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Abstract

This report is the outcome of the meeting: “Environmental and Human Health Consequences of 

Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. 

Human exposure to arsenic represents a significant health problem worldwide that requires 

immediate attention according to the World Health Organization (WHO). One billion people are 

exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at 

concentrations greater than international standards. Although the U.S. Environmental Protection 

Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the 

WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not 

protective enough. In addition, there are currently few standards for arsenic in food. Those who 

participated in the Summit support citizens, scientists, policymakers, industry and educators at the 

local, state, national and international levels to: (1) Establish science-based evidence for setting 

standards at the local, state, national, and global levels for arsenic in water and food; (2) Work 

with government agencies to set regulations for arsenic in water and food, to establish and 

strengthen non-regulatory programs, and to strengthen collaboration among government agencies, 

NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective 

technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel 

and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, 

and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well 

as community outreach and education programs that serve to inform students and consumers about 

arsenic exposure and engage them in well water testing and development of remediation 

strategies.

Keywords

Arsenic; rice; water; drinking water regulations; multi-sector collaborations; community outreach; 
education

Introduction

This meeting report is the outcome of the summit: “Environmental and Human Health 

Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine 

between August 13–15, 2014, sponsored by the MDI Biological Laboratory, Natures One, 

Inc., and the Superfund Research Programs at the University of Arizona and the Geisel 

School of Medicine at Dartmouth. The goal of the summit was to bring together a diverse 

group of individuals, including scientists, college and secondary school educators, 

environmental lawyers, science writers, and representatives from local, state and the federal 

government to discuss the emerging evidence that exposure to arsenic in drinking water and 

in food is a global public health crisis. The Summit began with a presentation by science 

writer Deborah Blum, who spoke about the history of arsenic as a poison based on her book 

titled The Poisoners Handbook: Murder and the Birth of Forensic Medicine in Jazz Age 

New York [1]. The second day was dedicated to discussions about the effects of 

environmental arsenic on public health and identifying common interests. During the last 

day, participants self-assembled into five action teams; each team developed a set of goals 

and timelines to achieve those goals, including: (1) Establishing science-based evidence for 
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setting standards at the local, state, national, and global levels for arsenic in water and food; 

(2) Working with government agencies to set regulations for arsenic in water and food, to 

establish and strengthen non-regulatory programs, and to strengthen collaboration among 

government agencies, NGOs, academia, and others; (3) Developing novel and cost-effective 

technologies for identification and reduction of exposure to arsenic in water; (4) Developing 

novel and cost-effective approaches to reduce arsenic exposure in juice and rice, while 

encouraging the consumption of rice, a major food staple in the world, with low or no 

arsenic concentrations; and (5) Developing an Arsenic Education Plan to guide the 

development of K-12 science curricula as well as community outreach and education 

programs that serve to inform students and consumers about arsenic exposure and engage 

them in well water testing and development of remediation strategies.

Environmental Arsenic: A Public Health Crisis

Arsenic is the number one environmental chemical of concern with regard to human health 

both in the United States (U.S.) and worldwide [2, 3]. The World Health Organization 

(WHO) has stated that human exposure to arsenic represents a significant health problem 

worldwide that requires immediate attention [3,4]. The U.S. Agency for Toxic Substances 

and Disease Registry (ATSDR) and the U.S. Environmental Protection Agency (EPA) list 

arsenic as the number one toxic substance of concern to human health [5]. Worldwide, 

approximately 1 billion people are exposed to arsenic in food and over 200 million people 

ingest arsenic in drinking water above the WHO standard of 10 micrograms per liter (μg/L) 

