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Abstract

Background & Aims—Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary hepatic 

cancer that develops in children and young adults without cirrhosis. Little is known about its 

pathogenesis, and it can only be treated with surgery. We performed an integrative genomic 

analysis of a large series of patients with FLC to identify associated genetic factors.

Methods—Using 78 clinically annotated FLC samples, we performed whole-transcriptome 

(n=58), single-nucleotide polymorphism array (n=41), and next-generation sequencing (n=48) 

analyses; we also assessed the prevalence of the DNAJB1–PRKACA fusion transcript associated 

with this cancer (n=73). We performed class discovery using non-negative matrix factorization, 

and functional annotation using gene set enrichment analyses, nearest template prediction, 

ingenuity pathway analyses, and immunohistochemistry. The genomic identification of significant 

targets in cancer algorithm was used to identify chromosomal aberrations, MuTect and VarScan2 

were used to identify somatic mutations, and the random survival forest was used to determine 

patient prognoses. Findings were validated in an independent cohort.

Results—Unsupervised gene expression clustering revealed 3 robust molecular classes of 

tumors: the proliferation class (51% of samples) had altered expression of genes that regulate 

proliferation and mTOR signaling activation; the inflammation class (26% of samples) had altered 

expression of genes that regulate inflammation and cytokine production; and the unannotated class 

(23% of samples) had a gene expression signature not previously associated with liver tumors. 

Expression of genes that regulate neuroendocrine function, as well has histologic markers of 

cholangiocytes and hepatocytes, were detected in all 3 classes. FLCs had few copy number 

variations; the most frequent were focal amplification at 8q24.3 (in 12.5% of samples) and 

deletions at 19p13 (in 28% of samples) and 22q13.32 (in 25% of samples). The DNAJB1–

PRKACA fusion transcript was detected in 79% of samples. FLC samples also contained 

mutations in cancer-related genes such as BRCA2 (in 4.2% of samples), which are uncommon in 

liver neoplasms. However, FLCs did not contain mutations most commonly detected in liver 

cancers. We identified an 8-gene signature that predicted survival of patients with FLC.

Conclusions—In a genomic analysis of 78 FLC samples, we identified 3 classes based on gene 

expression profiles. FLCs contain mutations and chromosomal aberrations not previously 

associated with liver cancer, and almost 80% contain the DNAJB1–PRKACA fusion transcript. 

Using this information, we identified a gene signature that is associated with patient survival time.
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INTRODUCTION

Liver cancer is now the second leading cause of death among cancer patients worldwide1. 

Fibrolamellar hepatocellular carcinoma (FLC) accounts for 0.85% of all primary hepatic 

malignancies in the United States2, and its incidence rate is 0.02 cases per 100.000 person-

year2, behind hepatocellular carcinoma (HCC)3 and intrahepatic cholangiocarcinoma 

(ICC)4. Unlike standard HCC, FLC typically arises in non-cirrhotic livers of children and 

young adults with no specific association with etiologic factors or gender2,5. FLC has a 

better prognosis than HCC, probably due to the absence of cirrhosis and the earlier age of 

presentation5,6. Nonetheless, survival is jeopardized by tumor recurrence and metastases6. 

Treatment options remain limited to surgical resection7, and no effective targeted therapies 

have been described so far.

Seminal studies have been performed to decipher genomic alterations in FLC, though all of 

them were performed in small cohorts8–13. The most relevant findings include molecular 

alterations of the MAPK/ERK9, ErbB10 and Akt-mTOR12 signaling pathways, few 

chromosomal aberrations based on comparative genomic hybridization data13, and no 

mutations in EGFR or KRAS genes11. More recently, a DNAJB1-PRKACA fusion protein 

caused by a deletion at chromosome 19 has been discovered in all 15 FLCs evaluated14.

The scarce understanding of the FLC molecular drivers prevents the initiation of biomarker-

driven clinical trials that will allow an improved management of the disease. This prompted 

us to investigate a large series of 78 FLCs with clinical annotated data [formalin-fixed 

paraffin-embedded (FFPE, n=54) and fresh-frozen (FF, n=24)] through the application of 

cutting-edge genomic approaches: whole-genome expression (n=58), single-nucleotide 

polymorphism (SNP)-array (n=41) and next-generation sequencing (NGS, n=48) [i.e. 

whole-exome sequencing (WES) and targeted-exome sequencing (TES)]. We also checked 

for the prevalence of the DNAJB1-PRKACA fusion event (n=73).

