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Abstract

Despite advances in contemporary chemotherapeutic strategies, long term survival still remains 

elusive for patients with metastatic colorectal cancer. A better understanding of the molecular 

markers of drug sensitivity to match therapy with patient is needed to improve clinical outcomes. 

In this study, we used in vitro drug sensitivity data from the NCI-60 cell lines together with their 

Affymetrix microarray data to develop a gene expression signature to predict sensitivity to 

oxaliplatin. In order to validate our oxaliplatin sensitivity signature, Patient-Derived Colorectal 

Cancer Explants (PDCCEs) were developed in NOD-SCID mice from resected human colorectal 

tumors. Analysis of gene expression profiles found similarities between the PDCCEs and their 

parental human tumors, suggesting their utility to study drug sensitivity in vivo. The oxaliplatin 

sensitivity signature was then validated in vivo with response data from 14 PDCCEs treated with 

oxaliplatin and was found to have an accuracy of 92.9% (Sensitivity=87.5%; Specificity=100%). 

Our findings suggest that PDCCEs can be a novel source to study drug sensitivity in colorectal 

cancer. Furthermore, genomic-based analysis has the potential to be incorporated into future 

strategies to optimize individual therapy for patients with metastatic colorectal cancer.
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Introduction

Colorectal cancer is the third most common cancer in the world with approximately 150,000 

new cases in the United States each year and ranks second only behind lung cancer as the 

leading cause of cancer-related deaths (1). At initial diagnosis approximately 20% of 

patients will have distant metastasis, and another 25-30% of patients with early stage disease 

will develop metastasis (2, 3). Currently the use of chemotherapy in the metastatic setting is 

predominantly for disease control and palliation of symptoms. If left untreated, patients with 

metastatic colorectal cancer have an overall survival of 6 to 9 months, but with combination 

therapy, survival can be improved to greater than 20 months (4-6). Although the prolonged 

survival with current combination therapy represents a significant achievement, metastatic 

colorectal cancer still remains an incurable disease, and new therapeutic approaches are 

required to improve clinical outcomes.

Therapy based upon the biology of an individual's tumor rather than established 

histopathological and anatomical classification is an approach which promises to optimize 

the use of existing therapies and identify novel targets for future therapies. Currently, either 

a single gene or a small collection of genes is used to determine response to therapeutic 

agents. Gene expression analysis offers the potential to measure genome-wide gene activity 

which can be used to complement currently available clinical and biochemical markers in 

order to identify discrete clinically and biologically relevant phenotypes to better 

characterize a disease (7, 8). As a result, clinical medicine becomes a data-intensive, 

quantitative genomic science, and such data can be used to uncover patterns and trends that 

can distinguish between biological phenotypes in order to help guide existing therapies and 

discover new therapeutic targets (9-11).

The ability to create a predictive model that can determine which patient may derive the 

most benefit from a particular agent is the first step in guiding therapy. Previous studies 

have shown that the NCI-60 cell line panel can be used to create predictive therapeutic 

models (12-14); however, it remains unclear whether or not responses to therapeutic agents 

in vitro are predictive of clinical response. Therefore, similarly to the incorporation of new 

therapeutic agents in the clinical setting, predictive biomarkers must be assessed for their 

therapeutic potential in preclinical models.

In the past, mouse xenografts have been developed to screen new cancer drugs (15). 

Initially, athymic mice (nu/nu) and SCID mice were used to establish xenografts from 

human tumor cell lines in order to test their response to cancer drugs (16). More recently, 

the direct transplantation of resected human tumors into mice to study sensitivities to 

therapeutic agents in gastrointestinal cancers has been performed (17, 18). However, it 

remains unclear whether or not responses to therapeutic agents in vivo are predictive of 

clinical responses; thus, the need for a clinically relevant preclinical model arises.

In this study, we have developed a predictor of sensitivity to oxaliplatin in order to identify 

patients who would derive the most benefit from oxaliplatin-based therapy along with a 

preclinical murine model of patient-derived colorectal cancer explants (PDCCEs) to validate 

our predictive signature. Together, these approaches describe a widely applicable system 
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that facilitates the preclinical development and characterization of therapeutic agents alone 

and in combination in order to maximize response to chemotherapeutic drugs and change the 

current paradigm of clinical cancer therapy evaluation in colorectal cancers.