[3]. In addition, individuals are also exposed to arsenic through contaminated water used in 

food preparation, smoking tobacco, eating poultry fed organic arsenicals, and from industrial 

processing [6–9]. Arsenic in drinking water in South-East Asia, South America and the U.S., 

where levels in some regions are as high as 4,000 μg/L, has been associated with increased 

rates of cancer of the bladder, lung, liver, prostate, and skin; cardiovascular disease; 

reproductive and developmental problems; diabetes and other endocrine problems; 

respiratory disease including chronic obstructive pulmonary disease (COPD), and 

bronchiectasis; and immunological and neurological problems, as well as acute and chronic 

infections, including pneumonia [3, 10–13]. Recent studies have also shown the association 

between ingestion of water containing relatively low levels of arsenic (~5 μg/L) by pregnant 

mothers in the U.S. with adverse effects on babies and infants including low birth weight, 

lower mean gestational age, reduced newborn length and increased respiratory tract 

infections [14–16]. Furthermore, arsenic in drinking water >5 μg/L, compared with arsenic 

in drinking water <5 μg/L, has been associated with a 5–6 point reduction in IQ in children 

in Maine [17], and low to moderate arsenic levels in drinking water (<50 μg/L) have been 

associated with increased cardiovascular disease incidence and overall mortality in U.S. 

populations [12,18], as well as with several cancers [19–22]. A recent paper by the National 

Institute of Environmental Health Sciences (NIEHS) researchers concludes that existing 

“data call for heightened awareness of arsenic-related pathologies in broader contexts than 

previously perceived. Testing foods and drinking water for arsenic, including individual 

private wells, should be a top priority to reduce exposure, particularly for pregnant women 

and children [23], given the potential for lifelong effects of developmental exposure” [3].
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In 1993 the WHO set 10 μg/L as a standard for arsenic in drinking water. However, many 

developing countries still have 50 μg/L as the maximum allowable concentration, mostly 

due to the high cost of remediation to meet the 10 μg/L standard [24]. In the U.S. on January 

22, 2001, the U.S. EPA lowered the public drinking water standard for arsenic from 50 to 10 

μg/L, and established the goal of zero arsenic in drinking water. On January 23, 2006 the 

state of New Jersey lowered the acceptable levels of arsenic in all drinking water, both 

public and private, to 5 μg/L, the lowest arsenic drinking water standard in the world. 

Unfortunately, in the U.S., authority under the federal Safe Drinking Water Act is limited to 

public, not private, drinking water systems and so, a large number of people living in rural 

and sub-urban areas with wells remain exposed to levels greater than 10 μg/L. For example, 

approximately 43 million Americans drink well water and the United States Geological 

Survey (USGS) has estimated that 3 million people in the U.S. are exposed to well water 

with arsenic concentrations exceeding 10 μg/L [25–27]. In addition, although public water 

supplies serving more than 25 people are required to provide water containing <10 μg/L of 

arsenic, as of 2014 about 500 rural public utilities are in violation [28].

In some towns in Maine as many as 60% of private wells contain high levels of arsenic (>10 

μg/L, and in some wells levels are as high as 3,100 μg/L) from naturally occurring sources, 

exposing roughly 130,000 individuals to arsenic that exceeds EPA and WHO standards 

[13,29, 30]. In parts of New Hampshire 20 to 50% of private wells have arsenic levels 

greater than 10 μg/L [31–34]. Other states in the U.S. with unusually high arsenic levels in 

well water include Arizona, California, Colorado, Illinois, Michigan, Minnesota, Nevada, 

New Mexico, North Carolina, North and South Dakota, Oregon, Texas and Vermont, and 

arsenic concentrations in well water in these states has been measured even at levels greater 

than 1,000 μg/L, which is similar to levels found in Bangladesh [24, 35, 36, 37]. Blood 

levels of arsenic up to 8 μg/L have been measured in a rural North Carolina population 

indicating significant exposure to arsenic [38]. Although most epidemiological studies have 

been conducted in populations exposed at considerably high arsenic levels in drinking water, 

several recent studies suggest that even low-level exposure to arsenic increases the incidence 

of cardiovascular disease, bladder and lung cancer, and overall mortality not only in 

Southeast Asia [39], but also in U.S. populations [12, 18].

