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Abstract

Objectives

Iron overload is now recognized as a health problem in industrialized countries, as exces-

sive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator

has not been clearly identified experimentally in iron overload condition. Here, we evaluate

the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities

and to gain insight into the underlying mechanisms.

Design and Methods

Three groups of male adult rats were treated as follows: control rats, rats treated with iron in

a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more

months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid perox-

idation and anti-oxidant depletion.

Results

Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accu-

mulation within liver and spleen. Iron-overloaded rats had significant increases in malonyl-

dialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen

when compared to control group. The effects of iron overload on lipid peroxidation and NO

levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Fur-

thermore, the endogenous anti-oxidant activities/levels in liver and spleen were also signifi-

cantly decreased in chronic iron overload and administration of curcumin restored the

decrease in the hepatic and splenic antioxidant activities/levels.
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Conclusion

Our study suggests that curcumin may represent a new horizon in managing iron overload-

induced toxicity as well as in pathological diseases characterized by hepatic iron accumula-

tion such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via

iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body

endogenous antioxidant defense mechanism.

Introduction
Undiagnosed iron overload can lead to hemochromatosis, in which the excess iron stored
in body organs is causing a serious tissue damage. Clinically, body iron level is primarily regu-
lated by absorption rate as human subjects have no physiological mechanism by which excess
iron is excreted. Accordingly, the level of dietary iron significantly influences iron absorption.
Another important factor in regulating iron absorption relates to the form of iron present in a
diet. Heme and non-heme iron are the two major sources of iron. Heme iron, mainly found in
meat, fish, and poultry, is more effectively absorbed than non-heme iron due to its association
with porphyrin ring [1]. A large population survey from Australia showed that average iron
storage is about twice as much as the optimal iron store in normal adults. Heavy ethanol intake
and high meat consumption are suggested to be the critical factors affecting iron absorption
and storage in this population [2]. Additionally, iron overload is common in industrialized
countries where red meat consumption and the use of iron fortification products are wide-
spread [3]. Hepatotoxicity and spleen dysfunction are the most common pathological findings
in patients with iron overload. The etiology of these multiple organ dysfunctions could be
attributed to the presence of excess free iron released through the breakdown of heme by heme
oxygenase (HO-1), which is ubiquitous abundant in such reticuloendothelial organs [4]. This
free iron increases oxidative stress via generation of reactive oxygen species (ROS) [5] as well
as depletes cellular stores of antioxidants [6]. Consequently, it is important to maintain iron
homeostasis via ensuring proper iron supply while preventing accumulation of excess iron.

In all iron overload-associated diseases such as thalassemia, sickle cell disease, and myelo-
dysplastic syndromes, iron removal by iron chelation therapy is an effective and life-saving
strategy. The current clinically available iron-chelating agents deferoxamine, deferiprone, and
deferasirox show several side effects and limitations [7]. Accordingly, a new avenue is required
to provide more effective treatment with lesser side effects to patients with iron overload.
Curcumin, the main polyphenol in turmeric (Fig 1A), has antioxidant, anti-inflammatory,
and iron-chelating properties [8,9]. At molecular level, Curcumin downegulates various
pro-inflammatory intracellular systems such as transcription factor nuclear factor κB (NFκB),
inducible nitric oxide synthase, and hypoxia-inducible factor-1. Meanwhile, curcumin activates
numerous antioxidant systems such as erythroid 2-related factor-2, and members of the vita-
gene family (e.g., heat shock protein 70, heme oxygenase-1 (HO-1), and thioredoxin) [10].
Given this complex array of interactions, curcumin represents a promising therapeutic option
in the management of free radical-related diseases [11]. However, the effects of curcumin on
hepatic and splenic abnormalities induced by iron overload have not been clearly investigated.

Previously, we reported the deleterious impact of excessive environmental iron on human
health among Egyptians who live in an area with high iron content in drinking water [12,13].
In the current study, we aim to determine whether curcumin supplementation would attenuate
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hepatic and splenic abnormalities induced by iron overload and to explore the underlying
mechanisms.

