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Segmentation and Image Analysis 
of Abnormal Lungs at CT: Current 
Approaches, Challenges, and 
Future Trends1

The computer-based process of identifying the boundaries of lung 
from surrounding thoracic tissue on computed tomographic (CT) 
images, which is called segmentation, is a vital first step in radio-
logic pulmonary image analysis. Many algorithms and software 
platforms provide image segmentation routines for quantification 
of lung abnormalities; however, nearly all of the current image 
segmentation approaches apply well only if the lungs exhibit mini-
mal or no pathologic conditions. When moderate to high amounts 
of disease or abnormalities with a challenging shape or appear-
ance exist in the lungs, computer-aided detection systems may 
be highly likely to fail to depict those abnormal regions because 
of inaccurate segmentation methods. In particular, abnormali-
ties such as pleural effusions, consolidations, and masses often 
cause inaccurate lung segmentation, which greatly limits the use 
of image processing methods in clinical and research contexts. In 
this review, a critical summary of the current methods for lung 
segmentation on CT images is provided, with special emphasis 
on the accuracy and performance of the methods in cases with 
abnormalities and cases with exemplary pathologic findings. The 
currently available segmentation methods can be divided into five 
major classes: (a) thresholding-based, (b) region-based, (c) shape-
based, (d) neighboring anatomy–guided, and (e) machine learn-
ing–based methods. The feasibility of each class and its shortcom-
ings are explained and illustrated with the most common lung 
abnormalities observed on CT images. In an overview, practical 
applications and evolving technologies combining the presented 
approaches for the practicing radiologist are detailed.
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Computed tomography (CT) is a vital diagnostic modality widely 
used across a broad spectrum of clinical indications for diagnosis and 
image-guided procedures. Nearly all CT images are now digital, thus 
allowing increasingly sophisticated image reconstruction techniques 
as well as image analysis methods within or as a supplement to picture 
archiving and communication systems (1). The first and fundamental 
step for pulmonary image analysis is the segmentation of the organ of 
interest (lungs); in this step, the organ is detected, and its anatomic 
boundaries are delineated, either automatically or manually (2). Errors 
in organ segmentation would generate false information with regard to 
subsequent identification of diseased areas and various other clinical 
quantifications, so accurate segmentation is a necessity.

The purpose of this article is to review and explain the capabilities 
and performance of currently available approaches for segmenting 
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delineation refers to a low-level process; and it is 
well known that humans are superior to computers 
at performing high-level vision tasks (3–6) such as 
object recognition. On the other hand, computa-
tional methods are better for low-level tasks such 
as object delineation and finding the exact spatial 
extent of the object (3,4,7). Image segmentation 
in this high- to low-level hierarchy is a combina-
tion of recognition and delineation steps (8). This 
hierarchical relation between the object recognition 
and object delineation steps is illustrated with an 
example of a pulmonary CT image and its segmen-
tation (Fig 1). Note that in the object recognition 
step (Fig 1a), the left and right lung fields are iden-
tified through user interaction (ie, a high-level task); 
and in the object delineation step (Fig 1b), user-
provided information is processed to find the exact 
boundary of the lung fields (ie, a low-level task).

Because in vivo image analysis of lung diseases 
has become a necessity for clinical and research 
applications, it is important for radiologists to 
become familiar with the opportunities and chal-
lenges involved in automated segmentation of 
lungs on CT images. Because of recent technical 
advances in radiology and informatics, it may even 
be possible in the near future for radiologists to 
quantitatively assess disease severity as a percent-
age of total lung volume, which may influence how 
radiologists characterize the extent, severity, and 
morphologic evolution of the disease with longitu-
dinal CT examinations (9).

Segmentation of lung fields is particularly 
challenging because differences in pulmonary 
inflation with an elastic chest wall can create 
large variability in volumes and margins when at-
tempting to automate the segmentation of lungs. 
Moreover, the presence of disease in the lungs 
can interfere with software attempting to locate 
lung margins. For example, a consolidation along 
the pleural margin of the lungs may generate an 
erroneous delineation in which the consolidation 
is treated as outside the lungs because its attenu-
ation characteristics are similar to other aspects 
of the soft tissue of nearby anatomic structures.

Historically, nearly all image segmentation 
approaches for lungs functioned well only with 
absent or minimal lung pathologic conditions. 
Those segmentation methods have been shown to 
be effective in the calculation of lung volume and 
the initiation of computer-aided detection systems 
(10), which is considered in a wide range of clini-
cal applications (10–21). However, those segmen-
tation methods fail to perform efficiently when 
a pathologic condition or abnormality is present 
in moderate to marked lung volumes or dem-
onstrates complex patterns of attenuation (11–
13,16–18). For example, cavities and consolida-
tion can lead to inaccurate boundary identification 

lungs with pathologic conditions on chest CT im-
ages, with illustrations to provide radiologists with 
a better understanding of potential choices for 
decision support in everyday practice. First, object 
segmentation is defined and explained, followed 
by summaries of the five major classes of lung 
segmentation: (a) thresholding-based, (b) region-
based, (c) shape-based, (d) neighboring anatomy–
guided, and (e) machine learning–based methods. 
Then hybrid approaches for generic lung segmen-
tation in clinical practice are covered, as well as 
methods for evaluating the efficacy of segmenta-
tion. Finally, the current and future use of segmen-
tation software for clinical diagnosis is discussed.

What Is Object Segmentation?
The aim of medical image segmentation is to ex-
tract quantitative information (eg, volumetric data, 
morphometric data, textural patterns–related in-
formation) with regard to an organ of interest or a 
lesion within the organ. In general, a segmentation 
problem can be considered as consisting of two 
related tasks: object recognition and object delinea-
tion. Object recognition is the determination of the 
target object’s whereabouts on the image or its lo-
cation, whereas object delineation draws the object’s 
spatial extent and composition. Although object 
recognition is known as a high-level process, object 

TEACHING POINTS
 ■ The aim of medical image segmentation is to extract quanti-

tative information (eg, volumetric data, morphometric data, 
textural patterns–related information) with regard to an organ 
of interest or a lesion within the organ. In general, a segmenta-
tion problem can be considered as consisting of two related 
tasks: object recognition and object delineation. Object recog-
nition is the determination of the target object’s whereabouts 
on the image or its location, whereas object delineation draws 
the object’s spatial extent and composition. Although object 
recognition is known as a high-level process, object delineation 
refers to a low-level process; and it is well known that humans 
are superior to computers at performing high-level vision tasks 
such as object recognition. On the other hand, computational 
methods are better for low-level tasks such as object delinea-
tion and finding the exact spatial extent of the object.