While most attention has been traditionally paid to chronic exposure to inorganic arsenic 

through drinking water, recent studies have called attention to significant human exposure to 

arsenic in food, most notably via consumption of some rice and rice-based products [3, 12, 

20, 24, 40–61]. Application of pesticides containing arsenic by cotton, tobacco, grape and 

apple growers in the South Central U.S. in the 1950s has resulted in accumulation of low 

levels of arsenic in treated soils [49, 52, 59, 62, 63]. Food plants, such as rice, that take in 

and accumulate arsenic, both naturally occurring and anthropogenic, from the soil pose 

potential health risks to humans who eat them on a regular basis [7–9, 41–45, 48, 50, 51, 

64]. A recent study suggests that arsenic exposure in food is a significant source of overall 

exposure. Analysis of the U.S. National Health and Nutrition Examination Survey 

(NHANES) database revealed that for individuals drinking water >10 μg/L inorganic 

arsenic, total exposure to arsenic is 24–26 μg/day, with approximately 30% of intake from 

food [47]. By contrast, for individuals living in homes with water arsenic concentration <10 
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μg/L, inorganic arsenic exposure is 9–12 μg/day, with 54–85% of intake from food [47]. 

Dietary exposure to arsenic in food and water has been estimated by the European Food 

Safety Authority (EFSA) to range between 1.48 to 2.09 μg/kg/body weight/day for infants, 

toddlers and other children and 0.44 to 0.64 μg/kg/body weight/day for adults [60].

As noted above, some rice contains significant levels of arsenic: however, levels vary 

depending on a number of factors. For example, a market basket survey found that the 

arsenic content of rice grown in South Central U.S. is higher than rice grown in California, 

and that, in general, brown rice contains more arsenic than white rice [61, 63]. In addition, 

some rice-based products including toddler formulas and energy bars, especially those made 

with organic brown rice syrup, have been identified as major contributors to arsenic 

exposure [43–45, 48, 49, 60]. Furthermore, some fish, shellfish, meat, poultry, dairy 

products and cereals are also dietary sources of arsenic [50, 63]. Seafood contains organic 

forms of arsenic, such as arsenobetaine, which is thought to be less toxic than the inorganic 

forms that are found in water: however the toxicity of arsenolipids and arsenosugars in 

seafood are not well described [51, 54, 55]. Because rice is a major food source for more 

that one half of the world’s population, ingestion of rice contaminated with arsenic is a 

significant and potential public health crisis [49]. Thus, rice consumption should be 

considered when designing arsenic reduction strategies in the U.S. and worldwide. 

Recognizing the need to address the issue of arsenic in rice, Consumers Union, publisher of 

Consumer Reports, suggested eating no more than two or three servings of rice each week 

[57]. It is interesting to note that on average, consumption of about 0.5 cup/day of cooked 

U.S. rice is comparable to drinking 1 liter/day of water containing 10 μg/L of arsenic [46]. It 

has been estimated that eating three portions of rice-based infant food/day could represent a 

significant source of inorganic arsenic (1.59 to 1.96 μg/kg/body weight/day) [60]. However, 

eating less rice is not an option in many parts of the world where rice is a major food staple. 

Thus, strategies need to be developed to reduce the amount of arsenic in ingested rice, 

especially for toddlers and young children and for pregnant women [56].

In addition to rice as a dietary source of arsenic, arsenic levels exceeding 10 μg/L have been 

measured in some brands of apple juice, although the source of arsenic is unknown [58, 65]. 

On July 12, 2013, the U.S. Food and Drug Administration (FDA) stated that apple juice 

containing more than 10 μg/L of arsenic could be removed from the market and companies 

could face legal action. Consumers Union has suggested a limit of 3 μg/L of arsenic in apple 

juice [65].

At the present time there are no recommended maximum levels of inorganic arsenic in food 

by the U.S. FDA or the European Food Safety Authority. However, in recognition of the 

potential threat to public health, the WHO (July 2014) recommended worldwide guidelines 

for safe levels of arsenic in rice; a maximum of 0.2 mg/kg of inorganic arsenic for white 

(polished) rice and 0.4 mg/kg for brown (husked) rice (JOINT FAO/WHO FOOD 

STANDARDS PROGRAMME, CODEX ALIMENTARIUS COMMISSION, 37th Session, 

Geneva, Switzerland, 14–18 July 2014). New research by Andrew Meharg, reported in the 

Daily Mail newspaper (16 November 2014) has found that more than half of Britain’s rice 

products exceed the proposed new EU recommendations for arsenic in food. Interestingly, 
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only three countries have set standards for total arsenic in food (China, 0.15/kg in rice and 

Australia and New Zealand, 1–2/kg for seafood [24]).