Materials and Methods

Materials
Na2HPO4, KH2PO4, p-phenylenediamine.HCl, and NaNO2 were purchased fromMerck
(Darmstadt, Germany). Nitrobluetetrazolium (NBT), Potassium Ferrocyanide, phenazine-
methosulfate (PMS), NADH, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB), thiobarbituric
acid (TBA), sodium dodecyl sulfate (SDS), curcumin, and dianisidine dihydrochloride were
obtained from Sigma (St Louis, MO, USA).

Animal care and treatments
All procedures with animals were performed in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and approved by the Research Ethics
Committee at the Faculty of Pharmacy, Mansoura University (Mansoura, Egypt). Young albino
male Sprague Dawley rats were obtained from Theodor Bilharz institute, Imbaba, Cairo, Egypt
at 6–8 weeks old with an average body weight of 150 gm. Rats were housed in well-ventilated
opaque polypropylene cages. All animals had a free access to balanced laboratory diet and
water ad libitum. Water is municipality tap in drinking bottles. Animals were acclimated to the
housing conditions (12-h light/dark cycle, temperature 25°C, relative humidity (40%–60%) for
at least 5 days prior to initiation of experiment and were then divided randomly into three
groups (n = 5); group 1 (control rats without iron supplementation), group 2 (rats supple-
mented with iron in a drinking water for 60 days and then left untreated for 60 more days)
and group 3 (rats supplemented with iron in a drinking water for 60 days then treated with
100 mg/kg/day curcumin suspended in drinking water for 60 more days). The concentration of
iron used was calculated to exceed the maximum permissible concentration (MPC) for this
chemical in Egyptian Ministry of Health. MPC for Fe2+ is 0.3 mg per liter of drinking water.

Fig 1. Potential effect of curcumin on iron accumulation within liver and spleen tissues. A) Structural
characteristic of curcumin.B, C) Fold change in the level of iron (μmole/g tissue) in liver and spleen relative to
that of normal control, which was assigned a value of 1. D, E) Histological examination of liver and spleen for
iron overloaded rats with or without curcumin treatment using Prussian blue staining (blue stain).

doi:10.1371/journal.pone.0134156.g001
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Control rat group (group 1) received tap water whereas iron overloaded groups (group 2 & 3)
received drinking water containing 3 mg/L of Fe2+ (using 8.3 mg/L of FeSO4). Water consump-
tion was recorded on daily bases and the dose of curcumin was selected based on previous
studies [14]. In most animal studies, a dose range of 50–200 mg/kg body weight curcumin
exhibited a good anti-inflammatory activity and seemed to have negligible adverse effect on
human [15].

Samples Collection
At the end of the experiment, rats were anesthetized with isoflurane and killed by decapitation.
Liver and spleen tissues were excised and divided into 2 portions. One portion immediately
was frozen at −80°C for biochemical analysis. The other portion was fixed in 10% neutral buff-
ered formalin for histological examination.

Preparation of homogenates
One gram of liver and spleen from each rat was homogenized in 10 mL ice cold homogenate
buffer (0.3 M sucrose and phosphate buffer; pH 7.4) using a Teflon pestle connected to a
Braun Homogenizer Motor (25 strokes/min at 1000 rpm). The homogenate was centrifuged at
30,000 x g for 30 min at 4°C to remove cell debris and nuclei. The resulting supernatant was
used for biochemical analysis.

Estimation of iron and copper levels in liver and spleen tissues
Briefly, liver or spleen homogenates were digested with HNO3 and the residues were dissolved
in 0.1 mol/L HNO3. Samples were then analyzed for copper and iron by flame atomic absorp-
tion spectroscopy (Perkin-Elmer 2380, Norwalk, CT 06859–0012, USA) using an air acetylene
flame.

Determination of Lipid Peroxidation as an indicative of oxidative stress
The amount of lipid peroxidation was determined in term of malonyldialdehyde (MDA).
Briefly, 0.8% TBA (1.5 ml), 8.1% SDS (200 μl), 20% acetic acid (1.5 ml) and distilled water
(600 μl) were added to 200 μl tissue homogenate at temperature of 95°C for 30 min and imme-
diately cooled on ice to form colored product. The resultant pink color was a representative of
thiobarbituric acid-reactive substances (TBARS) and was measured colorimetrically at 534 nm
using a spectrophotometer [16,17].