Materials and Methods

Development of in vitro oxaliplatin sensitivity predictor

An oxaliplatin sensitivity signature was generated as follows. Briefly, the GI50, TGI, and 

LC50 data for oxaliplatin on the NCI-60 cell line panel obtained from the NCI 

Developmental Therapeutics Program (19) were compared to determine relative oxaliplatin 

sensitivity. We subsequently chose cell lines within the NCI-60 panel that would represent 

the extremes of sensitivity in order to develop an in vitro gene-expression-based predictor of 

oxaliplatin sensitivity from the pharmacologic data used in the NCI-60 drug screen studies. 

RMA-normalized expression data from the NCI-60 cell lines were estimated from CEL files 

downloaded from CellMiner (20, 21) and were used in a supervised analysis using Bayesian 

regression methodologies to develop a signature for sensitivity to oxaliplatin. Specifically, a 

Bayesian probit regression model was fit to the most differentially expressed genes, as 

summarized by the top components of a singular value decomposition. The predictive 

probability of chemosensitivity was computed as the average of the posterior distribution of 

the Bayesian model. Complete details are in the supplemental material and methods.

Development of Patient-Derived Colorectal Cancer Explants (PDCCEs)

Colon tumor tissue specimens were obtained from patients (n = 14) with histologically 

confirmed colorectal cancer who had undergone complete surgical resections at the Duke 

University Medical Center (Durham, NC) between November 15, 2007, and August 27, 

2009. This investigation was approved by the Institutional Review Board of the Duke 

University Medical Center, and all patients provided informed consent. All specimens were 

sectioned, stained with H&E, and examined by microscopy by a board certified pathologist. 

Colorectal tumors resected at the time of surgery were washed with PBS and then minced 

into 2~3 mm cubes. The samples were then placed in an enzyme medium [RPMI media 

containing collagenase IV (6 mg/ml), hyaluronidase (1 mg/ml), and deoxyribonuclease (0.25 

mg/ml) (Sigma, Hamburg, Germany)] and agitated at room temperature for 18-24 hours. 

After agitation, the cells were centrifuged at 2000 RPM for 15 minutes at room temperature, 

washed with PBS, and passed through a 70μM cell strainer (BD Biosciences, Bedford, MA). 

After washing with PBS, the cells were again centrifuged at 2000 RPM for 15 minutes at 

room temperature, resuspended in serum-free RPMI/Matrigel mixture (1:1 volume), and 

then injected into the flanks of 4-week-old female JAX NOD.CB17-PrkdcSCID-J mice.

All mouse experiments were performed in accordance with the animal guidelines and with 

the approval of the Institutional Animal Care and Use Committee (IACUC) at the Duke 

University Medical Center.

In vivo oxaliplatin sensitivity assay of PDCCEs

To test the sensitivity of oxaliplatin in the PDCCEs, colorectal cancer cells extracted from 

previously generated, earlier passaged explants (passages 4-8) were injected subcutaneously 
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into the flanks of five JAX NOD.CB17-PrkdcSCID-J mice (four-week-old female) and 

measured every 2-3 days with a vernier caliper until the volume of the tumor [V = 

L×2W×0.52 (L = longest diameter, W = shortest diameter)] reached approximately 500 

mm3. The mice were then randomized and treated either with oxaliplatin at a standard dose 

of 10 mg/kg weekly via intraperitoneal injection or with saline for 2.5 weeks with each 

group containing five mice each. Tumors were then measured at least 2X/week with a 

vernier caliper, and both tumor volume and tumor growth inhibition ratio [TGI % = 1 - 

(average tumor volume of oxaliplatin group)/(average volume tumor of control group) × 

100%] were calculated at each time point. At the end of three weeks, the tumors from both 

groups were harvested and placed immediately in Optimal Cutting Temperature (OCT) 

compound (Sakura Finetek, Torrance, CA) and frozen on dry ice or placed in formalin 

overnight and paraffin embedded the next day.