Overall, FLC analysis revealed 3 distinct molecular classes, relevant but few chromosomal 

alterations, a unique mutational portrait compared to HCC and ICC, and a highly frequent 

fusion transcript. In addition, we generated a prognostic 8-gene expression signature able to 

accurately predict survival in FLC patients, which was validated in 22 FF FLCs.

MATERIALS and METHODS

Clinicopathological characteristics of FLC patients

A total of 78 FLC patients surgically treated were included in the study (Table 1 and Suppl. 

Table 1). The training cohort included 42 FFPE FLC and 18 non-tumoral paired samples 

obtained from patients resected or transplanted during 1987–2009 at 6 academic hospitals: 

King’s College Hospital (London), Mayo Clinic (Rochester), Icahn School of Medicine at 

Mount Sinai (New York), IRCCS Istituto Nazionale Tumori (Milan), Hospital Clínic 
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(Barcelona), and Hospital Vall d’Hebron (Barcelona). The study protocol was approved by 

each center’s Institutional Review Board. FLC diagnosis based on pathology was confirmed 

by 3 independent pathologists (S.T., S.W. and L.R.). The validation-French cohort included 

23 surgically-resected FF FLCs (Suppl. Table 1) obtained from 6 different hospitals in 

France. We do not obtained non-tumoral samples for this cohort.

We also obtained 1 additional FF FLC sample that was included in the WES mutational 

study from a Caucasian male, and 12 additional FFPE FLC and 5 paired non-tumoral 

samples from a Brazilian cohort (Validation-Brazilian cohort, Suppl. Table 1), where the 

presence of the DNAJB1-PRKACA fusion transcript was checked.

Gene Expression, SNP-array and NGS

Among the FFPE samples from the training cohort, 35 FLCs were analyzed for molecular 

characterization, 32 for CNVs, and 27 for mutations. Regarding the FF samples from the 

validation-French cohort, 23 were profiled at the transcriptional level, 9 by SNP-array and 

20 by TES. Whole-genome expression profiling was performed using DASL-array, genome-

wide CNVs using HumanOmniExpress FFPE-12 DNA-Analysis BeadChip, WES using 

HiSeq2000 sequencer and TES using MiSeq Next Generation Sequencer, all platforms from 

Illumina. For further information see Supplementary Materials and Methods section and 

Table 1.

Immunohistochemistry, Bioinformatics and Clinical Data Analysis

See Supplementary Materials and Methods section.

RESULTS

Molecular profiling reveals three FLC classes with distinct genomic patterns

Whole-genome expression profiling was performed on 35 FLCs and 4 paired non-tumoral 

liver FFPE samples from the training cohort for which good quality RNA was obtained. 

Unsupervised-clustering of tumoral samples using the Non-negative matrix factorization 

(NMF) algorithm revealed 3 distinct and robust molecular classes (Figure 1A, Suppl. Figure 

1A. We named the classes Proliferation (51% patients, 18/35 cases), Inflammation (26%, 

9/35) and Unannotated (23%, 8/35) based on subsequent functional characterization using 

Gene set enrichment analysis (GSEA) and Nearest template prediction (NTP) -both modules 

from Gene Pattern15-, Ingenuity pathway analysis (IPA) and immunohistochemistry (IHC). 

The Proliferation class was enriched in liver cancer proliferation gene signatures such as 

HCC Boyault-G216, characterized by Akt activation (GSEA: FDR=0.04, Figure 1B), and 

ICC-Proliferation17 (NTP: p=0.007, Figure 1A). We confirmed Akt-mTOR signaling 

activation assessing phospho-RPS6 (p-RPS6) levels by IHC (Figure 1C), which was 

significantly activated in the Proliferation class versus the Inflammation (p<0.004, Figure 

1A). The Inflammation class showed enrichment of liver cancer inflammation signatures 

such as ICC-Inflammation17 (GSEA: FDR=0.079, Figure 1D) and other pathways associated 

with pro-inflammatory cytokines (IPA: Acute Phase Response, p<0.01). In concordance, a 

number of interleukins were significantly up-regulated in this class (i.e. IL18, p=0.001 and 

IL10, p<0.001, Figure 1A). Moreover, the Inflammation class was slightly enriched by 
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patients with liver fibrosis (4/8 vs. 5/23, p=0.18). The Unannotated class presented a distinct 

molecular profile since it was not enriched by any previously reported liver cancer gene 

signature, but by a cancer signature of Molecular Mechanisms of Cancer, which contains 

deregulated MAPKs, TGFB, PIK3, CTNNB1 and RAS genes (IPA: p<0.006). None of the 

molecular classes was significantly associated with any clinicopathological variable.