Measurement of NO concentration in liver and spleen tissues
Liver and spleen nitrite (NO2

-) concentrations, a stable metabolic product of NO with oxygen
were assessed as indirect indicative of tissue NO levels. Briefly, conversion of nitrate (NO3

-)
into NO2

- was carried out in the presence of elementary zinc. NO2
- concentration in tissues

was determined by the classic colorimetric Griess reaction. Briefly, equal volumes of tissue
homogenate and Griess reagent were mixed at room temperature and the absorbance was mea-
sured colorimetrically at 570 nm using a spectrophotometer. The concentration of NO2

- was
determined using sodium nitrite standard curve [18].

Determination of glutathione and ascorbic acid, in liver and spleen
tissues
Levels of reduced glutathione in liver and spleen homogenates were assessed by adding DTNB
to form a stable yellow colored complex that was measured spectrophotometrically at 412 nm
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[19]. Levels of ascorbic acid in tissue homogenates were also assessed by its oxidation using
Cu+2 to form dihydroascorbic acid, which reacted with acidic 4- dinitrophenyl hydrazine to
form a red hydrazones. The resultant red color was measured spectrophotometrically at
520 nm [20].

Determination of antioxidant enzymes, Superoxide-dismutase (SOD)
and catalase (CAT)
Tissue homogenates were used for measuring the activity of the antioxidant enzymes, SOD and
CAT, using standard spectrophotometric assays. Briefly, SOD activity in the tissue homoge-
nates was determined by generating superoxide radicals using photochemical reduction of
phenazine methosulphate, which reduces nitrobluetetrazolium into a blue-colored compound,
formazone. SOD quenches free oxygen radicals and inhibits reduction of nitroblue tetrazolium,
which was measured colorimetrically at 560 nm [21]. CAT assay was carried out by assessing
the rate of hydrogen peroxide degradation at 510 nm in the presence of tissue homogenate
[22].

Determination of ceruloplasmin activity in liver and spleen tissues
Ceruloplasmin activity was determined by measuring the ability of tissue homogenates to
oxidize o-dianisidine [23]. The assays were conducted using 0.1 mol/L sodium acetate buffer.
The reaction was initiated by adding 30 ul of dianisidine dihydrochloride to small test tubes
containing 112.5 ul of buffer and 7.5 ul of tissue homogenate. The absorbance of the acidified
product was measured colorimetrically at 540 nm over 30 minutes to determine ceruloplasmin
activity.

Histological Analysis
Hepatic and splenic tissues were excised, and then fixed in 10% neutral buffered formalin. Tis-
sues were then processed for paraffin embedding and were subsequently sectioned at 3–4μm
(Reichert Jung microtome, Germany). Deparaffinized sections were stained with hematoxylin/
eosin (H&E) and Prussian blue stains to assess iron distribution [24].

Statistical analysis
All analyses were performed with the Graph Pad Prism 3 software. Data are presented as
means ±SD. Statistical differences were evaluated by one-way analysis of variance (ANOVA)
followed by checking for skewness. An unpaired t-test was performed if the distribution of the
values was Gaussian. If the distribution was not normal, a Mann-Whitney test was used. P val-
ues less than 0.05 were considered statistically significant.

Results

Increased iron intake increased iron density and induced oxidative
stress in liver and spleen and these changes were reduced by curcumin
treatment
Initially, there were no significant changes in water and food consumption or behavior among
rat groups during iron overload. We then tested whether curcumin decreases the iron accumu-
lation in liver and spleen of iron overloaded rats. As shown in Fig 1B and 1C, chronic iron sup-
plementation led to about 2.6- and 3.9-fold elevation in total hepatic and splenic iron content,
respectively, when compared to the corresponding values of control rats. Curcumin resulted in
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a significant reduction in iron content in liver and spleen of iron overloaded rats (P< 0.001).
We also investigated the distribution of iron in liver and spleen of iron overloaded rats using
Prussian blue staining. The results of Prussian blue staining showed that the hepatic cells and
splenic parenchymatic cells have the greatest iron density. Curcumin treatment also signifi-
cantly reduced the increase in iron density in the hepatic cells and splenic parenchymatic cells
of iron overloaded rats (Fig 1D and 1E).