 ■ We present five major classes of lung segmentation methods: 
(a) thresholding-based, (b) region-based, (c) shape-based, 
(d) neighboring anatomy–guided, and (e) machine learning–
based methods.

 ■ Automated segmentation techniques should complement 
the radiologist’s work flow by saving time in measuring, se-
lecting, and classifying various findings.

 ■ In fact, computer-aided detection systems are not intended to 
replace radiologists but rather to be complementary to their 
diagnostic tasks. Indeed, the radiologist can override descrip-
tions output by automated systems, thus having the last say 
in the diagnostic process.

 ■ Pattern recognition and machine learning techniques provide 
decision support for a vast spectrum of lung abnormalities.
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Figure 2. Inaccurate boundary identification. Axial (a, b) and coronal (c, d) CT images show that cavities and con-
solidation (arrow in a, c) can lead to inaccurate segmentation (red contours in b, d).

a few attempts at generic segmentation methods 
have been made so far (20,25,26). This fragmenta-
tion of available solutions contributes to the gap 
between clinical practitioners, who are the end 
users of radiologic image analysis techniques, and 
the informatics experts.

Herein, we intend to bridge this gap between 
practicing radiologists and informatics experts 
by first briefly providing an overview of the 

(Fig 2). Similarly, the presence of pneumothorax 
or pleural effusion on a CT image can greatly dis-
tort the results of automated segmentation, hence 
leading to incorrect quantification (Fig 3).

Currently, no single segmentation method 
achieves a globally optimal performance for all 
cases. Although specialized methods (22–24) 
that are designed for a particular subset of abnor-
malities have been shown to be successful, only 

Figure 1. Example of 
the tasks of object rec-
ognition (a) and object 
delineation (b) for the 
left lung (green) and 
right lung (red) on a 
coronal CT image.
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Figure 3. Distorted automated segmentation. Axial (a, b) and coronal (c, d) CT images show that pleural effusions 
(arrow in a, c) can lead to inaccurate segmentation (red contours in b, d).

current lung segmentation methods on CT im-
ages. Then, after providing a description and 
the background of object segmentation and 
the Fleischner terminology for lung pathologic 
conditions, we present five major classes of lung 
segmentation methods: (a) thresholding-based, 
(b) region-based, (c) shape-based, (d) neighbor-
ing anatomy–guided, and (e) machine learning–
based methods. Our focus in this review is to 
succinctly present the advantages and disadvan-
tages of these approaches in terms of segmenta-
tion accuracy, ease of use, and computational 
cost (ie, memory or processor requirements, 
time needed for producing outputs). Therefore, 
a full-length description of each method is be-
yond the scope of this article, and interested 
readers are referred to relevant literature with 
the reference citations. Furthermore, we limit 
our review to the lung segmentation methods, 
not the quantification and detection of lung 
abnormalities, which can be a topic of review of 
computer-aided detection systems in lung dis-
eases. However, the relationship between these 

two tasks of segmentation and quantification 
and also the necessary background on quantifi-
cation and detection of lung abnormalities are 
provided in the article.

Drawings and diagrams are used throughout 
the article to illustrate a wide range of pulmonary 
abnormalities. It is important to mention that to 
achieve the best segmentation results, most tech-
niques are used in combination with one another 
and may also include some primitive pre- or post-
processing steps to remove noise and other artifacts; 
the discussion of such combinations, however, is 
outside the scope of this article. The intent here is to 
help clinicians make the right choice when selecting 
image segmentation methods for pulmonary image 
analysis, without delving into algorithmic details 
about the methods’ functionality. Manual delinea-
tion techniques and assistive-manual methods are 
not discussed; instead, we focus only on fully auto-
mated methods, with a particular emphasis on the 
segmentation of lungs with pathologic conditions. 
However, it should be kept in mind that automated 
segmentation techniques should complement the 
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radiologist’s work flow by saving time in measuring 
(27), selecting, and classifying various findings. Au-
tomated segmentation techniques are not a substi-
tute for the radiologist’s clinical interpretations.

Image Segmentation  
Methods for Abnormal Lungs

Before describing the lung segmentation meth-
ods and evaluating their performance in cases 
with different pathologic conditions, it is per-
tinent to introduce common pathologic imag-
ing patterns encountered on pulmonary CT 
images, to fully appreciate the performance of 
segmentation methods, as well as the difficulty 
of the problem with respect to the particular 
type and location of the abnormal imaging pat-
terns. We refer our readers to the Fleischner 
Society glossary of commonly observed abnor-
mal imaging patterns on lung CT images by 
Hansell et al (28).

We describe the most widely used techniques 
for lung segmentation on CT images and classify 

these techniques into five major classes. For each 
class, we summarize the advantages and disad-
vantages of the methods and provide example 
applications for which the methods have been 
shown to be successful (Table 1). In the subse-
quent subsections, the details of each segmenta-
tion class are explained.

Thresholding-based Methods
Thresholding-based methods are the most basic 
and well-understood class of the segmentation 
techniques and are commonly used in most pic-
ture archiving and communication systems and 
third-party viewing applications because of their 
simplicity (29). Thresholding-based methods 
(2,30,31) segment the image by creating binary 
partitions that are based on image attenuation 
values, as determined by the relative attenua-
tion of structures on CT images. A thresholding 
procedure attempts to determine attenuation 
values, termed threshold(s), that create the parti-
tions by grouping together all image elements 

Table 1: Five Major Classes of CT Lung Segmentation Methods

Lung Segmen- 
tation Class Application Advantages Disadvantages

Thresholding-based  
methods

Identification and segmen-
tation of well-defined 
normal structures and 
isolated lesions such as 
tumors, cavities, and 
nodules

Basic, intuitive, fast, least ex-
pensive computationally

Fails to deal with attenu-
ation variations, fails to 
categorize pathologic 
classifications