The robustness of the NMF-based classification was confirmed by the K-nearest neighbor 

prediction method through Leave-one-out-cross validation (LOOCV) analysis, which 

showed 94% of correct prediction (Suppl. Table 2), and by the Affinity propagation 

clustering, in which the FLC tumors were equally distributed among the 3 classes as in the 

NMF classification (Suppl. Figure 1B). A gene signature that defined the 3 FLC molecular 

classes was generated by LOOCV, and included 710 over-expressed genes (Proliferation: 

219, Inflammation: 263 and Unannotated: 228, Suppl. Table 3).

We also evaluated the expression levels of several neuroendocrine markers (i.e. NTS, 

CALCA, PCSK1 and DNER), since its deregulation has been described in FLC10. All the 

assessed neuroendocrine markers were significantly over-expressed in FLC compared to 

non-tumoral tissue (i.e. NTS and CALCA: p<0.01, PCSK1 and DNER: p=0.01, Suppl. Figure 

2A). The expression pattern of the neuroendocrine genes among the FLC classes was 

heterogeneous; deregulation of CALCA was significantly enriched in the Inflammation class 

(p<0.01), and of DNER in the Proliferation and Inflammation classes (p=0.02, Suppl. Figure 

2B).

Furthermore, we assessed EGFR protein levels as they were previously reported to be 

altered in FLC8. Most of the FLCs showed diffuse and strong membranous EGFR IHC 

staining in comparison to the non-tumoral tissues (88%, 37/42 vs. 18%, 3/17: p<0.0001, 

Suppl. Table 4, Figure 1A and 1E). Increased EGFR protein expression was observed across 

the different molecular classes.

In parallel we tested our gene-signature in the validation-French cohort, also profiled at the 

transcriptional level. Results showed the following distribution in the 3 FLC molecular 

classes (FDR=0.25): Proliferation - 41.2%, Inflammation - 41.2% and Unannotated – 

17.64% (Suppl. Figure 1C).

In summary, molecular profiling of FLC reveals 3 distinct molecular classes, 2 of them 

associated with proliferative or inflammatory molecular traits of liver cancers -mainly of 

ICC-, and an overall enrichment of neuroendocrine markers and EGFR protein over-

expression.

FLC shows a dual, cholangiocyte and hepatocyte, differentiation pattern

We characterized the cellular differentiation pattern of FLC by IHC and investigated the 

observed molecular association of FLC with ICC. As shown in Figure 2A, our FLCs had the 

characteristic pathological features of this tumor: large polygonal tumor cells with abundant, 

granular and eosinophilic cytoplasm with occasional pale bodies, large vesiculated nuclei 

with prominent nucleoli, and bands of fibrous stroma5. To study the cellular differentiation 

pattern of FLC, a panel of known markers associated with ICC (K7, K19), HCC (HepPar1) 
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and the hepatic progenitor lineage (EpCAM and K19) were evaluated in 42 FLC and their 

paired non-tumoral liver when available. Most of the cohort was HepPar1 positive (98%, 

41/42) and strongly stained for K7 (90%, 38/42, Figure 2A, Suppl. Table 3). Additionally, 

38% (16/42) of tumors stained for progenitor-like markers, including 21% (9/42) of the 

FLCs with focal but intense staining for K19, and 24% (10/42) with EpCAM positive 

membrane staining. Integration of these results with our molecular classification (Figure 2B) 

showed a significant enrichment of EpCAM positive staining in the Proliferation class (39%, 

7/18: p=0.04), and a paucity of progenitor cell markers in the Unannotated class (EpCAM: 

0/8 vs. 8/27 and K19: 1/8 vs. 9/27).

These results support the previously suggested18 dual -cholangiocyte and hepatocyte-

differentiation pattern of FLC, and validate the uniform positivity of HepPar1 and K7 

markers in FLC18. In addition, we find an enrichment of progenitor cell features (EpCAM) 

in the Proliferation class.

