Skip to main content
. 2015 Mar 9;4(3):318–327. doi: 10.1002/open.201402132

Table 2.

Bonding analyses for adenine—thymine small analogs A“T” and a“t”.[a]

A“T” A“T” at R[sp3][b] a“t′′ a”t′ at R[sp2][b]
Distances [Å]
N(H)⋅⋅⋅O 2.88 3.09 3.09 2.88
N⋅⋅⋅(H)N 2.90 3.14 3.14 2.90
Bond energy [kcal mol−1]
ΔE −16.1 −14.4 −8.2 −6.7
ΔEprep 1.8 1.8 0.7 0.7
ΔEint −17.9 −16.2 −8.9 −7.4
ΔEPauli 32.3 15.0 16.4 34.3
ΔVelstat −28.4 −18.5 −14.4 −23.8
ΔEdisp −3.4 −2.7 −3.4 −4.2
ΔEoi −18.5 −10.0 −7.5 −13.7
ΔEσ −16.6 −8.9
ΔEπ −1.9 −1.1
Gross populations: N(H)⋅⋅⋅O [e]
σLUMO+1 of A“ 0.02 0.02 LUMO+1 of a” 0.01 0.01
σLUMO of A“ 0.01 0.01 LUMO of a” 0.01 0.02
σHOMO of T“ 1.95 1.97 HOMO of t” 2.00 2.00
σHOMO−1 of T“ 2.00 2.00 HOMO−1 of t” 1.98 1.96
Gross populations: N⋅⋅⋅(H)N [e]
σLUMO+1 of T“ 0.04 0.03 LUMO+1 of t” 0.02 0.02
σLUMO of T“ 0.03 0.02 LUMO of t” 0.01 0.01
σHOMO of A“ 1.91 1.94 HOMO of a” 1.95 1.93
σHOMO−1 of A“ 2.00 2.00 HOMO−1 of a” 1.99 1.99
Orbital energies of A“ [eV] Orbital energies of a” [eV]
σLUMO+1 0.29 LUMO+1 0.30
σLUMO −0.39 LUMO −0.24
σHOMO −5.80 HOMO −5.31
σHOMO−1 −10.86 HOMO−1 −5.60
Orbital energies of T“ [eV] Orbital energies of t” [eV]
σLUMO+1 0.18 LUMO+1 0.41
σLUMO −0.64 LUMO −0.49
σHOMO −5.85 HOMO −5.77
σHOMO−1 −9.80 HOMO−1 −6.54
Overlap < Α“|Τ” > for N(H)⋅⋅⋅O Overlap < a“|t” > for N(H)⋅⋅⋅O
LUMO+1HOMO> 0.11 −0.10 <LUMO+1|HOMO−1> −0.08 −0.08
LUMOHOMO> 0.09 −0.08 <LUMO|HOMO−1> −0.12 −0.11
Overlap < Α“|Τ” > for N⋅⋅⋅(H)N Overlap < a“|t” > for N⋅⋅⋅(H)N
HOMOLUMO+1> 0.27 0.26 <HOMO|LUMO+1> −0.15 0.14
HOMOLUMO> 0.23 0.21 <HOMO|LUMO> 0.10 −0.10

[a] Energies and geometries computed at BLYP-D3(BJ)/TZ2P level of theory: A“T” in Cs symmetry, and a“t” in C1 symmetry (chair conformation). [b] A“T” has been elongated to the distance of a“t”, R(sp3), and a“t” compressed to the distance of A“T”, R(sp2).