Region-based  
methods

Normal structures, regions 
with minimal noise, 
minimal abnormality

Fast, works well with more-
subtle attenuation varia-
tions

Fails to segment regions 
with moderate to high 
levels of abnormality or 
when pathologic con-
dition abuts adjacent 
structures

Shape-based  
methods (atlas- 
based and model- 
based methods)

Abnormal pathologic con-
ditions that defy segmen-
tation of normal anatomy

For a well-conceived repre-
sentative template (atlas 
or model), segmentation 
accuracy can be high

Representative training fea-
tures difficult to create, 
computationally expen-
sive, performance highly 
dependent on the feature 
set and training data

Neighboring  
anatomy–guided  
methods

Identification and classifi-
cation of pleural effu-
sions or atelectasis

Works well for cases in which 
attenuation-based matrices 
fail

Computationally expen-
sive, severe pathologic 
condition could throw it 
off (eg, opacification of 
entire hemithorax)

Machine learning– 
based methods

Delineation of pathologic 
conditions with signature 
textured patterns such as 
GGO, consolidation, and 
crazy-paving pattern

Works well to identify ill-
defined diffuse pathologic 
conditions, categorizes 
pathologic classifications 
such as GGO, consolida-
tion, and septal line

Computationally expen-
sive, no good separation 
among classes of patho-
logic conditions

Note.—GGO = ground-glass opacity.
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with attenuation values that satisfy the thresh-
olding interval. The thresholding-based process 
is shown in a flowchart (Fig 4).

Thresholding-based methods are simple and 
effective for obtaining segmentations from images 
with a well-defined contrast difference among the 
regions. Indeed, these methods usually perform 
better on CT images (10,11,26,32–39), com-
pared with images obtained with other imaging 
modalities, because of the fact that the attenua-
tion values, measured in Hounsfield units, have 
well-defined ranges for different tissue compo-
nents on CT images. However, thresholding-
based techniques do not typically take into 
account the spatial characteristics of the target 
objects (lungs). Moreover, these techniques are 
generally sensitive to noise and imaging artifacts, 
compared with the other classes of lung segmen-
tation methods. The presence of abnormal imag-
ing patterns affects this class of thresholding-
based segmentation methods more than other 
methods because no spatial information and vari-
ability are considered during the segmentation 
process.

An overview of the thresholding-based seg-
mentation method is shown in Figure 5, in which 
the upper and lower limits of the thresholding 
interval allow the selection of lung regions. Note 
that appropriate selection of the threshold param-
eters may be enough for segmenting lungs with 
minimal or no pathologic conditions because of 
the stable attenuation values of the air and lung 
fields. On the other hand, it may be difficult to 
include pathologic areas within the lung regions 
with thresholding-based approaches because 

the thresholding interval is often set to exclude 
adjacent tissues from lung fields, but pathologic 
regions (ie, consolidation) may share similar at-
tenuation values to those of soft tissues. Figure 
6 shows two examples in which pleural effusions 
and consolidations exist in the lung, and thresh-
olding-based segmentation failed to delineate 
the lung boundaries correctly because of these 
abnormal imaging markers. Often, various mor-
phologic operations or a manual false-positive 
removal process may be needed to correct the 
resulting segmentation. In terms of efficiency, 
thresholding-based methods are the fastest im-
age segmentation methods, often taking only a 
few seconds, and yield completely reproducible 
segmentation.

Region-based Methods
The main postulate of the region-based segmen-
tation methods relies on the fact that neighbor-
ing pixels within one region have similar values 
(40). The best-known method of this class of 
segmentation methods is probably the region-
growing method, in which the general procedure 
is to compare one pixel to its neighboring pixels, 
and if a predefined region criterion (ie, homo-
geneity) is met, then the pixel is said to belong 
to the same class as one or more of its neighbors 
(30,40–44). Although a predefined region crite-
rion is critical in the region-growing method, the 
region-growing methods are more accurate and 
efficient, compared with the thresholding-based 
segmentation methods, because they include 
“region” criteria as well as spatial information 
(20,44). For applications in lung segmentation on 
CT images, region-based segmentation methods 
(particularly region growing) have been found 
to be useful for their efficiency and robustness 
in dealing with attenuation variations (caused by 
mild pathologic conditions and imaging artifacts) 
by reinforcing spatial neighborhood information 
and a regional term (20). Diagrams of the general 
approach used for region-based segmentation are 
shown in Figure 7.

In addition to region growing, a number of 
other region-based segmentation methods have 
been introduced in the literature, including the 
watershed transform (45), graph cuts (46), ran-
dom walks (47), and fuzzy connectedness (48). 
In watershed segmentation, the main idea un-
derlying the method comes from geography; the 
idea is that of a landscape or topographic relief 
that is flooded by water, with watersheds being 
the division lines of the domains of attraction of 
rain falling over the region (45). Although wa-
tershed transformation is computationally fea-
sible and therefore can be considered efficient, 
it has the drawback of an oversegmentation 

Figure 4. Flowchart of a 
thresholding-based method 
of lung segmentation. The 
attenuation numbers (in 
Hounsfield units) of the pix-
els are used to segment the 
lungs. False-positive find-
ings and artifacts may still 
occur with this approach; 
therefore, morphologic op-
erations can be conducted 
afterward.
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Figure 5. Schematic diagram providing an overview of the thresholding-based approach to lung segmentation. Graphs (a, b) show 
how the upper and lower threshold values (shown with red vertical lines in a, b) in Hounsfield units are adjusted to annotate the lungs 
on CT images (c, d). The suboptimal interval of attenuation in a results in excluded lung parenchyma (black regions in c) from the 
segmented lung regions (red), in comparison with the better attenuation interval in b, which results in better lung segmentation in d.

problem and hence is a less likely choice for the 
lung segmentation problem.

In contrast to watersheds, the graph-cut 
and the random walk methods of region-based 
segmentation are graph-based segmentation 
methods, and these two are considered glob-
ally optimal segmentations because of higher 
accuracy. Although in the graph-cut method, 
edges and attenuation (or texture) information 
are used to build an energy function to be mini-
mized for the segmentation purpose (46), the 
probability of each pixel is computed according 
to the random walker concept, in which every 
pixel’s random walker first arrives at background 
or foreground cues provided by the users (47). 
Although random walk and graph-cut segmenta-
tion algorithms can be considered as efficient 
and accurate with regard to lung segmentation 
on CT images, these algorithms have not yet 
been shown to be successful when moderate to 
high amounts of pathologic findings exist in the 
lungs. Five well-established region-based seg-
mentation methods are briefly summarized in 
Table 2, along with their most commonly used 
criteria for lung segmentation.