FLC is characterized by a low number of chromosomal aberrations

Overall, the FLC cohort showed a low number of CNVs (Suppl. Figure 3) compared with 

HCC and ICC. The key significant broad and focal aberrations are summarized in Figure 3. 

Main broad chromosomal gains were found at chromosome 19 (9%), and broad losses at 

chromosome 19 (25%) and 22q (25%), (see details in Figure 3A–B and Suppl. Table 5). 

These aberrations were equally distributed among the 3 molecular classes (Suppl. Table 6).

Significant focal amplifications were identified at 3 different chromosomal regions affecting 

22% of cases (Figure 3C, Suppl. Table 6). The most frequent focally amplified locus was at 

8q24.3 in 4/32 patients (12.5%) spanning several genes as RPL8 and COMMD5, followed 

by 6q27 (6%) covering KIF25, FRMD and MLLT4, and 17q25.3 (6%) which includes a 

single gene, RBFOX3 (Table 2, Suppl. Table 7).

Six focal deletions were found in 31% of the cohort (Figure 3D, Suppl. Table 6) affecting 

protein coding genes and relevant miRNAs (Table 2, Suppl. Table 8). The most frequent 

focal deletions were at 19p13.12 and 19p13.3, simultaneously observed in 8 patients (28%), 

5 of which belonged to the Inflammation class (p=0.015, Table 2). The focal deletion at 

19p13.12 involved several G-protein coupled-receptors such as LPHN1, and is responsible 

for generating the predominant fusion protein recently reported DNAJB1-PRKACA14. 

Remarkably, 79% (58/73) of our FLCs [training cohort: 85% (33/39), validation-French 

cohort: 73% (16/22) and the validation-Brazilian cohort: 75% (9/12)] had this chimeric 

transcript originated from the fusion of DNAJB1 exon 1, with exons 2 to 10 from the 

PRKACA gene (Suppl. Figure 3B). None of the 5 paired non-tumoral samples showed this 

fusion event. The 19p13.3 focal deletion affected the tumor-suppressor gene (TSG) STK1, 

while deletion at 22q13.32 (25%) included a candidate TSG locus described in several 

tumors19, and at 11p15.5 (3%) covered the TSG CDKN1C (see details in Figure 3C–D, 

Table 2, Suppl. Table 8).

In parallel, we studied the CNVs in 9 FF FLCs from the validation-French cohort (Suppl. 

Table 9) where most of the frequent CNVs (i.e. 8q gains, and 18p, 18q, 21q and 22q losses) 

were also found in the FFPE results (Suppl. Table 5). Interestingly, the CNVs of 2 additional 
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samples from separate parts of the same tumor (92T, 93T) showed the same background 

CNVs, while one had additional alterations, suggesting a sub-clone expansion event (Suppl. 

Table 9).

Herein, we demonstrate that FLC does not have a highly altered chromosomal profile even 

though a number of key loci are affected. The focal deletions at chromosome 19 are the most 

frequent chromosomal aberrations, being the one at 19p13.12 responsible for the occurrence 

of the highly prevalent DNAJB1-PRKACA fusion protein.

NGS analysis reveals a unique mutational portrait of FLC

To evaluate the mutational landscape of FLC, WES was run in 1 FLC-normal liver pair from 

FF tissue. In order to address the low purity of this tumor (around 50% of cells were 

tumoral), a pipeline specifically designed for low purity/heterogeneous tumors20 was 

applied. A total of 276 somatic single nucleotide variants (SNVs) were identified (Suppl. 

Figure 4A). One-third of them (90/276) were located in coding regions, of which 68 (76%) 

were non-synonymous (Suppl. Figure 4A). Almost all of them (98.5%, 67/68) were 

missense and just one nonsense. Thirty-four percent (23/67) of the missense non-

synonymous mutations had a damaging role (Suppl. Figure 4A & Suppl. Table 12). Among 

the damagingly mutated genes identified, 4 out of 5 mutations (i.e. BRCA2-Y2789C, 

CSMD2-G1055E, ARMCX1-L246F and COL6A6-L929I) were technically validated by TES 

(Suppl. Figure 4B), and BRCA2-Y2789C also by Sanger (Suppl. Figure 4C). Due to the 

biological relevance of BRCA2 as TSG, we sequenced the entire gene by TES in 47 patients 

(training and validation-French cohorts) and results showed another mutation in BRCA2, 

P2612S. Then, we can confirm that BRCA2 is mutated in 4.2% of FLCs. In parallel, none of 

the most prevalent mutations in HCC (i.e. TP53, CTNNB1, ARID1A, TTN, NFE2L2 and 

AXIN1)21 or in other liver cancers (i.e. EGFR, BRAF, KRAS, NRAS, IDH1 and IDH2)21 

were found mutated in FLC.