Sample Processing. Fresh Frozen Samples

Frozen PDCCE samples were sectioned at 8μm and placed onto histological slides. An 

initial section was stained with hematoxylin and eosin (Sigma) for histological 

characterization of the tissue, and the sample was subsequently macrodissected to ensure > 

80% tumor. Approximately 100 μg of tissue was macrodissected, and total RNA was 

isolated from the homogenized tissue using the RNAase Isolation Kit (Qiagen, Valencia, 

CA). RNA were quantified using a Nanodrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE), and quality was assessed by spectrophotomeric analysis on 

an Agilent 2100 Bioanalyzer conductor using the RNA 6000 nano assay Kit (Agilent 

Technologies, Santa Clara, CA).

3-4 μg of total RNA was used to generate gene expression data. Briefly, first strand cDNA 

synthesis is generated using a T7-linked oligo-dT primer followed by second strand 

synthesis. An in vitro transcription reaction is performed to generate the cRNA-containing 

biotinylated UTP and CTP, which is subsequently chemically fragmented at 95°C for 35 

minutes. The fragmented, biotinylated cRNA is hybridized in MES buffer (2-[N]-

morpholino-ethansulfonic acid) containing 0.5 mg/ml acetylated bovine serum albumin to 

Affymetrix GeneChip Human U133A 2.0 arrays at 45°C for 16 hours, according to the 

Affymetrix protocol (Affymetrix, Santa Clara, CA). Generated CEL files are available at 

GEO (GSE28691).

Formalin Fixed, Paraffin Embedded Samples (FFPE)

Tumors from the PDCCEs were fixed in formalin overnight and paraffin embedded the 

following day. FFPE PDCCE samples were sectioned at 10 μm and placed onto histological 

slides. An initial section was stained with hematoxylin and eosin for histological 

characterization of the tissue to ensure > 80% tumor. RNA was then isolated from 8-10 μm 

FFPE sections using the RecoverAll-MagMAX Custom Kit and protocol (Applied 

Biosystems, Foster City, CA) with the following modifications: RNA isolation digestions 

were incubated at 50°C for 15 minutes and then at 80°C for 15 minutes; Lysis Binding 

Solution was reconstituted using 22 ml of 100% isopropanol (Mallinckrodt Chemicals, 

Phillipsburg, NJ); Wash Solution 1H was reconstituted using 12 ml of 100% isopropanol; 
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and Wash Solution 2 was reconstituted using 44 ml of 100% ethanol (Pharmco-Aaper, 

Brookfield, CT).

RNA was amplified according to the MessageAmp Premier protocol (Ambion, Austin, TX). 

Affymetrix DNA microarray analysis was prepared according to the manufacturer's 

instructions, and targets were hybridized to the Human U133A 2.0 GeneChip (Affymetrix, 

Santa Clara, CA). Generated CEL files are available at GEO (GSE28691).

Validation of Oxaliplatin Sensitivity Signature

In order to validate the accuracy of the Bayesian probit regression model, first, the RMA-

normalized gene expression data of the training data set (NCI-60 Oxaliplatin Sensitivity 

Signature) and validation data set (PDCCE fresh frozen or PDCCE FFPE samples) were 

merged together utilizing an in-house program, File Merger (22). Next, the model was used 

to estimate the relative probabilities and associated measures of uncertainty for each sample 

in the validation set as described previously (23). Samples scoring below 0.5 were 

considered belonging to the oxaliplatin-resistant class, while samples scoring above 0.5 were 

considered belonging to the oxaliplatin-sensitive class. The associations between the 

oxaliplatin sensitivity predictor and PDCCE TGIs are evaluated using pearson correlation 

coefficients and two-sided p-values. Complete details are in the supplemental material and 

methods.

Statistical Analysis

Expression estimates were obtained from the Affymetrix CEL files using MAS5 and RMA 

(24). To check for sample outliers and batch effects, 3D principal components analysis of 

the global gene expression was performed. Batch effects were normalized using the ComBat 

algorithm (25). Unsupervised hierarchical clustering of the human tumors and matching 

PDCCEs was performed on the 20% of genes with the greatest coefficient of variation. 

Agglomerative clusters were generated using the pearson correlation coefficient and 

complete linkage. To determine whether clusters were statistically robust, the AU 

(Approximate Unbiased) and BP (Bootstrap Probability) values were calculated by 10,000 

resamples using the R package: pvclust. The associations between cell-line phenotypes and 

genomic predictors are evaluated using spearman correlation coefficients and two-sided p-

values.