For region-based lung segmentation, the 
“seeded” scheme is commonly applied (Fig 8). In 
such cases, a small patch (seed) that is considered 
to be most representative of the target region 
(lung) is first identified. Seed points are the coor-
dinates of a representative set of voxels belonging 
to the target organ to be segmented, and they 
can be selected either manually or automatically. 
Once the seed points are identified, a predefined 
neighborhood criterion is used to extract the de-
sired region. Different methods feature different 
criteria for determining the lung boundaries. For 
instance, one possible criterion could be to grow 
the region until the lung edge is detected. As an-
other example, region homogeneity can be used 
for convergence of the segmentation (40–44).

Region-based methods can be used for delinea-
tion of airways and pathologic conditions with ho-
mogeneous content such as cavities. With this ability, 
a single segmentation algorithm can be used to de-
pict and quantify multiple organ and suborgan struc-
tures. An example is a single region-based segmenta-
tion approach that is applied to multiple structures in 
pulmonary image analysis: a cavity in the right upper 
lobe, the airways, and the lung fields (Fig 9).
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Figure 6. Inaccurate boundary identification. Blue contours are segmentation results for estimated lung boundaries. CT images show 
two examples of suboptimal results of thresholding-based delineation that are due to pleural effusions (a) and consolidations (b).

may demand further postprocessing, as shown 
in several cases in which region-based methods 
failed to perform well (Fig 10).

Furthermore, seed selection may require man-
ual interactions or other intelligent algorithms to 
be run before the segmentation process, to find an 
appropriate voxel or region to start the delineation 
process (25). Some of the postprocessing opera-
tions can be summarized as follows. For instance, 
to control the parameters of the region-based 
segmentation and remove the inherent noise, im-
ages may be smoothed before the segmentation 
process. In addition, artifact removal can be done 
manually before starting the delineation algorithm. 
Alternatively, to remove artifacts or pathologic 

Figure 7. Diagrams of the general idea of region-based 
segmentation: Region-based segmentation approaches 
start with a seed point and then grow as they add neigh-
boring pixels or voxels to the evolving annotation as long 
as the neighborhood criterion is satisfied. (a) Start of 
growing a region shows initial seed point (black circle) 
and directions of growth (arrows). (b) Growing process 
after a few iterations shows area grown so far (black area), 
current voxels being tested (gray circles), and potential 
directions of further growth (arrows). (c) Final segmenta-
tion (black area).

Region-based segmentation methods serve 
as an efficient tool for extracting homogeneous 
regions such as lungs with no to mild pathologic 
conditions. In comparison with the threshold-
ing-based methods, region-based methods gen-
erate more-precise lung segmentation results 
(13,20,30,49) without causing false positives 
in out-of-body regions with similar attenuation 
values. However, depending on the magnitude 
of noise and the precision of the neighborhood 
criteria, region-based methods can suffer from 
false negatives within the lung region and thus 
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Figure 8. Flowchart of the 
region-based method of lung 
segmentation.

regions near the lungs, it may be more feasible to 
crop out the lung regions from the CT image and 
process the delineation algorithm on the newly 
defined region of interest in which artifacts do not 
exist anymore. Last, but not least, for challenging 
cases such as when nodules or pathologic condi-
tions are near the lung boundary, attenuation 
remapping to the lung region as well as enhanc-
ing the lung boundary with edge detection can be 
useful for accurate segmentation without having 
failures (10–12,26,30,46).

In terms of efficiency, region-based segmenta-
tion methods can be considered efficient because 
the timings (a few seconds to a few minutes) 
and the computational cost reported in the lit-
erature are within the bounds of clinical utility 
(10–12,26,30,46). The repeatability of the region-
based segmentation methods depends on the loca-
tion of the seed points (if seeding-based segmenta-
tion); hence, different region-based methods have 
different robustness for repeatability. For instance, 
the fuzzy connectedness method (48) of image 
segmentation has been shown to be more robust in 
comparison with the graph-cut, random walk, and 
region-growing segmentation methods (48).

Shape-based Methods
Recently, the use of prior shape information about 
anatomic organs such as lungs has gained popular-
ity in medical image segmentation, especially to 
segment organs with abnormalities that cannot be 
annotated by using the standard thresholding-based 
techniques. These shape-based techniques take 
either an atlas-based approach or a model-based 
approach to find the lung boundary. Figure 11 
shows a generic overview of the shape-based lung 
segmentation methods. In this review, we com-
bined model-based and atlas-based methods into a 
broader shape-based class because they both share 
similar algorithmic and semantic details. Further-
more, the advantages and disadvantages of using 
both methods are similar in terms of segmentation 
performance and time efficiency.

Atlas-based Methods.—Atlas-based methods use 
prior shape information about the target organ 
for recognition and delineation. An atlas consists 
of a template CT image and the corresponding 
labels of the thoracic regions. To perform seg-
mentation, the template image is registered to 
the target image; once alignment is completed, 
labels of the atlas are propagated onto the target 
image (Fig 12). It should be noted that registra-
tion (alignment) is a difficult and ill-posed prob-
lem, although many registration methods are 
available with submillimeter accuracy.

Atlas-based methods have been found to be use-
ful in the segmentation of lungs with mild to mod-
erate abnormalities (44,50,51); however, a robust 
representative anatomic atlas is often difficult to 

Table 2: Common Region-based Methods and Their Main Criteria for Lung Segmentation on CT Images

Region-based Method Lung Segmentation Criteria

Region growing Average attenuation and variance used to guide the growing process
Fuzzy connectedness Distance between voxels, homogeneity of the region, and shape information of the 

region of interest
Graph cut Neighborhood coherence and local attenuation gradient information used to find opti-

mal boundary between regions
Random walk Neighborhood coherence, probability of voxels belonging to the local regions, and local 

attenuation gradient information
Watershed Distance between voxels and local attenuation gradient information used to find seg-

mentation boundary of the object of interest
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create because of large intersubject variabilities as 
well as differences related to the pathologic condi-
tion. For example, cases of scoliosis may be difficult 
to analyze if the atlas was created by using a popula-
tion of normal spines (Fig 13).

