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Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary
inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Al-
though routinely used in thoracic imaging, computed tomography has thus far not been compellingly
shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a
nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine
adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative
characterization of the utility of MRI to identify inflammation is required. Such characterization
may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive
spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate
2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex
vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and
interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a
preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated
with chronic pulmonary inflammation.
Methods: The authors’ image analytics framework first involves reconstructing the histologic volume
in 3D from individual histology slices. Second, the authors map the disease ground truth onto in
vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally,
computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging
signatures of disease presence and extent.
Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruc-
tion and the histology—MRI fusion, in the context of an initial use case involving characterization of
chronic inflammation in a mouse model. The authors’ evaluation considered three mice, two with an
inflammation phenotype and one control. The authors’ iterative 3D histology reconstruction yielded
a 70.1% ± 2.7% overlap with the ex vivo MRI volume. Across a total of 17 anatomic landmarks
manually delineated at the division of airways, the target registration error between the ex vivo MRI
and 3D histology reconstruction was 0.85±0.44 mm, suggesting that a good alignment of the ex vivo
3D histology and ex vivo MRI had been achieved. The 3D histology-in vivo MRI coregistered volumes
resulted in an overlap of 73.7%±0.9%. Preliminary computerized feature analysis was performed on
an additional four control mice, for a total of seven mice considered in this study. Gabor texture filters
appeared to best capture differences between the inflamed and noninflamed regions on MRI.
Conclusions: The authors’ 3D histology reconstruction and multimodal registration framework were
successfully employed to reconstruct the histology volume of the lung and fuse it with in vivo MRI to
create a ground truth map for inflammation on in vivo MRI. The analytic platform presented here
lays the framework for a rigorous validation of the identified imaging features for chronic lung
inflammation on MRI in a large prospective cohort. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4923161]
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1. INTRODUCTION

Pulmonary inflammation is a common condition associated
with a variety of lung diseases such as asthma or chronic
obstructive pulmonary disorder.1 Manifestations of inflamma-
tion include hypertrophy of airway epithelial cells, infiltration
and activation of leukocytes, and structural changes to the
architecture of the lung.2,3 The quantitative characterization
of pulmonary inflammation on in vivo imaging holds the
potential to facilitate improved and early characterization of
lung diseases, as well as the investigation of anti-inflammatory
drugs.4

Recent studies have investigated the ability of in vivo
imaging, both computed tomography (CT)5–7 and magnetic
resonance imaging (MRI),8–11 to identify pulmonary inflam-
mation in preclinical models. These studies suggest that
in vivo imaging may enable characterization of pulmonary
inflammation. MRI is of particular interest in this regard as it
is a nonradiation modality with a potentially better ability to
image pulmonary soft tissue compared to CT.8,9,11–14 There is
however a need for computerized decision support and feature
analysis tools to define and evaluate quantitative imaging
signatures for pulmonary inflammation on in vivo MRI.

Currently, in most instances, the only way to definitively
ascertain the presence and spatial extent of diseases is via
pathologic examination of stained histology slices (Fig. 1).
While surgically excised lung histopathology could serve not
only for defining the precise extent and presence of disease, it
could also serve as a conduit to map the extent of disease onto
the corresponding in vivo imaging via coregistration. Such
accurate mapping of disease extent on in vivo imaging paves
the way for a rigorous comparison of imaging appearance
of disease and normal regions. Furthermore, when image
intensities alone are unable to discriminate disease from other
confounding tissue regions, computerized feature analysis
methods such as textural analysis could help prize out subtle
cues to distinguish the similar appearing tissue regions.15–18

In this work, we introduce a novel analytic framework
to facilitate imaging signature discovery for disease. Our
framework was evaluated in the context of initial MRI based
characterization of chronic inflammation in a mouse model.
Specifically, the framework is comprised of three modules.
First, the histology specimen is digitally reconstructed in
3D in order to facilitate its fusion with in vivo MRI. Such
reconstruction is required as correspondences between lung
histology and in vivo MRI slices may not be ascertainable
due to different image viewing and histology cutting planes.

F. 1. Lung hematoxylin and eosin (H&E) stained slice showing regions of
(a) inflammation and (b) normal tissue. Airways (*) and blood vessels (→ )
are visible.