Results

Development of Oxaliplatin Sensitivity Signature

For patients with metastatic colorectal cancer, standard of care first line treatment options 

are either oxaliplatin or irinotecan-based therapies. However, response rates for either drug 

regimen range between 40-45% (26). As a first step in the goal to optimize therapy for colon 

cancer and to determine which patients would benefit from oxaliplatin-based therapy, we 

employed expression data from NCI-60 cell lines (20) with known sensitivities to oxaliplatin 

to develop a binary Bayesian model to predict oxaliplatin response. Genes whose expression 

was most highly correlated with sensitivity to oxaliplatin were identified, and these genes 
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were then used to develop a predictive model that could differentiate between oxaliplatin 

sensitivity and resistance.

First, we identified NCI-60 cell lines that were most resistant or sensitive to oxaliplatin as 

defined by their oxaliplatin GI50 (Growth Inhibition of 50%) values while also taking into 

consideration their TGI (Total Growth Inhibition) and LC50 (concentration of drug resulting 

in a 50% reduction in the measured protein at the end of the drug treatment as compared to 

that at the beginning) values. Cell lines with a GI50 < 0.5 μM were considered sensitive, and 

cell lines with a GI50 > 20 μM were considered resistant (Suppl Table 1). From these cell 

lines, corresponding RMA-estimated gene expression array data were used for subsequent 

analysis. However, one sensitive cell line, MCF-7, was observed to be a single-outlier by 3D 

principal components analysis of global expression values of all of the NCI-60 cell lines 

(Suppl Figure 1). Because of this, MCF-7 was omitted from the training set prior to 

developing the predictor (Table 1).

In order to tune parameters in the model to give the largest separation between binary 

phenotypes, a data-driven empirical approach was taken to select the optimal number of 

genes to include in the predictor. The discriminatory power was evaluated using the 

misclassification rate under leave-one-out performance (LOOP) with an a priori defined 

threshold of Pr ≥ 0.5. Gene set sizes of 50 to 200 were considered. Note: because the LOOP 

is used to optimize the multi-gene models, no statistical inferences are drawn from the cross-

validation, and an independent validation is required to fully assess their predictive value. 

After consideration, the final developed model consisted of 120 probes (Suppl Table 2) 

based on prediction of oxaliplatin sensitivity and LOOP (Figure 1).

Development of Patient-Derived Colorectal Cancer Explants

The true value of a predictor lies in its ability to predict sensitivity in an independent in vivo 

setting. To generate a validation set to test our oxaliplatin sensitivity signature, a murine 

model was developed by generating human metastasis-derived colorectal cancer explants 

(PDCCEs) in NOD-SCID mice. Following surgical resection and pathologic assessment, 

excess tissue to be discarded was immediately processed to generate PDCCEs as described 

above. A total of 20 resected tumors were injected into SCID mice, and 14 PDCCEs (Table 
2) have been established for an uptake rate of 70% (14/20). Of these patients, 9/14 did not 

receive any chemotherapy prior to surgical resection (neoadjuvant) and 9/14 received 

chemotherapy after surgical resection (adjuvant). Figure 2a revealed that sections stained 

with hematoxylin and eosin (H&E) were consistent with adenocarcinoma and that 

immunohistochemistry (IHC) stains with carcinoembryonic antigen (CEA) were consistent 

with a colorectal cancer.

To determine the extent to which the underlying biology of a resected colorectal cancer 

metastatic tumor is maintained when explanted into a murine model, global gene expression 

analysis between the matched resected patient colorectal tumor and PDCCE was performed. 

Initial 3D principal components analysis between the patient tumors and the corresponding 

explants revealed batch effects; therefore, to minimize these effects, the two sets were 

subsequently normalized using ComBat. An unsupervised hierarchical clustering was then 

performed on CV-filtered expression data to generate a heatmap of clustered gene 

Kim et al. Page 6

Mol Cancer Ther. Author manuscript; available in PMC 2015 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression (Figure 2b) which revealed that 10/14 (71%) of the matched patient tumor 

samples and corresponding PDCCEs clustered together with greater than 95% probability 

under resampling (Figure 2c), suggesting that the global biology between the matched 

samples are similar.