Environmental Arsenic: Need for Public Health Interventions

Although numerous state and federal agencies, scientists, educators and reporters have 

dedicated a significant amount of effort to inform the public on the widespread presence of 

arsenic in water and food, much remains to be done since there are no regulations on arsenic 

in food in the U.S. (with the exception of arsenic in turkey meat and eggs; Code of Federal 

Regulations, Title 21, Volume 6, April 1, 2014) and most other countries, and there are few 

regulations on arsenic in private well water worldwide. Furthermore, even when the public 

is informed, a surprisingly low number of people exposed to arsenic in water and food take 

action to reduce exposure [29, 30]. Several recent high-profile articles in Consumer Reports 

on the presence of arsenic in rice and rice-based products as well as extensive print and TV 

coverage on studies identifying significant amounts of arsenic in some rice-based toddler 

formulas have raised awareness [43, 44]. However, more work needs to be done to make the 

public aware of the presence of arsenic in the water and food supply, and new strategies 

must be developed to convince government agencies to set standards and to convince the 

public to take action to reduce arsenic exposure.

In January 2015, the European Society for Pediatric Gastroenterology, Hepatology and 

Nutrition (ESPGHAN) Committee on Nutrition made several recommendations on 

consuming rice and rice based products for infants and young children including: (1) 

Arsenic intake should be as low as possible, and rice drinks should be avoided, (2) 

Regulations should be set and enforced for arsenic in foods and drinks containing rice 

products, and (3) For rice based formulas for infants with cows’ milk protein allergies, the 

arsenic content should be stated and the risks associated with consuming these formulas 

should be declared [53]. The Committee also stated that more data are needed to determine 

the arsenic content of a variety of foods, as well as the impact of arsenic in food on public 

health to develop evidence based recommendations regarding the acceptable arsenic content 

in different foods [53].

Taken together these recent studies identify water and food, especially rice and rice-based 

products and apple juice, as significant sources of arsenic exposure. Although little research 

has been published on the health effects of arsenic ingested in food, compared to arsenic 

ingested in drinking water, in an abundance of caution it is reasonable to suggest that dietary 

arsenic should be reduced. However, many farmers do not have access to arsenic-free water 

and soils to grow rice, and a majority of people worldwide needs to eat rice. We anticipate 

that innovations in water treatment, identification of arsenic free water sources, the 

development of new approaches in genetics, microbiology, and agriculture and even cooking 

practices will reduce, and we hope eventually, eliminate, arsenic from drinking water, as 

well as rice and rice-based products and other relevant foods.

Summit Goals

On the basis of the most recent scientific evidence and the fact that the WHO and the U.S. 

EPA list arsenic as the number one chemical of concern with regard to public health, we 
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who participated in the MDI Biological Laboratory Human and Environmental 

Sustainability Summit 2014 on the Environmental and Human Health Consequences of 

Arsenic are committed to reducing exposure to arsenic, building awareness and education 

about its health impacts, and developing a committed network of stakeholders to achieve 

these goals. We believe that citizens, scientists, food manufacturers, farmers, water 

purveyors, and policymakers at the local, state, national and international levels should work 

together to achieve five goals, each of which will be the emphasis of a dedicated team with a 

champion(s) to facilitate progress.

Goal #1: Establish evidence-based methods for setting standards at the local, state, 
national, and global levels for arsenic in water and food

Recent epidemiological studies have shown that exposure to low levels of arsenic in 

drinking water in the U.S., as low as 5 μg/L, may have adverse health effects, including 

increased rates of respiratory infections and reduced IQ in children [14–17]. However, the 

level of arsenic that causes no harm and the effects of arsenic in food on public health are 

not well studied. Thus, we propose that research be conducted to identify the lowest level of 

arsenic in water and food that is not associated with adverse health effects, especially for 

vulnerable populations such as pregnant women, children, immuno-suppressed groups, and 

folic-deficient populations.