Second, the 3D inflammation is mapped from the 3D
reconstructed histology volume onto the in vivo MRI by
coregistration of the 3D histology volume and the in vivo
MRI using the ex vivo MRI as a conduit. Finally, image-
derived features are extracted from the in vivo MRI of two
mice with a phenotype of chronic pulmonary inflammation
and the normal lung of five control mice. A comparison is
performed between inflamed regions mapped from histology
in two mice with an inflammation phenotype and normal lung
from five control mice. By choosing these specific phenotypes,
we can evaluate our framework to distinguish inflammation
on in vivo MRI from normal lung tissue. The 3D histological
reconstruction and its fusion with MRI were qualitatively and
quantitatively evaluated in three mice, the two mice with an
inflammation phenotype and one control mouse, while the
preliminary textural analysis was performed on the latter
three mice and an additional four control mice. While we
do not claim in this paper to have identified the definitive
computer extracted MRI features for diagnosis of pulmonary
inflammation, the presented algorithmic pipeline paves the
way for future discovery of validation of imaging signatures
for diseases, including inflammation.

The remainder of the paper is organized as follows. First,
we discuss previous work (Sec. 2) and provide an overview
of our methodology (Sec. 3). A detailed methodological
description of our framework is provided in Sec. 4, while
the results are presented and discussed in Sec. 5. Finally, in
Sec. 6, we present concluding remarks and future directions.

2. PREVIOUS WORK

In this paper, we present a pipeline of algorithmic steps in
order to facilitate discovery of in vivo imaging signatures
for disease. Specifically, in this paper, we evaluate this
framework for the problem of identifying computer extracted
MRI features associated with pulmonary inflammation in
mice. Since our framework involves both 3D histologic
reconstruction and radiology-pathology coregistration, we
discuss previous related work in the context of these two
areas.

Recently, a few approaches have been presented for
coregistration of ex vivo histology and in vivo imaging
data. Some approaches attempted to directly map the 2D
histology slices onto the in vivo imaging by first determining
and establishing slice19–22 or landmark correspondences.23

Alternative approaches inspired by the actual process of
histology sample preparation have also been proposed.24 Yet,
when slice correspondences between the ex vivo histology
and in vivo imaging datasets do not exist or are difficult to
identify, 3D reconstruction techniques may allow for creation
of a 3D histology volume and enable volumetric coregistration
with corresponding in vivo imaging.25 Such techniques are
particularly useful in preclinical studies, where finely cut
histologic sections corresponding to the in vivo imaging may
be available. Some approaches have employed one-to-one
registration26–29 of histology slices by utilizing rigid26,27 or
deformable28,29 transforms. However, one-to-one registration
of adjacent slices is prone to propagation of registration errors
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F. 2. Overview of our algorithmic pipeline for characterization of pulmonary inflammation. Module 1: 3D histology volume is reconstructed from the 2D
histology sections using ex vivo MRI as a conduit; the reconstruction also results in the generation of a 3D map of inflammation (yellow). Module 2: Volumetric
coregistration of 3D histology and in vivo MRI volumes allows for the mapping of inflammation onto in vivo imaging. Module 3: Computer extracted image
features of inflammation can then be identified from the in vivo MRI.

between slices, resulting in a progressive shift along the Z-
axis. Alternative approaches have included one-to-many30,31

or many-to-many registration schemes32 either using a coarse-
to-fine deformable transforms30 or natural gradients.31 Yet
these methods have not been applied in the context of a
multibody registration of multiple objects relative to each
other.

Once the coregistration of the histology volume and the in
vivo MRI has been accomplished, mapping of disease extent
on the in vivo imaging can be established. This then paves
the way for application of computerized feature analysis to
identify imaging features to distinguish disease presence from
confounders. Such methods are needed as image intensity
alone may be insufficient to capture subtle differences between
normal and diseased regions.15–18,33,34

3. BRIEF OVERVIEW AND NOVEL CONTRIBUTIONS

The current study seeks to develop the algorithmic pipeline
to pave the way for quantitative characterization of in vivo
imaging signatures of disease. In this work, we specifically
look at the use case of characterization of pulmonary
inflammation on MRI in a mouse model for evaluating the
framework. Figure 2 illustrates the three main modules of our
framework and the novel aspects of our approach.

Module 1 (Sec. 4.B): The 3D histology volume H is
reconstructed from the 2D histology sections using an iterative
alignment scheme that progressively increases the optimiza-
tion complexity from a single body registration to a multibody
registration of individual lobes. This reconstruction scheme
was designed to facilitate the alignment of slices between
each other within the 3D volume, while simultaneously

correcting for lobe movement relative to each other during
histology sample preparation. Module 1 introduces a novel
multiresolution reconstruction of the 3D histology volume
based on a one-to-many multibody refinement of lung lobes.
This approach involves making the individual lobes “spatially
aware” of each other during the registration,35 the spatial prior
information coming from the ex vivo MRI.