Next we examined the effect of curcumin on iron overload–induced malonyldialdehyde
(MDA) production, a terminal compound of lipid peroxidation that is commonly used as an
index of oxidative stress. Chronic iron overload resulted in a significant increase in hepatic and
splenic MDA levels and curcumin treatment normalized the elevation in MDA in iron over-
loaded rats (P< 0.05, Fig 2A and 2B). Additionally, the increase in oxidative stress in iron
overloaded rats was associated with a marked increase in liver and spleen NO levels (P< 0.05).
Curcumin supplementation significantly reduced the elevation in hepatic and splenic NO levels
in iron overloaded rats as shown in Fig 2C and 2D.

Curcumin boosts levels of endogenous antioxidants that increased iron-
intake depletes
We next determined whether curcumin alleviation of the iron overload-induced oxidative
stress is also attributed to the restoration of endogenous antioxidant defense system. As shown
in Fig 3A and 3B, chronic iron intake was clearly associated with a significant depletion in
hepatic and splenic reduced glutathione when compared to control rats (P< 0.05). Curcumin
treatment resulted in a significant improvement in liver and spleen reduced glutathione levels

Fig 2. Effect of iron overloading on oxidative stress and NO levels in liver and spleen and potential
protective effect of curcumin. A, B) Fold change in the level of malonyldialdehyde (MDA) as a marker of
oxidative stress in liver and spleen (nmole/ g wet tissue), respectively, relative to that of normal control, which
was assigned a value of 1. Levels of MDA in liver and spleen were significantly increased in iron overloaded
rats relative to normal controls and curcumin treatment significantly decreased MDA levels in these tissues
during iron overload.C, D) Fold change in the level of NO (nmole/ g wet tissue) in liver and spleen tissues,
respectively, relative to that of normal control. Levels of NO in these tissues were significantly increased in
iron overloaded rats than in control rats and was significantly reduced by curcumin treatment in iron
overloaded rats. Data shown are the mean ± SD (n = 5).

doi:10.1371/journal.pone.0134156.g002
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by approximately 65% and 90%, respectively, in iron overloaded rats. Similarly, ascorbic acid
levels in the liver and spleen of iron-overloaded rats were 60–70% lesser than control rats (P<
0.05) and curcumin treatment increased liver and spleen ascorbic acid levels in iron overloaded
rats significantly (Fig 3C and 3D).

Chronic iron overload also lowered catalase activity in both liver and spleen homogenates
by 40 and 50%, respectively, when compared to control group. However, curcumin treatment
restored iron overload-induced depletion of catalase activity to levels even higher than control
group (Fig 4A and 4B). Similarly, curcumin treatment significantly boosted the decreased
in hepatic and splenic Cu- SOD activity in iron overloaded rats by approximately 2.4- and
2.2-fold, respectively, (Fig 4C and 4D). Because copper deficiency could be the common cause
for decreased SOD activity in iron overloaded rats and the enhancement of liver and splenic
SOD activity upon curcumin treatment could be attributed to the modulation of organ copper
content and its antioxidant protein ceruloplasmin, we finally assessed copper level and cerulo-
plasmin activity in iron overloaded rats with or without curcumin treatment as shown in Fig 5.
Both cupper level and ceruloplasmin activity significantly decreased in the liver and spleen
homogenates of iron overloaded rats compared to control group (Fig 5A and 5B). Curcumin
treatment increased copper levels and ceruloplasmin activity in liver and spleen homogenates
of iron overloaded rats (Fig 5C and 5D); however, these changes remained lesser than control
group.

Discussion
The current study demonstrated that chronic iron intake in rats increases hepatic and splenic
iron contents and these changes were associated with elevation in lipid peroxidation and
decreased antioxidant defense mechanisms. Curcumin supplementation decreases hepatic and
splenic iron density as well as oxidative stress produced by chronic iron intake together with an

Fig 3. Curcumin improves levels of endogenous non-enzymatic antioxidants that were depleted by
chronic iron intake. A, B) Fold change in the level of reduced glutathione (GSH, mg/g wet tissue) in liver and
spleen, respectively, relative to that of normal control.C, D) Fold change in the level of ascorbic acid (ASA,
mg/g wet tissue) in liver and spleen, respectively, relative to that of control. Levels of GSH and ASA in liver
and spleen were decreased in iron-overloaded rats and curcumin treatment significantly improved the
decrease in GSH and ASA levels in iron overloaded rats. Data shown are the mean±SD (n = 5).