Model-based Methods.—Model-based methods 
use prior shape information, similar to atlas-
based approaches; however, to better accom-
modate the shape variabilities, the model-based 
approaches fit either statistical shape or appear-
ance models of the lungs to the image by using 
an optimization procedure. The aim in these 
models is to cope with the variability of the target 
organs that are being considered. Basically, the 
expected shape and local gray-level structure of a 
target object in the image are used to derive the 
segmentation process in such methods. The de-

Figure 9. Example in which a single region-based 
segmentation approach was used to delineate multiple 
pulmonary structures. On a given CT image (a), the 
lung fields (green in d), airways (light blue in d), and 
cavity regions (blue in b, c) were all segmented by us-
ing the same region-based segmentation approach. On 
the final segmentation image (d), all structures were de-
picted together, along with multiple cavities (red).

lineation is finalized when the model finds its best 
match for the CT data to be segmented.

The model-based approach naturally belongs 
to the top-down strategy in which recognition is 
followed by delineation. Unlike other low-level 
approaches such as thresholding- and region-
based approaches, model-based methods con-
sider both the global and local variation of the 
shape and texture; therefore, these methods are 
considered effective in handling the abnormal 
lung segmentation problem. In particular, be-
cause of the probabilistic nature of measuring 
variation in the training step in which expert 
knowledge is captured in the system, model-
based methods work well in handling mild to 
moderate abnormalities and anatomic variability. 
On the other hand, similar to atlas-based ap-
proaches, a representative prior model covering 
diverse demographics is usually difficult to create. 
Finally, as a well-known deficiency of the model-
based approaches, segmentation failure may 
be inevitable if the model is not initiated close 
enough to the actual boundary of the lungs.

Snakes, Active Contours, and Level Sets.—Bound-
ary-based image segmentation methods such as 
snakes (52), or active contours (44), and level sets 
(53) are considered in the category of shape-based 
segmentation methods in this review. These algo-
rithms are extensively used to locate object bound-
aries when boundary curves are defined within an 
image domain that can move under the influence 
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of internal forces coming from within the curve 
itself and external forces computed from the image 
data. The internal and external forces are defined 
so that the boundary curves will conform to an 
object boundary or other desired features within 
an image (44,52,53). With regard to lung segmen-

tation of CT images in the literature, only a few 
groups of investigators have used snakes and level 
sets (44,53). Although these methods are desirable 
and efficient when their points of initialization are 
located near the correct boundary, the method 
often fails when initialization of the algorithm is 

Figure 10. Potential failures of region-based segmentation methods. Six examples of potential failures of region-based segmentation 
methods show lung boundaries (red contours) and areas in which the algorithms fail (arrows). In particular, the structures that are ex-
cluded from lung segmentation are vascular structures (a, d), consolidations (b, c, f), and a pleural effusion (e). Compare with Figure 
16, which shows optimal segmentation in similar cases with the use of the neighboring anatomy–guided segmentation method.
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Figure 11. Generic overview flow-
chart of shape-based approaches to lung 
segmentation.

Figure 12. Atlas-based approach to lung segmentation. Atlas-based approaches often start with a template of the target 
organ (a). An image registration algorithm is then used to align the template to the target image such that the template can 
be transformed geometrically into the target image to identify lung tissues (b).

not so close to the actual boundaries. Moreover, 
when a pathologic condition exists inside the lung 
fields, it is easy for those methods to converge into 
an incorrect lung boundary, or boundary curve 
evolution may stop in the pathologic areas without 
converging into the lung boundaries (44,52,53).

The repeatability of the shape-based segmen-
tation methods is the least robust among the five 
major classes of lung segmentation because most 
of the shape-based segmentation methods require 
a registration framework or localization of the 
model into the target image, and the initial posi-
tion of the model or registration parameters can 

significantly affect the delineation results (3). The 
efficiency of the shape-based segmentation meth-
ods relies on the efficiency of the registration or 
localization algorithms, which often take more 
time than what is desired routinely in clinics (13).

Neighboring  
Anatomy–guided Methods
Neighboring anatomy–guided methods use the spa-
tial context of neighboring anatomic objects of the 
lung (eg, rib cage, heart, spine) for delineating lung 
regions with optimal or near-optimal accuracy. The 
basic idea behind the use of neighboring organs for 
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Figure 14. Schematic diagrams provide an overview of the neighboring anatomy–guided method of segmentation. 
With this approach, individual organs can be identified on the basis of their expected locations.

Figure 13. Example of a limitation of shape-based methods of lung segmentation. Because shape-based segmenta-
tion approaches assume a certain anatomic structure for the lungs, pathologic lungs with certain shape changes can 
be mis-segmented. In a severe case of scoliosis, although region- and thresholding-based methods performed well (b), 
a failure is observed with the shape-based method (a), with the boundary of the right lung (green contour) extending 
over the spine (arrow at left) and with the left lung boundary (green contour) spanning the medial left upper portion 
of the abdomen (arrow at right).

lung segmentation is to restrict the search space of 
the optimal boundary search and remove some of 
the false-positive findings automatically from the 
suboptimal segmentations. Once it is known, for 
instance, where the heart and rib cage are, then it is 
easier for a segmentation algorithm not to leak into 
those territories (Fig 14).

These neighboring anatomy–guided methods 
are designed to handle cases in which, because of 
the presence of extreme abnormality or an imag-
ing artifact, the lung regions cannot be delineated 
readily. Information on the neighboring anatomic 
structures is foreseen to have a great potential in 
lung image segmentation because the neighboring 
object interactions in the lung region are much 
stronger and are predictable. The flowchart shown 
in Figure 15 is an overview of the core concept in 

neighboring anatomy–guided lung segmentation. 
Note that, similar to model-based approaches, a 
prior model is necessary for the lungs and their 
neighboring structures.