In vivo validation of the oxaliplatin predictor

To identify oxaliplatin-sensitive tumors, the 14 PDCCEs were treated with oxaliplatin as 

described above, and tumor growth inhibition (TGI) was monitored and recorded for each 

PDCCE during treatment (Suppl Table 3). Figure 3a shows pictures taken at time of 

PDCCE extraction to illustrate the difference between oxaliplatin-sensitive (e.g. CRC025) 

and oxaliplatin-resistant (e.g. CRC039) PDCCEs. The cut-off for sensitivity was defined as 

the arithmetic mean of the TGI values (mean = 0.665). From these studies, 7 PDCCEs were 

identified as sensitive (TGI % < mean), and 7 PDCCEs were identified as resistant (TGI % 

> mean).

The accuracy of the oxaliplatin sensitivity predictor was then determined using drug 

sensitivity data derived from the PDCCEs treated with oxaliplatin. Using the defined cut-off 

for sensitivity as described above, the oxaliplatin sensitivity predictor was then applied to 

each PDCCE (Table 3) and was found to have an accuracy of 92.9% (Sensitivity = 87.5%, 

Specificity = 100%; Figure 3b). Figure 3b shows that there is a statistically significant 

correlation between predicted probability of oxaliplatin sensitivity and TGI % to oxaliplatin 

treatment (p=0.002).

In vivo validation of the oxaliplatin predictor in formalin-fixed paraffin-embedded (FFPE) 
samples

Finally, although microarray analyses are best performed using minimally degraded RNA 

from freshly collected cell lines or tumor tissue, the challenge of incorporating a genomic 

signature into the clinical setting is that fresh tissue samples can be limited and therefore 

constrains our ability to take these studies forward to broad validations of the initially 

identified predictive profiles. As a result, the ultimate use of these profiles in a clinical 

diagnostic setting may best be done on standard pathological samples, including formalin-

fixed, paraffin-embedded samples (FFPE), and an ability to assay gene expression patterns 

making use of FFPE samples would clearly represent a major advance and an opportunity to 

validate the initial signatures.

The oxaliplatin sensitivity predictor was then applied to the FFPE-derived PDCCE tumors 

as described above to predict their sensitivity to oxaliplatin and was found to have an 

accuracy of 84.6% (Sensitivity = 83.3%, Specificity = 85.7%; Figure 3c). One FFPE 

PDCCE sample, CRC057, was omitted from analysis due to not meeting quality control 

standards (Suppl Figure 2). The mean TGI of the 13 remaining samples was 0.643, and this 

number was used as the cutoff for classification of sensitivity (Suppl Table 4). Figure 3c 
shows that there is a statistically significant correlation between predicted probability of 

oxaliplatin sensitivity and TGI to oxaliplatin (p=0.025).
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Discussion

Recent advances in molecular profiling technologies such as gene expression profiling, 

proteomic profiling, and genetic analysis are currently being utilized to tailor medical care to 

an individual's needs. In medical oncology, the challenges are to first, develop a method to 

predict which patient would derive the most benefit from these specific therapies and 

second, develop a preclinical model to test these therapies. This form of personalized 

medicine requires the ability to assay tumors for molecular features associated with 

responsiveness to the proposed therapy along with the development of a reliable preclinical 

model to test drug sensitivities.

Recent advances in the use of microarrays to assess the entire complement of the expressed 

genome have documented the power of this method to identify characteristics unique to an 

individual patient's tumors (8, 10, 11). This information has the potential to best match 

existing therapeutic agents to individual patient tumors as well as to identify novel 

therapeutic agents that could be used to treat individual patients. In metastatic colorectal 

cancer, cytotoxic chemotherapy with an oxaliplatin or irinotecan-based regimen remains the 

backbone of therapy (26, 27). However, the use of oxaliplatin-based therapy as a standard of 

care first line therapy results in only a 50-60% response rate (4, 6). Thus, the challenge is 

develop a predictive marker of oxaliplatin therapy.

Several mechanisms have been proposed to mediate oxaliplatin resistance, including 

increasing drug efflux and decreased cellular uptake, drug detoxification, apoptosis, and 

DNA repair (28, 29). In colorectal cancer, in vitro models have implicated genes involved in 

apoptosis, drug transport, and DNA repair as potential predictive biomarkers of oxaliplatin 

sensitivity (30-32). ERCC1 mRNA level and polymorphic variants within the ERCC1 gene 

have been shown to be prognostic markers of colorectal patients treated with oxaliplatin (33, 

34). However, it remains unclear whether proteins involved in nucleotide excision repair 

such as ERCC1 can serve as predictive markers for oxaliplatin sensitivity in patients with 

colorectal cancer.