doi:10.1371/journal.pone.0134156.g003
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Fig 4. Curcumin boosts activities of endogenous enzymatic antioxidants that were depleted with
chronic iron overload. A, B) Fold change in catalase (CAT) activity (U/g tissue) in liver and spleen relative to
that of normal control, which was assigned a value of 1; C, D) Fold change in Superoxide dismutase (SOD)
activity (U/g tissue) in liver and spleen relative to that of normal control which was assigned a value of 1.
Activities of CAT and SOD in these tissues were significantly decreased in iron overloaded rats than controls.
Curcumin treatment significantly boosted activities of both CAT and SOD in iron overloaded rats even to
higher levels than those of control rats. Data shown are the mean±SD (n = 5).

doi:10.1371/journal.pone.0134156.g004

Fig 5. Curcumin’s modulation of copper content and antioxidant protein (ceruloplasmin) activity in
liver and spleen of iron overloaded rats (A, B). Levels of copper in both liver and spleen homogenates of
iron overloaded rats treated with or without curcumin; (C, D) ceruloplasmin activity (U/g tissue) in liver and
spleen relative to normal control, which was assigned a value of 1. Compared to the corresponding values of
the control rat group, the administration of curcumin in iron overloaded rats significantly enhanced the
decrease in copper levels and ceruloplasmin activity in both liver and spleen homogenates. Data shown are
the mean±SD (n = 5).

doi:10.1371/journal.pone.0134156.g005
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improvement in antioxidant defense mechanism. These data suggest that curcumin supple-
mentation could be a potential new therapeutic option to combat pathological diseases associ-
ated with iron accumulation.

Iron overload could result from increased dietary iron absorption, hereditary hemochroma-
tosis, chronic liver diseases, and diseases associated with hemolytic anemia such as β-thalasse-
mia [25]. We have previously reported the impact of excess iron on human health in the area
with high iron content in drinking water [12,13]. Current treatment of iron overload includes
iron chelators, which are hampered by their off-target and side effects. For example deferoxa-
mine is a commonly used iron chelator; however, it has limited capacity to enter cells and is
rapidly metabolized [26,27,28]. Other iron chelators, such as deferiprone, increases risk of
agranulocytosis and neutropenia [29], whereas deferasirox increases risk of gastrointestinal dis-
turbances and hepatic failure [30]. These therapeutic limitations of current available iron chela-
tors highlight the need for alternative pharmacological interventions. In the current study, we
provide a pre-clinical evidence to use curcumin, a micronutrient with multi-target therapeutic
effects, to treat complications associated with increased iron accumulation. Curcumin pos-
sesses anti-inflammatory properties when compared to the currently used iron chelators [13]
and its efficacy has been demonstrated in different animal models for diseases associated with
oxidative injury [31,32].

It has been shown that excess iron content is responsible for functional abnormalities during
chronic iron overload; therefore, curcumin supplementation might provide beneficial effects
during chronic iron overload via chelating with free iron [33]. The specific metal chelator effect
of curcumin has been established previously in cell free system and was attributed to the pres-
ence of chemical groups such as β-diketonate group [34]. This assumption was supported
using spectrophotometric quantification of curcumin affinity to copper, zinc, and iron ions.
Although Zn2+ showed little binding affinity to curcumin, Cu2+ and Fe2+ appeared to bind at
least two curcumin molecules [35]. In vivo studies demonstrated that curcumin induced iron
depletion in mice with low levels of body iron [36]. Consistence with these findings, our study
suggests that curcumin decreased iron levels in the liver and spleen of chronic iron overloaded
rats possibly via iron chelation.