Neighboring anatomy–guided methods can 
be extremely helpful in the segmentation of lung 
regions in which discriminative attenuation and 
texture information is found to be either not 
available or not useful for annotation purposes 
(3,25). For example, a large amount of pleural 
fluid or extensive atelectasis can cause incor-
rect segmentation and measurements; however, 
the neighboring anatomy–guided segmentation 
approach can deliver optimal or near-optimal 
segmentation results by considering the rib cage, 
heart, liver, and other soft tissues adjacent to the 
lung parenchyma (Fig 16).
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Figure 15. Flowchart of the neighboring anatomy–guided 
method of lung segmentation.

Because of the success of neighboring anatomy–
guided segmentation approaches in segmenting 
challenging cases pertaining to lung abnormali-
ties, much work is currently in progress in this 
area, and more developed updates of neighboring 
anatomy–guided segmentation approaches are 
currently evolving (25,54). Despite the fact that 
these neighboring anatomy–guided methods are 
accurate, their performance greatly depends on 
the assumption of not having any abnormality 
in the neighboring structures of the lung (eg, rib 
cage, heart, spine), which can be difficult to guar-
antee if there are multifocal areas of disease in 
organs adjacent to pathologic lung regions. Fur-
thermore, the efficiency of the methods greatly 
depends on the amount of pathologic findings 
existing in the lung (the larger the pathologic 
area, the slower the algorithm).

Machine Learning–based Methods
Machine learning–based methods, as the name 
implies, are concerned with the construction of 
systems that can learn from the data. Through 
exposure to data, the algorithm adjusts its param-
eters (termed features) for identifying structures 
and disease patterns. In machine learning–based 
methods, one aims to predict the lung abnormali-
ties on the basis of the features extracted from the 
data and to include these features in the segmen-
tation process so that the system discriminates 
the correct lung boundaries. Pattern recognition 
and machine learning techniques provide decision 
support for a vast spectrum of lung abnormalities. 
In practice, these methods use a set of train-
ing data containing observations, called image 

patches (ie, small image blocks), and their ana-
tomic labels (eg, normal lung tissue, pathology, 
neighboring soft tissue). Figure 17 shows some 
of these patches pertaining to different abnormal 
classes; each patch is used along with its class la-
bel. The training data are then used to determine 
to which anatomic class a new, never-seen-before 
observation belongs. Each individual observation 
is analyzed with a set of quantifiable properties 
that are termed features. The selection of the most 
appropriate set of features depends on the label-
ing task at hand and is an area of active research.

The simplest feature is the image attenuation 
itself. However, more sophisticated methods 
for complex image processing tasks have been 
developed (2,25,26). For instance, Hu et al (2) 
combined a thresholding-based approach with a 
dynamic programming approach to separate right 
and left lung fields, and this process was followed 
by a sequence of morphologic operations to 
smooth the irregular boundaries along the medi-
astinum. As another example, Hua et al (54) used 
a graph-search algorithm by combining attenu-
ation, gradient, boundary smoothness, and rib 
information for segmentation of diseased lungs. 
More recently, Mansoor et al (25) developed 
an approach in which machine learning–based 
algorithms were used to detect a large spectrum 
of pathologic conditions, and this approach was 
combined with region-based segmentation of 
lung fields and neighboring anatomy–guided seg-
mentation correction processes.

The basic steps of the machine learning–based 
methods are summarized in Figure 18. The clas-
sification algorithm examines each pixel or voxel 
to determine its class label; therefore, machine 
learning–based methods are often called pixel- or 
voxel-based classification methods. Although it 
may be computationally expensive to assess all of 
the pixels for identification of pathologic condi-
tions, the high accuracy of the classification rates 
and the existence of parallel computing and pow-
erful workstations make machine learning–based 
segmentation methods attractive (12).

Paradoxically, although machine learning–based 
strategies are often developed for pulmonary com-
puter-aided detection systems for the identification 
of particular lung abnormalities, all of those meth-
ods require the lungs to be segmented before the 
identification task. However, the segmentation of 
lungs is erroneous if machine learning–based meth-
ods are not used for separating the abnormal tissue 
from normal tissues. On CT images, abnormal 
imaging patterns can be successfully detected with 
machine learning–based methods and be included 
in the final delineation of the lungs (Fig 19).

Machine learning–based methods are useful for 
detecting and quantifying pathologic conditions; 
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Figure 16. Examples of cases (large amounts of pleural fluid and extensive atelectasis) in which neighboring 
anatomy–guided segmentation methods produced successful lung delineations (red contours) on axial (a–c) and  
coronal (d–f) CT images.

hence, these methods are considered to be the core 
part of the lung segmentation process as it examines 
every single voxel on the CT image and results in 
both lung and pathologic areas in the same frame-
work (55–59). However, the main disadvantage of 
machine learning–based approaches is that depend-
ing on the complexity of the feature set, these ap-
proaches are computationally expensive and usually 
cannot model structural information (such as global 
shape or appearance information of the lungs) be-

cause only small patches are considered as features 
to be submitted into the classifiers. Another disad-
vantage is the difficulty in extracting a representa-
tive training set that spans anatomic and physiologic 
variabilities among different subjects while not 
overfitting the classification model. Machine learn-
ing–based methods are reproducible and therefore 
highly desirable. However, machine learning–based 
methods have the least efficiency among the five 
major classes of lung segmentation because of the 
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Figure 17. Image patches. The five most commonly observed and used normal and abnormal imaging patterns are shown as image 
patches. Because machine learning–based classification algorithms often require supervised training for abnormalities, image patches 
(ie, small image blocks) will be extracted and used in the determination of normal and abnormal classes for the classification process 
during the lung segmentation. GGO = ground-glass opacity.

pixel-by-pixel assessment of class labels (pathologic 
conditions vs lungs) (60–64).

Hybrid Approaches to Generic  
Lung Segmentation in Clinical Practice

In consideration of the anatomic variabilities in 
the clinical data, no single segmentation method 
can provide a generic solution to be used in clini-
cal practice. Therefore, recently developed practi-
cal applications have concentrated on intelligently 
concatenating multiple segmentation strategies 
to provide a global generic solution. For instance, 
Mansoor et al (25) proposed a novel pathologic 
lung segmentation method that couples region-
based approaches with neighboring anatomy 
constraints and a machine learning–based pa-
thology recognition system for the delineation 
of lung fields. The proposed framework works 
in multiple stages; during stage 1, a modified 
fuzzy connectedness segmentation algorithm (a 
region-based segmentation approach) is used to 
perform the initial lung parenchyma extraction. 