Taken together, FLC presents a unique liver cancer mutational portrait which does not 

include any of the most prevalent liver cancer mutated genes21. We identified BRCA2 

damaging mutations in 4.2% of the FLC cases (2/47).

8-gene expression signature predicts survival in FLC

Overall, clinicopathological features of our cohorts resemble those previously reported2,5,6. 

Complete clinical follow-up data for the training cohort was available for 38 patients (Suppl. 

Table 1), which were mostly young (median age of 25.5 years-old, range 11–65) and 

Caucasian (61%, 23/38). The cohort showed a balanced gender distribution (58% females, 

22/38) and non-significant underlying liver disease (cirrhosis in 3%, 1/38), with 95% of the 

patients non-viral infected (1/38 HCV and 1/38 HBV). All patients were surgically treated 

[resected (89%, 34/38) or transplanted (11%, 4/38)]. Median tumor size was 11cm (25–75% 

quartile: 7–13cm), 18% (7/38) of the tumors were multinodular, 16% (6/38) had satellite 

lesions, and 13% (5/38) had macrovascular invasion. Median survival was 58 months, with a 

median follow-up of 48 months. Twenty-one patients recurred (54%) during follow-up, with 

a median time to recurrence of 19 months. Complete clinical data was available for 22 FLCs 

from the validation-French cohort, which were mostly females (72% females, 16/22), with a 
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median tumor size of 10cm (25–75% quartile: 2.5–17cm), and a median age of 26 years 

(range 17–65). One patient had alcohol-related liver damage (5%, 1/22). Median survival for 

this cohort was of 68 months, with a median follow-up of 58 months. The validation-

Brazilian cohort included resected patients, mostly females (67% females, 8/22), with a 

median tumor size of 13cm (25–75% quartile: 10–17cm), 23 years-old (range 18–33) of 

median age, and none of them presented underlying liver disease (Suppl. Table 1). The 

median survival for these patients was 48 months, and 39 months of median follow-up.

Since the molecular classes of FLC did not show a clear association with survival, we 

generated a gene expression-based prognostic signature that discriminated patients 

according to their survival using the Random survival forest analysis in the training set 

(n=29). This signature was composed of 8 genes: PEAR1, KRTAP, KLRD1, OSBPL8, 

RPL32, SLC26A11, RGS11 and RAPGEF1 (Figure 4A, right panel). The prognostic 

signature allowed us to develop a predictive quantitative risk score for mortality based on 

the weighted hazard of death for each resected individual (i.e. mortality index (MI), range 

6.7–42, Suppl. Table 11). Patients with higher MI (upper quartile, MI≥21) had a worse 

outcome (Poor-prognosis) with a median survival of 12 months, compared to 197 months 

for those patients with lower MI (Non poor-prognosis, MI<21). Thus, based on the upper 

quartile division of the MI values, FLC patients can be accurately stratified for their survival 

times following surgical resection as Poor-prognosis and Non poor-prognosis (Figure 4A, 

left panel). This is evident in the Kaplan-Meier analysis (HR: 0.035, 95% CI: 0.007–0.176, 

p<0.001). Interestingly, the same prognostic signature was able to predict tumor recurrence 

in the same cohort (training set: n=26, HR: 0.074, 95% CI: 0.02–0.28, p<0.001, Figure 4B). 

In this case the upper MI quartile threshold was set at ≥25, since the number of patients was 

reduced due to the lack of recurrence information in 3 patients. When integrating these data 

into our molecular classification, we identified that patients in the Unannotated class showed 

a trend towards a more indolent outcome since none of the patients with the Poor-prognosis 

signature clustered in this class (0/6 vs. 7/23, p=0.32).