Module 2 (Sec. 4.C): The 3D histology volume H is
registered to the in vivo MRI using both an affine and
deformable transform with the ex vivo MRI serving as
a conduit for the registration (similar to Module 1). The
registration of the histologically reconstructed volume with
the in vivo MRI enables the mapping of the extent of lung
inflammation from the 3D histology volume onto the in vivo
MRI. This novel registration approach limits the influence of
imaging artifacts, such as elastic deformations on account of
the absence of neighboring organs, as well as tissue sample
preparation that causes tissue shrinkage.

Module 3 (Sec. 4.D): Textural features36–38 are extracted
from in vivo MRI and compared between the inflamed and not
inflamed regions. The preliminary feature analysis considered
in this module serves as a means of showcasing how the
presented framework can enable feature discovery.

4. METHODOLOGY
4.A. Data

Seven mice were included in this study: two surfactant
protein D knockout (Sftpd−/−) mice which have a demon-
strated phenotype of chronic pulmonary inflammation and five
C57BL/6J wild type (WT) mice (normal controls) (Table I).
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T I. Description of the acquisition and preparation protocols for the multimodal radiology and pathology
datasets used for evaluating our analytic framework. The 3D reconstruction of the histology was performed at
0.5x, while the in vivo MRI was resampled to have consistent, close to isotropic voxels sizes of 250 µm3 for
feature analysis. The lungs of two Sftpd−/− mice and one WT mouse were fixed, carefully sliced, and had H&E
staining. These histology images were utilized to assess the accuracy of the 3D histology reconstruction approach
and the quality of the histology-MRI fusion. The remaining four WT mice were only used for the validation of
the textural analysis module. Since the latter four mice are control animals without an inflammation phenotype,
no mapping of histology onto the imaging is required and hence was not performed.

Mouse Count Modality Sequence Resolution (µm3) Voxels Annotations

2 In vivo MRI T1 GRE M ×M ×500 256×256×N Lung, blood
M ∈ {156,234} N ∈ {32,34} vessels

M ×M ×500 M ×M ×N Lung, airways
Sftpd−/− 2 Ex vivo MRI T1 GRE M ∈ {125,156} M ∈ {256,512}

N ∈ {20,34}
M ×M ×N Lung, airways

2 Histology 0.75×0.75×110 M ∈ {5000,15 000} Blood vessels
N ∈ {62,74} Inflammation

1 In vivo MRI T1 GRE 234×234×500 256×256×32 Lung

1 Ex vivo MRI T1 GRE 156×156×500 256×256×34 Lung, airways

WT 1 Histology 0.75×0.75×110 M ×M ×79 Lung, airways
M ∈ {5000,15 000} Blood vessels

M ×M ×N M ×M ×N Lung
4 In vivo MRI T1 GRE M ∈ {156,500} M ∈ {128,256}

N ∈ {200,500} N ∈ {30,128}

The mice allow us to compare image-derived features between
inflamed and noninflamed regions. The lung MRI was
acquired with a 1 Tesla (T) M2 High Energy Performance
MRI System (Aspect Magnet Technologies Ltd.). A T1-
weighted MR gradient recalled echo sequence was used.
Imaging parameters include TE/TR = 3.5/15 ms, flip angle
30◦, 0.55 mm slice thickness. MR images were taken from in
vivo lungs of anesthetized mice, under isoflurane, gated for
peak inspiration.

After the in vivo MRI acquisition, the mouse lung was
extracted and the inflation was fixed to the same volume as the
in vivo MRI lung with 4% paraformaldehyde and 2% sucrose.
Ex vivo lungs were imaged using the same sequence protocol
as the in vivo MRI (Table I). In order to use the ex vivo MRI as
a conduit for the histology reconstruction, the ex vivo images
were acquired after the lung was fixed (via inflation with
fixative). Since the ex vivo scan shows an inflated lung and
to facilitate the coregistration of in vivo and ex vivo MRI, we
also used an inflated lung for the in vivo MRI acquisition. The
fixed lung was then embedded in paraffin and 5 µm sections
were cut with a spacing of 110 µm (Table I). These sections
were stained with hematoxylin and eosin (H&E) (Fig. 1) and
digitized at 10x magnification using the Olympus VS120-SL
scanning microscopy system.

The specific physiologic characteristics captured by each
of the acquired modalities are summarized below.