In this study, we have used a genomic-based assay to develop a gene signature of oxaliplatin 

sensitivity. However, genes identified in the predictor did not include previously identified 

genes known to be involved in oxaliplatin resistance such as ERCC1 and other repair 

proteins, but instead consisted of genes known to be involved in oncogenesis [epidermal 

growth factor (EGFR), insulin-like growth factor binding protein (IGFBP7), vascular 

endothelial growth factor C (VEGFC), platelet-derived growth factor C (PDGFC), and 

CD44]. These genes were found to have lower expression in oxaliplatin sensitive cell lines 

and are consistent with studies that show low levels of VEGFA and VEGFC in oxaliplatin-

sensitive cell lines (35), and that cetuximab, which targets the EGFR pathway, can 

overcome oxaliplatin resistance (36).

A frequently used strategy for identifying and testing potentially effective drugs is to 

administer them to immunodeficient mice that have been implanted with well-characterized 

cancer cell lines that mimic human malignancies. However, these cell lines, having been 

derived and repeatedly cultured over many years, may have little resemblance to tumors 
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growing in patients. Thus, a more reliable model is needed. Recently, the direct 

transplantation of resected gastrointestinal human tumors in mice has been developed as a 

more comparable model to study drug sensitivities (17, 18), but it remains unclear whether 

or not responses seen in these models are predictive of clinical response. In our current 

study, we rapidly engrafted metastatic colorectal cancers into NOD-SCID mice and 

observed that the biology of the metastasis-derived colorectal cancer explants were similar 

to their corresponding patient tumors based on gene expression profiling. It was, however, 

observed that two of the PDCCEs (CRC067 and CRC039) did not cluster with the rest of the 

samples, suggesting that these tumors may have different biology, but this may be a result of 

these 2 patients receiving more chemotherapy [FOLFOX (Oxaliplatin/5-FU) + 

Bevacizumab] than the other 12 patients prior to resection of their cancer (Table 2). As a 

whole, we feel that these findings provide greater reassurance that the observed antitumor 

effects in our murine model would be similar to those observed in patients and thus provide 

a preclinical model to study drug sensitivities and mechanisms.

Our study has now shown both the ability to develop a genomic-based predictor for 

oxaliplatin sensitivity and also the capability to validate the accuracy of the predictor in a 

preclinical model. Furthermore, we have also shown that our genomic-based predictors can 

also be applied to formalin-fixed, paraffin-embedded (FFPE) samples which are much more 

prevalent in the clinical setting. However, we do realize the limitations of our study. First, in 

utilizing the NCI-60 cell lines as our training set, there were only two colon cancer cell lines 

that were classified as sensitive to oxaliplatin and no colon cancer cell lines that were 

classified as resistant to oxaliplatin. This raises the question as to whether or not a more 

robust colorectal cancer oxaliplatin sensitivity predictor could be generated if only colorectal 

cancer cell lines are used. To attempt this, we treated 25 colorectal cancer cell lines with 

oxaliplatin but found that there was only a 10 fold difference in oxaliplatin IC50s between 

the most sensitive and most resistant cell lines (data not shown), which is consistent with 

another published report (31). Furthermore, when attempting to develop an oxaliplatin 

sensitivity signature from these colorectal cancer cell lines, this signature was not able to 

predict response to oxaliplatin in the PDCCEs (data not shown). The discrepancy between 

the performance of the NCI-60 oxaliplatin signature and the colorectal cancer cell line 

signature in predicting oxaliplatin response in the PDCCE model is most likely due to the 

greater than 100 fold difference in oxaliplatin IC50 values in the NCI-60 cell lines as 

opposed to the 10 fold difference in the purely colorectal cancer cell lines, suggesting that in 

order to develop a reliable and accurate chemotherapy sensitivity predictor, the difference in 

sensitivity to a drug must be greater than 2 logs.

