly as before, using Equations A28 and A29, the
perceived contrast and phase after motor/sensory
fusion can be calculated from Equations A18–A21.

Model fitting

We proposed five models in a series with a previous
one to be nested within its successor. In Experiment 1,
the independent variables are base contrast m ¼
max{mL, mR}, interocular contrast ratio d¼ mR/mL,

and two eyes phase difference h¼hR – hL. At each set of
m, d, h, we measured the perceived phase ĥ

00
with

standard error of ĥ
00

se. On the other side, the perceived
phase could be predicted from one of five models,
which could be written as a function of m, d, and h, i.e.,

ĥ
0 ¼ ĥ

0ðm; d; hÞ: ðA30Þ
In Experiment 2, for each combination of standard

contrast mst, interocular contrast ratio d¼mR/mL, and
interocular phase difference h, we measured the base
contrast �m 00 ¼max{mL, mR} with standard error of �m 00

se
at a fixed contrast ratio d when the perceived contrast
�m0 matches the perception m̂

0

st of the standard contrast,
i.e., m̂

0

st ¼ m̂
0

. However, all five models in this article
have no assumption for monocular contrast perception;
they only deal with interocular interactions. When a
standard contrast was only presented in the LE, i.e., mL

¼ mst and mR ¼ 0, we have the perception of the
standard contrast m̂

0

st¼ m̂st¼mst. On the other side, at a
combination of base contrast m̂, contrast ratio d, and
phase difference h the perceived contrast m̂0 could be
written as of function of m̂, d and h from a model.
When it matches the perception of the standard
contrast m̂

0

st, we have

m̂0 ¼ m̂0ð �m; d; hÞ ¼ m̂0
st ¼ mst: ðA31Þ

From Equation A31, at a fixed contrast ratio d and a
fixed phase difference h, the base contrast at which the
binocular-combined contrast matches monocular stan-
dard contrast could be calculated from a model, i.e.,

�m ¼ m̂0�1ðmst; d; hÞ: ðA32Þ
To minimize the weighted sum of squared errors given
by

v2 ¼
X

h

X

m

X

d

ðĥ0 � ĥ
00Þ2

ðĥ 00

seÞ
2

þ
X

h

X

mst

X

d

ð �m� �m 00Þ2

ð �m 00
seÞ

2
; ðA33Þ

where ĥ0 and �m were predicted from a model given
by Equations A30 and A32, respectively, ĥ

00
and ĥ

00

se

were measured in Experiment 1, and �m 00 and m̂ 00
se were

measured in Experiment 2, we could fit the model
simultaneously to both phase and contrast data. When
spatial frequency varies, the contrast energy might also
vary. For each spatial frequency fs, we have one set of
model parameters, gc and ge, for computation of
contrast energy. For three spatial frequencies, we fit the
model to all data for all three spatial frequencies from
both experiments by minimizing the weighted sum of
squared errors given by

v2 ¼
X

fs

X

h

X

m

X

d

ðĥ0 � ĥ
00Þ2

ðĥ 00

seÞ
2

þ
X

fs

X

h

X

mst

X

d

ð �m� �m 00Þ2

ð �m 00
seÞ

2
: ðA34Þ

Here, we take Model 1 as an example to demonstrate
the process of data fitting when the contrast matching
experiment was performed only when the two eyes’ sine
waves were in phase, i.e., m̂0 ¼ m̂. Because we always
have ĥ0 ’ ĥ, for simplicity, we only show how to fit
Model 1 without considering motor/sensory fusion.
From Equations A17 and A18, we have

ĥ ¼ tan�1
ðldÞcþ1 � 1

ðldÞcþ1 þ 1
tan

h
2

 !

ðA35Þ

for prediction of the perceived phase, which is
independent of base contrast m in Model 1. For
contrast matching experiment, at base contrast �m, we
have mL¼ �m and mR¼ d �m when d � 1, and mL¼ �m/d
and mR ¼ d when d¼. 1. From Equations A16 and
A20 with h ¼ 0, the perceived contrast is given by

m̂ ¼

1þ ðldÞcþ1

1þ ðldÞc �m; d � 1

1þ ðldÞcþ1

1þ ðldÞc
�m

d
; d . 1:

8

>

>

>

>

<

>

>

>

>

:

ðA36Þ

From Equation A31 and m̂0 ¼ m̂st, the base contrast at
which the binocular-combined contrast matches the
monocular standard contrast is given by
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�m ¼

1þ ðldÞc

1þ ðldÞcþ1
mst; d � 1

1þ ðldÞc

1þ ðldÞcþ1
dmst; d . 1:

8

>

>

>

>

<

>

>

>

>

:

ðA37Þ

Applying Equations A35 and A37 in a chi-squared
estimator (Equation A33 or A34), we could fit both
phase and contrast data into Model 1 without
considering motor/sensory fusion. Generally, it would
be difficult to write down the explicit formula for
Equation A33 or A34, and we had to use Matlab
program to find a digital solution of �m at a
combination of mst, d, and h.