1. Whole body 1 T in vivo MRI shows the in vivo lung
at a lower resolution, allowing for the visualization
of arteries within the lung as hyperintense densities.
Other organs, e.g., heart or liver, are spatially located

in the proximity of the lung, resulting in its elastic
compression.

2. Ex vivo MRI shows the lung at better resolution
compared to the in vivo MRI and allows for the
visualization of large bronchi (hypointense regions).
The same protocol used for in vivo imaging was also
used for ex vivo imaging. The ex vivo acquisition
provides a conduit to coregister in vivo MRI with ex
vivo histology as they share similar attributes.

3. Ex vivo H&E stained histology slices are obtained
from the entire lung of three mice, two Sftpd−/− and
one WT. The lungs of the remaining four WT mice
did not undergo histology preparation, as they lack
inflammation, and thus, they do not require histology
mapping on in vivo imaging. The histology images have
the highest resolution, allowing for the annotation of
inflammation, blood vessels, and airways. Inflammation
was identified as hypertrophy of airway epithelial cells
and leukocyte infiltration39 and was manually delineated
by an expert with substantial expertise in lung pathol-
ogy. Large airways, blood vessels, and lung lobes were
identified using an automatic active contour approach,40

parameterized to segment connected regions of interest.
The results of the automated segmentation were then
further manually partitioned into different anatomic
classes: airways, blood vessels, or lung lobes. In spite
of careful sample preparation, the histology slices
may suffer from preparation artifacts, e.g., folding
and shrinking. The histology slices were downsampled
to a 0.5x magnification for further processing and
reconstruction.
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4.B. Module 1: Reconstruction of the 3D
histology volume

The 3D reconstruction follows an iterative approach
(Fig. 3), in which the complexity of the registration is
progressively increased. See Table II for a summary of
notation used in this manuscript and Secs. 4.C and 4.D.

The reconstruction involves optimization of the following
scoring function for each histological slice Hi, i ∈ {2,. . .,N},
where N represents the total number of slices:

ψ(T ,Hi)=ψH(T (Hi),k,k ′)+ w̃ ·ψM(T ,(Hi),Mi), (1)

where T is the rigid transformation of the sliceHi. The term
ψH quantifies the intrinsic alignment of Hi to neighboring
k and k ′ slices located either lower and, respectively,
higher in the Z stack. The Z stack refers to the third
dimension in the reconstructed volumeH , where the first and
second dimensions are defined relative to the 2D histology
slice coordinate frame. The second term, ψM, encodes the
alignment of Hi with the corresponding slice in the ex vivo
MRI, Mi, while w̃ represents the weight of the ex vivo term.
Module 1 has four submodules.

1. Module 1a. One-body backward intrinsic registra-
tion ensures that each slice Hi is optimized within the
reconstruction, ∀i ∈ {2,. . .,N}, relative to the adjacent
k = 7, Hi− j, j ∈ {1,. . .,k}, i− j > 0 slices located lower
in the Z stack (backward registration). The ex vivo
MRI is not considered in the scoring function as it
has not yet been registered relative to the 3D histology
reconstruction (i.e., w̃ = 0). Specifically, in Module 1a,
Eq. (1) becomes

ψ(T ,Hi)=
k
j=1

w j ·MI(T (Hi),Hi− j), (2)

F. 3. Submodules of the histology reconstruction procedure (see Sec. 4.B
for details).

T II. Notations used in this paper.

Symbol Definition

N Number of histology slices
H 3D histology volume
Hi Histology slice, i ∈ {1, . . .,N }
Hm

i Unit m in Hi

A AirwaysM Ex vivo MRIMi Ex vivo MRI slice, i ∈ {1, . . .,N }
M In vivo MRI
ψ Optimized scoring function
ψH Histology scoring function
ψM Ex vivo MRI scoring function
MI Mutual information
T Rigid transformation
w j Weight of the adjacent slice
w̃ Weight of ex vivo term

where w j = exp(−( j2/4)) controls the influence of
adjacent slices based on their proximity within the Z-
stack.

2. Module 1b. 3D histology-ex vivo MRI registration
ensures that the lung segmented from the ex vivo MRI
is coregistered to the 3D histology volume,H , using an
affine transformation. A three-level pyramid registration
scheme within the ITK-based package elastix41 was
used to optimize the normalized mutual information,
employed as the scoring function.