Next, we validated the 8-gene prognostic signature in an independent cohort (validation-

French set: n=22, Figure 4C). We found that patients with the Poor-prognosis signature 

(upper quartile, MI≥8), had significantly worse survival outcome (33 months median 

survival vs. not reached; HR: 0.089, 95% CI: 0.017–0.46, p=0.0039) than those with the 

Non poor-prognosis signature (MI<8).

Overall, we generate and validate a signature that can stratify resected FLC patients based 

on their prognosis by the interaction in the expression of 8 genes.

DISCUSSION

There is little known about the molecular pathogenesis of FLC. Previous publications 

provided some insights into the molecular characteristics of this rare tumor, but are limited 

in terms of number of patients and technology used8–13. Herein, by using NGS, SNP-array 

and whole-transcriptome analysis we provide a comprehensive genomic study of a large 

FLC cohort. This demonstrates a unique portrait of genomic aberrations distinct from the 

most prevalent primary liver neoplasms, HCC and ICC. In addition, we identify key 
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pathways and candidate genes as targets for molecular therapies, and describe a gene-based 

prognostic signature.

In this study we identified 3 different molecular classes of FLC named Proliferation, 

Inflammation and Unannotated. Tumors in the most common class, Proliferation (51% of 

patients), were enriched in liver cancer proliferative gene signatures (ICC and HCC), 

markers of progenitor cell origin (EpCAM) and mTOR signaling activation (p-RPS6) 

(Figure 5). The Inflammation class was characterized by up-regulation of liver inflammatory 

gene signatures and interleukins (i.e. IL-8 and IL-10), and was slightly enriched in patients 

with fibrosis, which could explain its inflammatory profile. In addition, DNA deletions in 

chromosome 19 were particularly enriched in this class. Finally, the Unannotated class was 

found to be up-regulated by non-liver-related cancer signatures, it lacked progenitor traits 

and showed a trend for better outcome (Figure 5). These molecular classes were reproduced 

in an independent cohort, which showed a more prevalent inflammatory profile than in the 

training cohort (41% vs. 26% in training) at the expense of patients with proliferative 

features (41% vs. 51%). In order to compare the expression pattern of our samples to a 

recently reported FLC classification10, we confirmed over-expression of neuroendocrine 

markers, which were similarly distributed among all the 3 classes

Once we had defined the molecular classes, we aimed to explore unanswered questions 

regarding the pathogenesis of this neoplasm: a) cell of origin, b) potential drivers amenable 

for targeted therapies and c) prognostic stratification. Regarding the immunohistochemical 

pattern of FLC, our results demonstrated a common and universal dual pattern of 

morphological characteristics and markers of hepatocytes and HCC (HepPar1), which are 

not usually found in ICC22, along with specific markers of bile duct cells usually negative in 

HCC (K7). All these information points towards a dual bile duct and hepatocyte 

differentiation pattern of the FLC, previously proposed by a tissue microarray study of 26 

FLCs18. In fact, our data suggest that FLC could be derived from a hepatic precursor cell 

with the ability to differentiate into hepatocytes (HepPar1) and bile duct cells (K7) that 

maintain both markers once the cell become mature. In parallel, around 40% of FLCs show 

progenitor cell markers (K19 or EpCAM) in contrast to the 15% in conventional HCC 

cases18. Furthermore, the uniform and strong positivity of K7 observed in our cohort, 

supports the use of this marker as an additional tool during the diagnostic workup of FLC, as 

previously suggested18.

In order to identify key drivers of tumor progression we performed an integrative analysis 

by using whole-transcriptome, SNP-array and NGS data. In contrast to other cancers17,23, 

FLC shows an overall flat profile of chromosomal alterations with some focal and broad 

amplifications and deletions pointing towards candidate regions harboring oncogenes and 

TSGs. Three focal amplifications were identified at 6q27, 8q24.3 and 17q25.3 loci, which 

involved 22% of the cases. The most critical genes affected by these amplifications are 

RPL8, reportedly up-regulated in different cancers (e.g. HCC, melanoma, glioma and breast 

carcinoma24,25) and MLLT4, described to generate a fusion oncogene together with AF6 

inducing leukemic transformation26. In terms of focal deletions, these ones affect 31% of 

cases, being the most common at 19p13.2 locus (containing STK11, a TSG serine/threonine-

protein kinase that regulates mTOR signaling), at 19p13.12 (covering LPHN, with a 
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protective role in non-small cell lung cancer27) and at 22q13.32, described as a candidate 

TSG locus in other tumors19. Moreover, it was striking to observe that the 19p13.12 focal 

deletions has been described to be the cause of the DNAJB1-PRKACA fusion protein14, 

which was identified in 79% (58/73) of our FLCs (Suppl. Figure 3B). Despite this 

prevalence is very high for a potentially druggable target, it was inferior to the 100% 

previously reported14, probably reflecting both a larger size of our cohort and eventually a 

less aggressive phenotype. In both studies none of the adjacent tissues presented the fusion 

event.