Legge model

For models that were deduced from contrast
combination of two in-phase sine waves, we only
compared them with our models when the two eyes’
sine waves are in phase for binocular contrast
combination. Let the two eyes’ input sine waves be
given by Equations A1 and A2. In the Legge model
(Figure 14A), after the calculation of (�)c that only
operates on contrast and has no effect on phase, the
two eye inputs become

ÎL ¼ Î0 þmc
L cosð2pfsxþ hLÞ and

ÎR ¼ Î0 þmc
R cosð2pfsxþ hRÞ: ðA38Þ

Therefore, the apparent interocular contrast ratio is
given by

d̂ ¼ mc
R

mc
L

¼ mR

mL

� �c

¼ dc: ðA39Þ

When hR – hL¼ h, from Equations A18 and A39, the
perceived phase is given by

ĥ ¼ tan�1
dc � 1

dc þ 1
tan

h
2

� �

: ðA40Þ

The calculation after the binocular combination has no
effect on the perceived phase. When the two inputs
have identical phase, i.e., hL¼hR, after the combination
and the calculation of (�)1/c, the perceived contrast is
given by

m̂ ¼ ðmc
L þmc

RÞ
1=c: ðA41Þ

When the standard contrast mst is only presented in one
eye, say, mL ¼ mst and mR ¼ 0, we have its perception
m̂st ¼ mst Like the five models in this study, the Legge
model doesn’t include any monocular mechanism, but
unlike these models, it doesn’t include any interocular
mechanism either. Similarly, as was the case in
deducing Equation A37, the base contrast �m, at which

the binocular-combined contrast matches the monoc-
ular standard contrast, is given by

�m ¼ ð1þ dcÞ�1=cmst; d � 1

ð1þ dcÞ�1=cdmst; d . 1:

(

ðA42Þ

Applying Equations A40 and A42 in a chi-squared
estimator (Equation A33 with h¼0 in the second term),
we fitted the Legge model to both phase and contrast
data at 48% contrast and 0.68 cpd of spatial frequency
(blue curve in Figure 15).

Normalization model

The normalization model (Figure 14B) has both signal
and control paths in each eye. The signal path is similar
to the Legge model except its gain is controlled. In the
control path, the contrast is first extracted from each
eye’s image, pooled together, and then exerts inhibitory
gain control to each eye’s signal path separately. After
these operations, the two eye inputs become

ÎL ¼ Î0 þ
mc

L

rc þmc
L þmc

R

cosð2pfsxþ hLÞ and

ÎR ¼ Î0 þ
mc

R

rc þmc
L þmc

R

cosð2pfsxþ hRÞ: ðA43Þ

The apparent interocular contrast ratio is still given by
Equation A39, and the perceived phase is also given by
Equation A40. When hL¼ hR, the perceived contrast is
given by,

m̂ ¼ mc
L

rc þmc
L þmc

R

þ mc
R

rc þmc
L þmc

R

: ðA44Þ

The monocular contrast perception of mst is given by

m̂st ¼
mc

st

rc þmc
st

: ðA45Þ

Unlike the five models in this article and the Legge
model, the normalization model includes monocular
contrast gain control. When the perceived contrast at mL

¼ �m and mR¼ d �m (d � 1) is matched to m̂st, we have

m̂ ¼ ð1þ dcÞ �mc

rc þ ð1þ dcÞ �mc ¼ m̂st ¼
mc

st

rc þmc
st

: ðA46Þ

Obviously, we have mc
st ¼ (1þ dc) �mc when d � 1.

Similarly, we have mc
st ¼ (1þ d�c) �mc when d . 1.

Therefore, we also have Equation A42 in the normali-
zation model to predict the base contrast �m when
binocularly-combined contrast matches the monocular
standard contrast. The model-fitting curve is exactly the
same as the one from the Legge model (blue in Figure
15).
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Normalization model with asymmetric
monocular and interocular gain controls

To include interocular mechanism, monocular and
interocular gain controls should have different weights
in the normalization model, i.e., after normalization,
the apparent monocular contrast is given by

m̂L ¼
mc

L

rc þmc
L þ wmc

R

and

m̂R ¼
mc

R

rc þ wmc
L þmc

R

; ðA47Þ

where w is the relative weight for interocular gain

control when the weight for monocular gain control is
assumed to be one. Therefore, the perceived contrast is
given by

m̂ ¼ m̂L þ m̂R

¼ mc
L

rc þmc
L þ wmc

R

þ mc
R

rc þ wmc
L þmc

R

: ðA48Þ

And the apparent interocular contrast ratio is given by

d̂ ¼ m̂R

m̂L
¼ rc þmc

L þ wmc
R

rc þ wmc
L þmc

R

dc: ðA49Þ

Using Equation A49, the perceived phase is given by
Equation A18.
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