3. Module 1c. MultiBody backward refinement to ex
vivo MRI ensures that independent lobular units m
are considered and their rigid transforms T m are
individually optimized. During histology sample prep-
aration (fixing and staining), the five lobes may move
relative to each other. The five lobes were split into two
independent units, m ∈ {1,2}, the left and right lung,
forming Hm

i , ∀i ∈ {1,. . .,N}, with their own optimized
rigid transformation T m

i . More than two lobular units
can be considered. Eq. (1) thus becomes

ψ(T m,Hm
i ) = ψH(T m(Hm

i ),k)
+ w̃ ·ψM(T (Hm

i ),H n
i ,
Mi), (3)

T III. Computer extracted MRI derived features capture different types
of information, e.g., quantifying the smoothness, heterogeneity, or directional
patterns. These features are not intended as a comprehensive compendium
of textural features, but rather as an illustration of the types of feature
interrogation of the diseased regions that can be facilitated via the newly
presented histologic reconstruction and radiology–pathology coregistration
pipeline.

Feature category Number of features Captured information

First order statistics
(Ref. 36)

4 Smoothness

Second order statistics
(Ref. 36)

13 Edges, heterogeneity

Haralick (Ref. 37) 13 Intensity co-occurrence
Gabor filter (Ref. 38) 48 Directional linear patterns

Medical Physics, Vol. 42, No. 8, August 2015
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F. 4. Histology volume reconstruction, H ; (a) cut through H shows the 3D continuity of the lung outline (brown), airways (blue outline, see arrow), and
inflammation (yellow); (b) same as (a) with completely reconstructed airways (purple) and blood vessels (red); arrows point to reduced zig-zag pattern which is
a qualitative indication of a good alignment; (c) overlay of H and ex vivo MRI, M (green); (d) alignment of airways, histology (purple), ex vivo MRI (green).

where m, n ∈ {1,2}, m , n represent independent units.
ψH(T (Hm

i ),k) is defined using Eq. (2) while ψM
encodes the mutual information of the MRI slice, Mi

and the entire histology slice, Hi composed of the
transformed unit Hm

i and not transformed units H n
i ,

where n,m, w̃ > 0.
While only the optimized unit m is considered in ψH ,

all independent units,Hm
i , are considered in the second

term, ψM. This helps to ensure that each unit is aware
of the location of the other units and thus helps to limit
their overlap.

4. Module 1d. Multibody backward and forward
refinement ensures that the independent units Hm

i are
optimized relative to the lobular units in the adjacent
slices i+ j, j ∈ {−k,k ′}, j , 0. As opposed to Module 1c,
in Module 1d, we consider the lobular units of adjacent
slices located not only lower but also higher in the Z
stack. Specifically, Eq. (3) becomes

ψH(T (Hm
i ),k,k ′)=

k′, j,0
j=−k

w j ·MI(T (Hm
i ),Hm

i+ j). (4)

Module 1 iterates between the different submodules 1a–d
using the following scheme. In iteration 1, the procedures
defined in submodule 1a are performed. In iteration 2, the
procedures defined in submodules 1b, 1c are performed. In
iteration 3, the procedures defined in submodules 1b, 1c are
reiterated to refine the reconstruction relative to the ex vivo
MRI. Finally, in iteration 4, the steps in submodule 1d are
employed to refine the final reconstruction. At each iteration,
the transformation of each histology sliceHi,i ∈ {1,. . .,N}, or
respective lobular unit, is refined.

Module 1 is evaluated by assessing the accuracy of the 3D
histology volume reconstruction and registration with ex vivo
MRI via the following measures.

1. The intrinsic alignment of the histology slices: DSCH
= 1/(N − 1)×N−1

i=1 D(Hi,Hi+1), where the dice simi-
larity coefficient (DSC) is defined as D(A,B) = 2|A
∩B|/(|A|+ |B|) and |A| represents the cardinality of the
set A.

2. Alignment of the reconstruction, H , with the ex vivo
MRI, M: IDSC=D(H ,M).

3. The alignment of L landmarks corresponding to the
airway tree divisions within histology, AH ,l, and ex
vivo MRI, AM,l, l ∈ {1,. . .,L},

RMSD= 1/L×


L
l=1

|AH ,l,AM,l |2. (5)

A good reconstruction and fusion are suggested by a large
DSC (max value 1) and reduced RMSD (min value: 0).

4.C. Module 2: Map disease ground truth
from histology onto in vivo MRI volume

The linear alignment of H andM was achieved using M
as a conduit in the affine registration. To maintain the higher
resolution offered by the histology, the registrations were
performed using an isotropically upsampled in vivo MRI. H
is warped toM using a B-spline based free-form deformation
in a three-level pyramid registration scheme that optimizes
the normalized mutual information, where the finer pyramid
has a grid spacing of 4 mm. The optimized deformable
transformation that warpsH ontoM is also applied to project
the 3D inflammation ground truth on to M, thus creating
the in vivo ground truth for inflammation. We evaluated the
registration of H with M by quantifying the alignment via
DSC=D(H ,M).