Next, we looked for structural somatic mutations in FLC using NGS. Despite previous 

attempts to find frequently mutated cancer genes in FLC (i.e. KRAS and EGFR11), none had 

been reported. By WES, FLC showed 23 damaging mutations, which included the well-

known TSG BRCA2 implicated in DNA repair. This mutation was confirmed by Sanger 

sequencing and TES, and this last technique revealed another BRCA2 mutation. Then, 

BRCA2 mutations are present in FLC but showed a low prevalence of 4.2%. (2/47). In 

addition, we confirmed that none of the most prevalent mutations in HCC or ICC cancer 

types (i.e. TP53, CTNNB1, ARID1A, TTN, NFE2L2, AXIN1, EGFR, BRAF, KRAS, NRAS, 

IDH1 and IDH2)21 were altered in FLC. Hence, from the mutational standpoint, FLC 

presents a unique mutational profile different from other primary liver cancers, with 

potential candidates as therapeutic targets.

Thus, after exploring NGS and SNP-array, along with signaling cascades and the fusion 

protein, we identified a number of potential candidates for targeted therapy in FLC. First, we 

confirmed the high prevalence of the recently described predominant fusion protein 

DNAJB1-PRKACA in our cohort, which can be a therapeutic target, since it has been 

proved to retain the kinase activity of PRKACA, the catalytic subunit of Protein Kinase A14. 

Secondly, structural alterations highlight BRCA2 mutations (4.2%), which are potentially 

druggable by PARP inhibitors, and MLLT4 (6%), as novel targets. Finally, mTOR signaling, 

activated in more than 70% of the FLC cases, and aberrant EGFR protein expression in 88% 

of the tumors, are both candidate targetable pathways that have been reported to be 

effectively blockade (mTOR: everolimus and temsirolimus28, EGF: gefitinib and 

cetuximab29) in other epithelial neoplasms (e.g. colon, lung)29. However, the effectiveness 

of erlotinib/gefitinib in lung and other cancers is usually associated with the occurrence of 

mutations or amplifications, which is not the case in FLC. Exploring all these potential 

targets in the setting of early clinical trials or marker-driven proof-of-concept trials is 

recommended.

None of the molecular classes was linked to clinical outcomes. Certainly, the small sample 

size precludes general conclusion, and only the Unannotated class, which lacks progenitor-

cell features, showed a non-significant trend to better prognosis. In an effort to elucidate 

prognostic markers beyond the biological classes, as has been the case in HCC30,31, we 

generated a gene signature able to stratify FLC patients according to their prognosis. The 

prognostic signature was successfully validated in an independent cohort of 22 FF FLCs. 

This signature included genes involved in PI3K/PTEN signaling such as PEAR132, or 

KLRD1, natural killer cell inhibitory receptor33, and RAPGEF1, regulator of the 

GTPases/Ras protein family34. Overall, the prognostic signature composed of relevant 
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cancer genes will allow prognostic stratification of FLC patients, and could also improve the 

design of clinical trials. At the same time, the molecular classification will help to 

understand the distinct response of FLC patients to certain molecular targeted therapies, and 

it could be an alternative tool for stratification of patients prior randomization in clinical 

trials based on their molecular profile.

Our genomic study characterizes FLC as a singular molecular entity, with certainly distinct 

traits compared with other liver tumors. Structural alterations are unique compared with 

those of classical HCC or ICC. FLC presents high prevalence of the DNAJB1-PRKACA 

fusion protein that contains a kinase, chromosomal focal amplifications of MLL4, and few 

BRCA2 mutations. Conversely, prevalent mutations or chromosomal aberrations in HCC or 

ICC are lacking in FLC. Our results indicate that FLC has a potential origin in a common 

precursor cell, since it retains molecular markers of hepatocyte and cholangiocyte lineages, 

and progenitor cell markers (EpCAM and K19:38%). Finally, FLC gene signatures herein 

reported are more frequently enriched in ICC17 (80%) than in HCC35 (28%, Suppl. Table 

12). Nonetheless, gene signatures of poor-prognosis and invasiveness generated in several 

cancer types (e.g. breast, melanoma)16,36–39 are not enriched in FLC samples, as opposed to 

other liver cancers (Suppl. Table 12).