Excess iron content in the cell is potentially detrimental because it is involved in oxidation-
reduction reactions, which in turn promote tissue injury by catalyzing lipid peroxidation [6].
Iron initiates lipid peroxidation by producing highly reactive hydroxyl radicals from hydrogen
peroxide via Fenton type reactions or by complexing with oxygen directly to yield reactive
perferryl and ferryl ions [5]. The role of oxidative stress in the pathogenesis and progression of
other diseases, including cardiovascular disorders, is well established. Additionally, curcumin
has been shown to reduce oxidative stress in cardiovascular diseases [37,38]. This raises the
possibility that curcumin could provide beneficial antioxidant effects during chronic iron
overload beyond its role as an iron-chelating agent, such as the possession of antioxidant prop-
erty. The antioxidant property of curcumin is endorsed by the presence of chemical groups
such as hydroxyl, methoxy and 1,3-diketone conjugated diene system in curcumin structure
[39]. Previous studies have shown that curcumin significantly reduced the redox activity of
iron and lowered the elevation in liver and serum lipid peroxide levels during iron injection
[40]. Curcumin also reduced iron overload-induced reactive oxygen species generation and
subsequent activation of NF-κB, the key regulatory transcription factor for the inflammation-
related gene expression, in cultured hepatocytes [41]. Our study supports previous findings as
curcumin supplementation reduced lipid peroxidation during chronic iron overload. The
increased in lipid peroxidation during chronic iron overload was associated with elevation in
hepatic and splenic NO levels which could be a compensatory mechanism to quench the
elevation in oxidative stress. This assumption is supported by the fact that curcumin-induced

Curcumin in Iron Overload-Induced Toxicity

PLOS ONE | DOI:10.1371/journal.pone.0134156 July 31, 2015 9 / 13



lowering in lipid peroxidation was also associated with decrease in liver and spleen NO levels
during iron overload.

The overall reduction in oxidative stress by curcumin treatment could be also attributed to
its ability to restore activities of endogenous antioxidant defense mechanism as shown previ-
ously [42]. In our study, the elevation in oxidative stress in chronic overloaded-rats was associ-
ated with depletion of putative non-enzymatic (reduced glutathione and ascorbic acid) as well
as enzymatic (catalase, superoxide dismutase and ceroplusmin) antioxidants in liver and
spleen. Furthermore, curcumin supplementation significantly restored the depletion levels of
GSH and ASA as well as the activities of enzymatic antioxidants. Although catalase is an iron-
dependent enzyme, significant decrease in catalase activity has been shown in the current
study, similar to what previously reported in iron overload toxicity [43]. This discrepancy
between iron content and decrease in calatase activity could be attributed to the destruction of
heme by iron-induced peroxidation [44]. The decrease in catalase activity could also be attrib-
uted to decreased cupper content because curcumin-induced increases in hepatic and splenic
cupper content was associated with elevation in catalase activity during chronic iron overload.
Since the depletion of the antioxidant defense was significantly restored by curcumin treat-
ment, our study suggests that curcumin treatment could alleviate the increase of hepatic and
splenic oxidative stress during increased iron intake both directly via decreased lipid peroxida-
tion and indirectly via restoring the levels of the depleted endogenous antioxidant defense
mechanism.

Besides curcumin’s ability to restore activities of GSH, ASA, CAT, and SOD, other reported
effects might have contributed to our finding of curcumin-anti-oxidant effect, such as the
induction of HO-1, a redox-sensitive inducible protein that provides protection against various
forms of stress [10]. The reaction products of HO-1 induction, biliverdin, and its subsequent
metabolite, bilirubin, have antioxidant properties [45]. However, iron released from HO-1
induction can convert H2O2 to the highly reactive OH• [4]. At first glance, up-regulation of
HO-1 by curcumin would seem to be counterintuitive, since uncontrolled release of iron into a
cell would promote the Fenton reaction. However, in conjunction with HO-1 up-regulation,
curcumin detoxifies iron by subsequently sequestrating it within its own structure where it can-
not be utilized for the Fenton reaction [35,36].

These multiple effects of curcumin envision its future clinical use as a promising treatment
for iron overload. However, some adverse effects may arise during curcumin treatment, such as
stomach upset as well as impaired activity of hepatic drug-metabolizing enzymes, including
cytochrome P450, glutathione-S-transferase, and UDP-glucuronosyltransferase, leading to
increased toxicity of co-administered drugs [46,47,48]. These raise clinical concerns for using
curcumin in patients with gastroesophageal reflux disease or those taking drugs metabolized by
the aforementioned enzymes, such as digoxin, acetaminophen and/or morphine. Moreover,
the lack of long-term toxicity studies in humans and limited curcumin bioavailability still rep-
resent potential barriers against its clinical utilization [47,49,50]. Nevertheless, future direction
will focus on improving curcumin bioavailability while using an appropriate dose of curcumin
that will not significantly disrupt iron homeostasis. This will likely bring curcumin as a valuable
therapeutic option for patients at high risk of chronic iron accumulation.
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