F. 5. Reconstruction viewed from different planes, including axial,
sagittal, and coronal. (Multimedia view) [URL: http://dx.doi.org/10.1118/
1.4923161.1]
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F. 6. Progression of 3D reconstruction quality per iteration shown for three mice: (a) DSCH , (b) IDSC, and (c) landmark RMSD; iteration 1 - Module 1a,
iteration 2 - Modules 1b,1c; iteration 3 - Repeat Modules 1b, 1c; iteration 4 - Module 1d.

4.D. Module 3: Identify computer extracted features
associated with inflammation

Following standardization of lung intensities via landmark-
based histogram alignment,42 78 features were derived from
the in vivo MRI in both Sftpd−/− and control mice after the
in vivo MRI was resampled to a consistent 250 µm voxel
size. The computer derived features extracted from M are
summarized in Table III.

These features attempt to capture subtle subvisual differ-
ences in image intensity that may not be visibly discernible on
the original MRI. For instance, Haralick features37 capture co-
occurring intensity statistics, while the Gabor filters38 are steer-
able wavelets that emphasize and capture oriented gradient
patterns in the image. First and second order statistics36 are
able to characterize image smoothness and identify edges.

As previously mentioned, the goal of this work was not so
much to validate imaging signatures for lung inflammation,
but so much as to pave the framework to facilitate feature
discovery. With this in mind, we evaluated our framework with
some well established image texture features to identify their
association with inflammation in the lung. These features were
largely drawn from classical textural operators including first
and second order statistics,36 steerable filters,38 or Haralick
features,37 with the goal of being able to characterize the
heterogeneous appearance of inflammation. Manifestations
of inflammation include accumulation of foamy appearing

alveolar macrophages and of peribronchial and perivascular
infiltrates in the lung.2,3 We expect that these accumulations
modify the visible smoothness of the lung, which could be
captured via first and second order statistical texture features.36

Moreover, such infiltrates may appear with similar intensity
patterns at different locations within the lung, suggesting the
need of Haralick features to identify such correlated patterns.
The discontinuous accumulation of leukocytes may result in
the creation of heterogeneous patches with borders that may
be emphasized by Gabor filter features.

In order to compare the appearance profiles of inflamed
and noninflamed regions and identify those textural features
that are most discriminating between inflammation and
noninflammation, we evaluate the difference between feature
value distributions via the Bhattacharyya distance43

Bh(p,q)=−ln*
,

B
b=1

(√pb,qb)+
-
, (6)

where p and q are the discrete probability density function of
the image derived features for the inflammation and normal
regions, respectively. B represents the number of bins, while
pb and qb are the normalized frequency of textural feature
responses within each bin B.

As inflammation has a discontinuous spatial distribution,
we choose to compare image derived features within inflamed
regions in the Sftpd−/− mice and with an anatomically

F. 7. Visualization of the 3D histology volume, H (brown), and in vivo MRI volume,M (yellow), alignment; (a) overlay of H andM; (b) overlay of airways
from H (dark purple) onto blood vessels from M (red). (c) Overlay of blood vessels from M (red) and blood vessels from H (pink). Arrow points to area of
visually assessed close overlap.
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T IV. Mean and standard deviation of DSC between reconstructed his-
tology volumes H and in vivo MRI lung volumes,M.

Affine Deformable

Sftpd−/− 56.0 (0.7) 73.7 (0.9)
Control 62.2 (8.3) 75.9 (5.4)

corresponding region of interest in the control mice. The
regions of inflammation were identified in the Sftpd−/− mice
as described in Secs. 4.B and 4.C.

5. EXPERIMENTAL RESULTS AND DISCUSSION
5.A. 3D histology reconstruction

Figure 4 depicts the final results of successfully aligning
the 2D H&E slices into a 3D histology volume without
introducing noticeable “drift” between slices. The exterior
surface of the 3D reconstruction (brown in Fig. 4) appears to
be smooth, without significant zig-zag patterns visible at the
edges of the reconstruction [see arrow in Fig. 4(b)].