In conclusion, we present a comprehensive genomic characterization of FLC at multiple 

levels. We identified a robust 3 class molecular classification highlighting key biological 

traits of FLC with potential implications for future biomarker-based clinical trials, and 

provided a clear picture of the chromosomal and mutational profile revealing potential 

molecular targets. Moreover, the prognostic gene-signature we generated might aid in the 

stratification of patients for trials beyond the clinicopathological variables, and allow for 

inclusion in surveillance programs for the FLC patients with worst prognosis. On the other 

hand, our results further support the feasibility of high-throughput profiling in FFPE tissues 

that will facilitate the knowledge of numerous malignancies and different diseases. Hence, 

the FLC, a rare primary hepatic malignancy which was first described in 1956 by 

Edmondson40 as a variant of HCC, is now considered to be a distinct form of primary liver 

cancer with respect to its epidemiology, etiology and prognosis, and herein we clearly 

demonstrate its distinctive genomic profile.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Molecular classes of FLC and their distinct genomic profile
(A) NMF-based algorithm identified 3 robust classes: Proliferation (green), Inflammation 

(purple) and Unannotated (turquoise). Heat-map shows unsupervised clustering of 35 FLCs 

based on whole-genome expression showing the top differentially expressed genes for each 

class. Bottom part of the heat-map shows the overlap of the results from the NTP ICC-

Proliferation signature, the IHC results of p-RPS6 and EGFR (panels C and E), and the 

expression values of IL-10 and 18. (B, D) GSEA plots demonstrated the enrichment in HCC 

Boyaoult-G2 (B) and ICC-Inflammation (D) gene signatures in FLC-Proliferation and FLC-

Inflammation classes, respectively. (C, E) Immunohistochemical pattern of p-RPS6 (C) and 

EGFR (E) staining in FLC (upper panels) and non-tumoral tissues (lower panels).
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Figure 2. Immunohistochemical characterization of FLC
(A) FLC pathological characterization by hematoxylin and eosin staining (upper panels), 

and HepPar1, K7, K19 and EpCAM immunostaining (median and lower panels). (B) 
Distribution of the IHC results within the molecular classes.
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Figure 3. Significant broad and focal chromosomal alterations in FLC
GISTIC algorithm identified significant CNVs in 32 FLC samples. Chromosomes are 

displayed in descending order along the vertical axis. GISTIC q-values (x-axis) for 

amplifications (left, red) and deletions (right, blue) corresponding to the FDR q-value 

obtained from GISTIC are plotted across the genome (y-axis). Vertical green line stands for 

the significance threshold of q < 0.25. A–B) represent graphically the significance of broad 

arm level CNVs, and C–D) the significance of focal CNVs.
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Figure 4. Gene expression-based prognostic signature and its validation
(A, B & C) Kaplan-Meier plots estimating overall survival in training (n=29, A, left panel) 

and validation-French (n=22, C) cohort, and overall recurrence in those patients from the 

training set for whom data on recurrence was available (n=26, B). Heat-map shows 

expression values of the 8 genes that constitute the prognostic signature (A, right panel). 

Patients in the Poor-prognosis class (red) showed shorter survival and earlier recurrence.
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Figure 5. Integrative genomic analysis
FLC gene expression classification and its overlap with the previously published consensus 

ICC classification17 and the FLC results of the copy number alterations, 

immunohistochemical stainings and gene expression of interleukines and neuroendocrine 

markers, together with the presence of the fusion transcript and the enrichment results of the 

prognostic signature. The integrative analysis revealed an indolent 20 profile together with a 

paucity of progenitor markers for the Unannotated class, a highly enrichment of progenitor 

cells traits for the Proliferation class, and an enrichment of focal deletions and interleukines 

at the Inflammation class. Moreover, these analysis demonstrate the highly prevalence of the 

DNAJB1-PRKACA fusion transcript.
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