Second, we must also be very careful in extrapolating results from a preclinical model to 

potential patient outcome. In our preclinical model, the PDCCEs were only treated for 2.5 

weeks, and outcome was measured by response to drug. Although, there are studies in 

colorectal cancer suggesting that response rate can be a surrogate for survival (37), response 

rate is still not an accepted end-point in clinical trials. Additionally, although single agent 

oxaliplatin is not typically used in the initial treatment of colorectal cancer due to poor 

response rates (2-10%), it must be noted that these trials were mainly small phase II trials 

(38-40). However, given these limitations, we must be careful with interpreting these results 

within a clinical setting.
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Nevertheless, while this only serves as a proof-of-concept study, it is still a crucial first step 

in bringing a predictive biomarker to the clinic. However, before a predictive biomarker can 

become clinically relevant, it must undergo rigorous preclinical testing to gauge its 

accuracy, reliability, and reproducibility. The next crucial step is the retrospective validation 

of our oxaliplatin sensitivity predictor in patient samples, and this must be performed on 

multiple patient samples to further validate the signature's predictive capabilities before it 

can finally be prospectively tested in a clinical trial. Thus, the strength of our study lies in 

the power of our preclinical murine model coupled with gene expression technology to 

identify and test novel combinations of therapeutic agents and also to develop both 

predictive and prognostic biomarkers which can then be systematically brought forth into 

the clinical setting. More importantly, this now lays down the foundation for the 

development and validation of future genomic-based biomarkers in a preclinical model prior 

to clinical assessment.

Finally, the capacity of a genomic-based signature to predict response in preclinical models 

begins to define a strategy for personalized medicine and also presents the ability to identify 

cytotoxic agents that best match individual patients with advanced colorectal cancer. 

Although these strategies will need to be eventually validated in clinical trials, this model is 

the first step in evaluating the performance of genomic-signature-based selection in the 

individualized treatment strategy for patients with metastatic colorectal cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation List

FFPE Formalin Fixed, Paraffin Embedded

LOOP Leave one out performance

PDCCEs Patient Derived Colorectal Cancer Explants

TGI Total Growth Inhibition
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Figure 1. NCI-60 Oxaliplatin Signature Bayesian Regression Heatmap and Leave-One-Out 
Performance
A subset of cell lines that represent the extremes of sensitivity to oxaliplatin were identified 

from the NCI-60 panel. The left panel is the expression plot for genes selected for 

discriminating the oxaliplatin sensitive and resistant cell lines from the NCI-60 set based on 

the expression levels of the 120 genes selected during the Bayesian binary regression 

analysis. Blue represents lowest expression and red highest. Each column represents an 

individual cell line and each row one of the discriminating genes in the oxaliplatin predictor. 

From these 120 genes, phenotype discriminatory power from sample misclassification was 

optimized using leave-one-out performance (right panel). The acuracy of the predictor on 

each samples in the leave-one-out performance are displayed with 95% CI.
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Figure 2. Global Comparison of Human Tumors and Matching PDCCEs
A. PDCCEs and matching human tumors were sectioned on histology slides and stained 

with hemotoxalin and eosin (H&E) to confirm presence of tumor tissue. PDCCE slides were 

also stained for carcinoembryonic antigen (CEA) by immunohistochemistry.

B. Global gene expression from 14 human tumors and matching PDCCEs were estimated 

using RMA and normalized for batch effects using ComBat. After filtering, samples were 

subjected to unsupervised hierarchical clustering using pearson correlation and complete 

linkage. Patient-Derived Colorectal Cancer Explants are prefixed with “PDCCE”.
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C. The R library pvclust was used to determine statistical significance of clusters, with 

Approximate Unbiased (AU) values in red and Bootstrap Probability (BP) values in green. 

Cluster pairs with statistically significant expression correlations (AU, BP > 95%) are boxed 

in blue. From this it was found that 71% (10/14) of samples cluster together with statistical 

significance.
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Figure 3. Metastasis-Derived Colorectal Cancer Explants and Tumor Growth Inhibition Versus 
Predicted Oxaliplatin Sensitivity
A. Displayed is a representative sample from each phenotype, with both saline-treated and 

oxaliplatin-treated PDCCEs, to illustrate differences in oxaliplatin response.

B. In fresh frozen PDCCEs, a Pearson correlation between tumor growth inhibition and 

predicted oxaliplatin sensitivity was found to be statistically significant (p = 0.002). The 

signature was found to have an accuracy of 92.9%.