The airways appear as continuous 3D structures [arrow in
Fig. 4(a) and Fig. 5 (Multimedia view)] within the histology
reconstruction [purple in Figs. 4(b) and 4(d)], suggest-
ing minimal alignment errors between slices as illustrated
in Figs. 4(a)–4(c) and assessed quantitatively by DSCH
[Fig. 6(a)]. The extracted airways appear to closely overlap
in 3D between the histology and the ex vivo MRI lung,
as illustrated in Figs. 4(d). Moreover, the high degree of
reconstruction accuracy is also reflected quantitatively in the
low RMSD= 0.85±0.44 mm between the 17 landmark points
on the 3D histology reconstruction and ex vivo MRI of the
three mice for which the reconstruction was performed.

The reconstruction approach was evaluated for the three
mice (two Sftpd−/−mice and one control WT) at each iteration
(Fig. 6). The reconstructionH shows a high DSCH following
Module 1a (first iteration), suggesting that the one-to-many
registration without spatial constraints is able to closely
coregister the histology slices. Yet, both the IDSC and RMSD

T V. Top five scoring features ranked according to the Bhattacharyya
distance.

Feature Parameters Rank

Gabor Angle: 0 1
Gabor Angle: 2.74 2
Gabor Angle: 0.39 3
Gabor Angle: 0.78 4
Gabor Angle: 2.35 5

show their worse performance when the registration is not
constrained by M.

Following the execution of Modules 1b, 1c (second
iteration) in which the lobe units are simultaneously registered
with constraints provided by ex vivo MRI, the intrinsic DSCH
and M and landmark RMSD significantly improve, possibly
reflecting the benefit of the second iteration.

In the third iteration, Modules 1b and 1c are rerun to
refine the transformation of the ex vivo MRI and subsequently
of the lobular units. Fig. 6 shows minimal improvement in
DSCH , but substantial improvement of IDSC. Moreover, the
decrease in RMSD suggests that the refinement of the ex
vivo MRI transformation relative to the 3D histology recon-
struction is required to further improve the reconstruction
accuracy.

After Module 1d (fourth iteration), IDSC reach their
maxima, while the RMSD deviation is minimized to 0.85
±0.44 mm. DSCH decreases slightly.

5.B. Fusion of 3D histology to in vivo MRI

Figure 7(a) shows the 3D histology volume, H (brown),
overlaid onto in vivo MRI, M (yellow). The airway tree
(purple) in Fig. 7(b) is shown relative to the blood vessels
(red) extracted from M to depict the intertwining of the
two systems. As expected, the two systems run in parallel to
each other, without overlap as qualitatively seen in Fig. 7(b).
Alignment accuracy is assessed qualitatively by visually
investigating the blood vessel alignment, which in these
figures appear to suggest close correspondences between
blood vessels inM andH (pink) [see arrow in Fig. 7(c)].

F. 8. Preliminary evaluation of the framework in characterizing imaging signatures of inflammation. The most discriminative feature (Gabor) is shown using
the same colormap in (a) Sftpd−/− lung with mapped inflammation (outlined with the black and white line) from 3D histology reconstruction; (b) WT lung with
volume of interest (outlined with the black and white line); (c) feature distributions show modest separation between the computer extracted features derived
from the inflamed and noninflamed regions.
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T VI. Top three features within each feature group ranked according to
the Bhattacharyya distance.

Feature Parameters Rank

Angle: 0.00 1
Gabor Angle: 2.75 2

Angle: 0.39 3

Energy 10
Haralick Correlation 11

IDM 12

Median 8
First order Range 13

Mean 17

Gradient magnitude 38
Second order Gradient X 44

Sobel X 56

MRI intensity 16

Table IV summarizes the quantitative evaluation via dice
similarity coefficient, DSC, after each of the affine and
deformable registration steps. DSC in the twoSftpd−/−mice is
computed between H andM and not surprisingly shows an
improvement in alignment following deformable registration.
For the five control mice, DSC reflects the quality of regis-
tration that allows for the identification of the anatomically
corresponding region of interest.

5.C. Feature characterization

Figure 8 illustrates a Gabor wavelet representation. This
feature was ranked first according to the Bhatacharyya
distance (Table V) reflecting the most substantial difference
in distribution between the Sftpd−/− inflammation [Fig. 8(a)]
and the corresponding volume of interest in the control mouse
[Fig. 8(b)]. These differences are also reflected in the box
and whiskers plot in Fig. 8(c). The statistical significance
of these differences was not evaluated in this preliminary
study due to the small sample size. The difference in Gabor
features between inflamed and noninflamed regions appears
to suggest that inflammation may influence the appearance of
linear patterns within the in vivo MRI. Clearly, independent
validation in a large cohort is needed to establish the statistical
significance of these findings.