During the second stage, texture-based local 
features are used to segment abnormal imaging 
patterns (consolidations, ground glass, inter-
stitial thickening, tree-in-bud pattern, honey-
combing, nodules, and micronodules) that are 
missed during the first stage of the algorithm. 
This refinement stage is further complemented 
by a neighboring anatomy–guided segmenta-
tion approach to include abnormalities that 
are texturally similar to neighboring organs or 
pleura regions. Therein, texture means spatial 
arrangement of an image or repeated patterns 
in a region of image. Although hybrid methods 
are feasible when varying numbers or types of 
abnormalities exist in the lungs, creating the 
class labels in the machine learning part of 
the hybrid methods, as well as their parameter 
training, is not trivial. In another example, Hua 
et al (54) used a graph-search algorithm to 
find anatomic constraints such as ribs and then 
constrained the graph-cut algorithm for finding 
the lung boundary. There are also initial pre-
processing steps in which possible pathologic 
regions are detected and included in the seg-
mentation. However, this approach may require 
accurately defined seed sets for identifying 
background and foreground objects.

Methods to Evaluate  
the Efficacy of Segmentation

For quantitative evaluation of image segmenta-
tion, three factors should be considered: preci-
sion (reliability), accuracy (validity), and ef-
ficiency (viability). Assessing precision requires 
segmentation tasks to be repeated, and variation 
is reported through a statistical test. Accuracy, 
on the other hand, denotes the “degree” to 

Figure 18. Flowchart of machine 
learning–based lung segmentation. 
First, a model is built by using features 
extracted from reference image data 
(see Fig 17). Then, for any given test 
image, newly extracted features are 
used to define the pixel classes: patho-
logic condition or normal.
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Figure 19. Examples of successful machine learning–based 
segmentation. Machine learning–based methods can identify 
various abnormal imaging patterns (green areas), such as con-
solidation and an atelectatic segment of the lingula (a), areas of 
ground-glass opacity (b), brochiectatic air bronchograms (c), 
patchy consolidation and a cavity (d), and consolidation and 
crazy-paving pattern (e). Because of these successful depictions, 
the final lung delineations were not erroneous.

the literature (66). The Dice similarity coeffi-
cient (DSC) is given as

( ) GT test
GT test

GT test

| |
DSC , 2

| |
V V

V V
V V

=
+
∩ ,

where VGT is the reference standard segmentation 
(ground truth), Vtest  is the segmentation performed 
by using any of the methods, |•| is the size op-
erator, and ∩ is the intersection operator, which 
determines the overlapping area between the refer-
ence standard and the test segmentation.

In addition to region-based measurements, 
boundary-based measurements such as the 
Haussdorf distance (66) can be used for a comple-
mentary evaluation metric to the Dice similarity 
coefficient for measuring boundary mismatches. 

which segmentation agrees with the ground 
truth (reference standard or surrogate truth). 
To assess efficiency, both the computational 
time and user time for algorithm training and 
execution should be measured (65). Although 
the individual significance of these three meth-
ods may change depending on the application, 
segmentation methods must be compared by 
using all three factors. For accuracy assessment, 
a need exists for a ground truth or reference 
standard that is often obtained through manual 
drawings of the boundary of target organs by 
expert observers. Because automated segmenta-
tion methods are aiming to at least approximate 
human manual segmentation, the use of expert 
delineation of an object as a reference standard 
is widely accepted in the image processing 
literature.

The two most commonly used ideas for de-
termining the accuracy of segmentation are  
(a) region-based measurement (spatial overlap) 
and (b) boundary-based measurement. Several 
metrics exist for spatial overlap, but the Dice 
similarity coefficient is the most widely used in 
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Figure 20. Schematic diagrams of sensitivity and specificity metrics with color-coded condition–test outcome pairs: true positive 
(TP) (green area), true negative (TN) (white area), false positive (FP) (yellow area), and false negative (FN) (blue area). (a) Sensitivity = 
94.69%; specificity = 94.19%. (b) Sensitivity = 72.99%; specificity = 78.16%. VGT = reference standard segmentation (ground truth), 
Vtest = lung segmentation (brown area) obtained by using any of the segmentation methods.

The Haussdorf distance determines how far apart 
two boundaries are from each other and ana-
lyzes the shape similarities of the two methods. 
It should be noted that although many authors 
report only the Dice similarity coefficient or the 
total segmentation volume values, the use of the 
Dice similarity coefficient alone is not sufficient 
for determining the accuracy of a segmentation 
algorithm. For instance, it is highly possible for a 
segmentation method to produce the same volume 
as the volume of the reference standard, but the 
method may have sensitivity less than 50% (ie, 
segmentation leaks into nonobject territory with 
some amount of volume, but still the same volume 
of reference standard can be obtained). Figure 20 
exemplifies this problem, such that Vtest1 is closer 
to the reference standard than Vtest2, given that the 
ground truth is VGT, although Vtest1, Vtest2, and VGT 
have identical volumes.

Sensitivity and specificity are yet other statisti-
cal quantifiers for the binary classification test of 
evaluating the segmentation accuracy. Sensitivity, 
or the true-positive rate, measures the ratio of 
actual positives that are correctly identified (also 
known as true positives, or TP) to all positives, P 
(ie, the sum of the correctly identified positives 
[TP] and the incorrectly identified negatives); the 
incorrectly identified negatives are also known as 
false negatives (FN). Sensitivity is calculated as 
follows: Sensitivity = TP/P = TP/(TP + FN).

Specificity (sometimes known as the true-
negative rate) measures the ratio of the negatives 
that are correctly identified (also known as true 
negatives, or TN) to all negatives (N). Specific-
ity is calculated as follows: Specificity = TN/N 
= TN/(TN + FP), where FP denotes false posi-
tives, or incorrectly identified positives. 

A perfect segmentation would be described 
as 100% sensitive (ie, labeling all pixels belong-
ing to the target object [eg, the lung] correctly) 
and 100% specific (ie, not labeling any voxel 
from the background as belonging to target ob-

ject). Figure 20 uses the same mock example to 
explain sensitivity and specificity.