C. In FFPE PDCCEs, a Pearson correlation between tumor growth inhibition and predicted 

oxaliplatin sensitivity was found to be statistically significant (p = 0.025). The signature was 

found to have an accuracy of 84.6%.
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Table 1

List of NCI-60 Cell Lines in Oxaliplatin Sensitivity Predictor with Corresponding Oxaliplatin Sensitivity 

Values

Cell Line Source GI50 (μM) TGI (μM) LC50 (μM) Classification
a

ADR-RES Ovarian 0.0317 30.4 100 Sensitive

SW-620 Colon 0.0469 83.75 100 Sensitive

RPMI-8226 Leukemia 0.0527 91.2 100 Sensitive

MOLT-4 Leukemia 0.1365 15.63 100 Sensitive

HT29 Colon 0.1754 8.24 72.44 Sensitive

CCRF-CEM Leukemia 0.3499 100 100 Sensitive

HCT-116 Colon 0.3784 100 100 Sensitive

NCI-H460 Lung 0.4355 38.28 100 Sensitive

TK-10 Renal 21.18 73.96 100 Resistant

HOP-92 Lung 25.47 73.96 100 Resistant

NCI-H322M Lung 35.32 100 100 Resistant

HOP-62 Lung 46.13 100 100 Resistant

SK-OV-3 Ovarian 66.22 100 100 Resistant

EKVX Lung 88.72 100 100 Resistant

MDA-MB-231 Breast 100 100 100 Resistant

HS 578T Breast 100 100 100 Resistant

a
Cell lines with a GI50 < 0.5 μM were classified as sensitive; cell lines with a GI50 > 20 μM were classified as resistant.
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Table 2

Patient-Derived Colorectal Cáncer Explants (PDCCEs) with Human Origin and Chemotherapy History

Tumor ID
a Primary Site Metastatic Site

b Neoadjuvant Chemo. Adjuvant Chemo.

CRC007 Colon Liver none FOLFIRI

CRC010 Colon Liver none none

CRC012 Colon Liver none N/A

CRC025 Rectal Lung none XELOX

CRC028 Colon Liver none FOLFOX + Bevacizumab

CRC034 Colon Colon N/A XELOX

CRC039 Colon Liver FOLFOX + Bevacizumab none

CRC054 Colon Lung Xeloda FOLFOX + Bevacizumab

CRC057 Colon Liver none FOLFIRI + Bevacizumab

CRC059 Colon Colon N/A none

CRC067 Colon Liver FOLFOX + Bevacizumab Xeloda + Bevacizumab

CRC075 Colon Liver none FOLFOX + Bevacizumab

CRC102 Colon Liver XELOX + Bevacizumab XELIRI + Bevacizumab

CRC105 Colon Liver FOLFOX none

FOLFOX = Oxaliplatin + 5-FU/Leucovorin

XELOX = Oxaliplatin + Xeloda

FOLFIRI = Irinotecan + 5-FU/Leucovorin

XELIRI = Irinotecan + Xeloda

a
Human tumors were extracted from their respective metastatic sites and implanted into NOD-SCID mice.

b
Tumors labeled as “Colon” in the Metastatic Site column are primary colon tumors.
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Table 3

List of Fresh Frozen PDCCEs with Corresponding Class and Predicted Response

Mouse Explant Tumor Growth Inhibition Identified Classification
a Oxaliplatin Predicted Probability Predicted Response

b

CRC007 0.907 Sensitive 0.826 Respond

CRC010 0.875 Sensitive 0.757 Respond

CRC012 0.486 Resistant 0.127 Non-respond

CRC025 0.969 Sensitive 0.768 Respond

CRC028 0.907 Sensitive 0.701 Respond

CRC034 0.559 Resistant 0.353 Non-respond

CRC039 0.159 Resistant 0.284 Non-respond

CRC054 0.546 Resistant 0.118 Non-respond

CRC057 0.943 Sensitive 0.512 Respond

CRC059 0.214 Resistant 0.262 Non-respond

CRC067 0.578 Resistant 0.332 Non-respond

CRC075 0.694 Sensitive 0.754 Respond

CRC102 0.858 Sensitive 0.863 Respond

CRC105 0.611 Resistant 0.726 Respond

a
Each sample was identified as either resistant or sensitive to oxaliplatin based on the TGI cutoff of 0.665.

b
Predicted response to oxaliplatin was determined by the oxaliplatin predicted probability cutoff of 0.5.
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