Table V shows the five-top ranked features according
to the Bhattacharyya distance,43 while Table VI shows the
three-top ranked features, according to the same criterion,
but within each feature class. Based on the Bhatacharyya
distance criteria, the MRI intensity ranked 16 out of 79
features (Table VI), suggesting that several computer extracted
features were more specific for identification of inflammation
compared to the original signal intensity.

6. CONCLUDING REMARKS

We introduced a general analytic framework for 3D
histologic reconstruction, multimodal fusion of radiology

and pathology in order to facilitate computer based feature
interrogation of disease appearance on in vivo imaging. The
framework enables the mapping of disease extent from the
histology onto the in vivo imaging, creating the disease ground
truth required for further feature analysis. We evaluated our
framework in a preliminary study aimed at characterizing
the in vivo MRI signature of inflammation in a preclinical
mouse model. Our evaluation showed that potential candidate
in vivo imaging computer extracted MRI features of lung
inflammation may be identified using our framework.

Our methodology comprised of multiple individual mod-
ules including (1) reconstruction of 3D histology volume
using ex vivo MRI as a conduit, (2) coregistration of the
3D histology volume with the in vivo MRI, and (3) textural
feature comparison between diseased and normal regions.
Qualitative and quantitative results suggest that the individual
modules have a high degree of accuracy. Our framework
yielded (1) accurate intrinsic alignment of the 2D histologic
slices within the reconstruction, (2) proper alignment of the
3D histology and ex vivo MRI, and (3) accurate alignment
of the 3D histology and in vivo MRI on the three mice, two
Sftpd−/− and one control, considered in our study. Despite the
high variability in in vivo MRI imaging parameters, resolution,
and field of view, our framework was able to identify
preliminary textural features that appear to be associated with
pulmonary inflammation in the seven mice, two Sftpd−/− and
five controls in our evaluation cohort.

Some challenges may influence the accuracy of the fusion
of 2D histology and in vivo MRI lung. First, the lung is a
soft tissue which is prone to major elastic deformation caused
by the neighboring organs within the in vivo MRI. Moreover,
the histology preparation causes deformation and shrinkage
of the tissue. In order to account for these challenges, we
used the ex vivo MRI as a conduit in the registration and
employed a pyramid anisotropic affine registration in the
3D histology reconstruction, and a deformable registration
during the histology - in vivo MRI fusion. The reconstruction
procedure is further complicated by the lung being composed
of five lobes distributed between the left and right lungs.
The lobes are not attached and thus are capable of moving
relative to each other during tissue excise and histological
preparation. Our multibody refinement approach used during
the reconstruction was implemented to overcome the possible
movements of the lobes relative to each other.

The framework described in this paper was evaluated in an
established mouse model of chronic pulmonary inflammation.
Inflammation was identified on histology and subsequently
mapped onto in vivo MRI for two Sftpd−/− mice. A similar
registration approach was used to define the volume of interest
in the control mice, to generate a noninflamed volume of
interest that corresponds anatomically and spatially to the
regions of high inflammation likelihood, as shown by the
Sftpd−/− mice. The noninflamed volume of interest could not
have been mapped from histology, since the entire volume of
the lung is normal in the control animals. We anticipate that
the choice of the volume of interest is not essential as the entire
volume is noninflamed in the control animals, yet we made
every attempt to control for anatomical and interindividual
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variations by considering elastic registrations within five
animals. Although, as proof-of-concept and for evaluation
purposes, we performed a 3D histology reconstruction and
fusion with MRI in one control animal, we considered it
unnecessary for the remaining four control mice.

A total of three animals were used to evaluate the 3D
histology reconstruction and its fusion with MRI. The eval-
uation showed good landmark and/or volumetric alignment
between the 3D reconstructed histology lung and the MRI-
outlined lung, indicating a proper ground truth mapping of
inflammation from histology onto MRI. MRI features were
extracted from a total of seven mice and were utilized
to evaluate differences between inflamed and noninflamed
regions. While statistical significance was not evaluated
due to the small sample size, the expression patterns of
some of the features warrant a subsequent in depth feature
analysis. Our initial results represent preliminary data and
could potentially pave the way for the use of the fusion
framework in interrogation of in vivo imaging signatures of
lung inflammation. In future work, we intend to validate the
image features identified in this preliminary study on a large,
independent validation cohort.

We believe our unique reconstruction and image analysis
framework may be extended to include additional histological
stains, molecular biomarkers, or other imaging modalities,
e.g., micro-CT, to enable a comprehensive study of inflamma-
tion and other lung conditions.
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