Efficiency (viability) and precision (reliability) 
are two other metrics that should be reported 
along with accuracy measurements (ie, sensitivity 
and specificity). To assess precision, one needs to 
choose a figure of merit, repeat the segmentation 
considering all sources of variation, and determine 
variations in the figure of merit with statistical 
analysis. To assess efficiency, both the computa-
tional time and user time required for algorithm 
training and for algorithm execution should be 
measured and analyzed. Because precision, ac-
curacy, and efficiency factors have an influence on 
one another, it is suggested that all of these mea-
surements should be reported together (65).

Discussion
The increasing role of software and image 
processing in clinical radiology underpins the 
need for greater awareness among radiologists 
of how software can identify structures and 
lesions and yield quantitative characteristics 
about these objects on the image. Some areas 
of radiology are utilizing computer-aided de-
tection methods for lesion identification, such 
as in the diagnosis of lung and breast nodules 
(67,68). However, the future potential of com-
puter-aided detection in radiology is substan-
tial because segmentation algorithms continue 
to improve in regard to the quality of output 
and the efficiency of these methods in radiolo-
gists’ work flow. In particular, the contribu-
tion to the accurate longitudinal assessment 
of disease progression and response to treat-
ment will enable optimal individualized patient 
management.

This review presents a general overview of seg-
mentation methods, which software uses to identify 
a structure or lesion, draw contours around the 
object’s boundaries, and then extract that struc-
ture for three-dimensional assessment apart from 



1074 July-August 2015 radiographics.rsna.org

surrounding structures. In Table 3, all classes of 
lung segmentation methods and their advantages, 
disadvantages, and possible failures with respect to 
different lung abnormality types observed on CT 
images are summarized (25,60). These classifica-
tions are based on the evidence of published work 
in the literature (13,17,25,33,35,37,60–64,68) and 
the available computer-aided detection systems 
for pulmonary pathologic identifications. With this 
detailed comparison, we hope that our readers can 
compare and contrast the available lung segmenta-
tion methods for their specific lung segmentation 
tasks and determine the most suitable one for the 
task at hand. Additionally, we hope that radiologists, 
by understanding the limitations and strengths of 
these approaches, can become more familiar with 
the technical trends affecting the development of 
radiologic software and computer-assisted methods 
for lung disease. In fact, computer-aided detection 
systems are not intended to replace radiologists 
but rather to be complementary to their diagnostic 
tasks. Indeed, the radiologist can override descrip-

tions output by automated systems, thus having the 
last say in the diagnostic process.

Segmentation has been far more success-
ful for nonmoving fixed structures such as the 
brain; segmentation of the lungs must address 
the challenges of dynamic chest volumes in the 
respiratory cycle. Moreover, some pathologic 
conditions in the lungs have limited the utility 
of lung segmentation because algorithms have 
often failed to accurately compute lung vol-
umes when consolidations, masses, effusions, 
or pneumothorax is present. Recent advances 
(13,17,33,35,37,61–64,68), however, are start-
ing to overcome these limitations by producing 
segmentation results that include the lesion(s) 
in a three-dimensional rendering, so that lung 
pathologic conditions can be calculated as a 
percentage of the total lung volume for assessing 
severity and yielding rates of change in disease 
with serial CT examinations.

Until recently, segmentation of lung fields was 
performed manually by using input from radi-

Table 3: Effectiveness of Each Major Class of Methods for Segmentation of the Lung Fields and Various 
Abnormal Imaging Patterns of Lung Diseases

Area or Abnormality
Thresholding- 
based Methods

Region-based 
Methods

Shape- 
based  

Methods

Machine  
Learning–based 

Methods

Neighboring 
Anatomy–guided 

Methods

Lung field + + + + +
Beaded septum N/A − N/A + N/A
Varicose bronchiectasis N/A N/A N/A N/A N/A
Micronodules N/A N/A N/A N/A N/A
Tree-in-bud pattern N/A N/A N/A + N/A
Perilymphatic distribution N/A N/A N/A N/A N/A
Interstitial emphysema N/A N/A N/A N/A N/A
Bleb + + + + −
Bulla + + + + −
Cavity + + + + −
Cyst + + + + +
Interstitial pneumonia + + + + +
Air-filled bronchiectasis + + + + +
Pulmonary fibrosis − − + + −
Consolidation − − + + −
Centrilobular emphysema − − + + −
Crazy-paving pattern − − + + +
Ground-glass opacity − − + + −
Honeycombing − − + + −
Halo sign − − + + −
Mycetoma − − + + −
Infarction − − + + +
Pleural effusion − − + + +
Pleural plaque − − + + +

Note.—N/A = not available or not implemented for that particular pattern, + = method can be used successfully, 
− = method may fail.
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ologists having expertise in diagnostic criteria 
and anatomic landmarks. However, progress in 
software quality and computational efficiency 
has made automated lung segmentation methods 
available to replace some manual measurements. 
At the current time, lung segmentation methods 
have not been amalgamated into single approaches 
or unified platforms using a single user interface. 
This fragmentation of these software approaches 
into incompatible packages has limited the ef-
fectiveness of implementing lung segmentation as 
a standard method in the clinical context. Most 
methods are designed for a particular subset of 
imaging abnormality. These approaches work well 
within their realm of particular imaging and ana-
tomic characteristics but fail to address other 
subsets of lesions that may be on the image(s). 
Future efforts will seek to improve the quality of 
segmentation (of lung volumes and disease), in-
crease the efficiency of these software platforms 
(for facile use in the clinical work flow), and 
unify the algorithms so that the user interface 
can seamlessly integrate with picture archiving 
and communication systems.

Conclusion
We provide a critical appraisal of the current ap-
proaches to lung segmentation on CT images to 
assist clinicians in making better decisions when 
selecting the tools for lung field segmentation. 
We divided the lung field segmentation meth-
ods into five broad categories, with an overview 
of relative advantages and disadvantages of the 
methods belonging to each group. We believe 
that this synopsis and the subsequent recom-
mendations will supplement the role of radiolo-
gists in the diagnostic approach while guiding 
the selection and application of automated 
segmentation tools for pulmonary analysis.
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