Goal #2: Work with government agencies to set regulations for arsenic in water and food, 
to establish and strengthen non-regulatory programs, and to strengthen collaboration 
among government agencies, NGOs, the private sector, academia, and others

At the present time, the U.S. EPA has set a standard for arsenic in public water supplies of 

10 μg/L. We propose that the EPA consider lowering the standard to 5 μg/L for public water 

supplies, following the lead of New Jersey, and that they enforce the 10 μg/L standard for 

public water supplies that do not meet the standard. Recognizing the complex landscape of 

federal, state, and local regulatory and non-regulatory programs, we recommend 

strengthening collaborations among government agencies, the private sector, NGOs, 

academia, and others to increase private well testing and reduce exposure to arsenic in 

private water supplies. In addition, we encourage the U.S. FDA to set appropriate standards 

with consideration of vulnerable populations for arsenic in food including rice and rice-

based products at the WHO recommended levels of arsenic in rice (a maximum of 0.2 

mg/kg of inorganic arsenic for white rice and 0.4 mg/kg for brown rice). Furthermore, as 

more research is conducted to examine the health effects of arsenic in water and food, we 

recommend that the U.S. EPA and FDA, as well as the WHO and the EU consider, on a 

regular basis, evaluating and updating the regulations. We propose to work with the EPA 

and FDA to achieve these goals.

Goal #3: Develop novel and cost-effective technologies for identification and reduction of 
exposure to arsenic in drinking water

It is imperative that new approaches be developed to rapidly and inexpensively identify 

arsenic levels in ground water, to remove arsenic from drinking water [15, 27, 66], or to 

identify alternative sources of water that are arsenic-safe. We encourage ongoing studies to 

develop models to predict well water arsenic concentrations based on arsenic levels in 
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regions of similar geology [67] and an understanding of exposure pathways due to the 

subsurface hydrological flows [68]. Development of whole-cell bacterial and cell-free 

biosensors of arsenic are encouraged [69, 70], as is the development of methods to remove 

arsenic from water including durable inorganic filters, well-aerated coarse sand filter beds, 

granular ferric adsorption systems, and hybrid anion exchangers (HAIX-NaoFe) based 

treatment as arsenic-removal media [71–74]. Further, alternative water sources, such as 

surface water sources, or aquifers or parts of aquifers that are free of arsenic could be 

identified and developed for the water supply [27].

In addition to developing novel and cost-effective technology for identification and 

reduction of exposure to arsenic in water, it is necessary to encourage individuals using 

private water supplies to test for arsenic and, when indicated, install systems to eliminate 

arsenic from their water supply or to seek alternative supply sources [27]. Many people are 

not aware that their water supply may contain arsenic, many do not know how to test and 

remediate and many individuals ignore or forget the test results [29]. In addition, many 

household arsenic treatment systems are not effective for a variety of reasons, for instance, 

well water composition varies from well to well, the system is not always maintained and 

monitored by the homeowner regularly, and the market for household arsenic treatment 

system is unregulated [30]. This underscores the benefit of changing to an arsenic free water 

supply, where feasible, which can ensure that drinking water remains safe by eliminating the 

need to treat and test on a periodic basis. Thus, a major goal is to facilitate the development 

of technology to reduce exposure to arsenic in water and to inform the public of the need to 

and options for remediation or for finding alternative sources of water. At the present time, 

there are significant impediments to the public who would like to reduce arsenic in their 

water supply, including a lack of a single reliable (public) source of information that 

describes the options for water supply and recommendations for remediation. With support 

from the CDC, the New Hampshire Department of Environmental Services (NH DES) is 

developing a model internet-based application that will enable well users to enter their well 

water test results and view recommendations regarding appropriate treatment options based 

on their overall water quality profile (arsenic and other contaminants that affect the selection 

of options); tools such as this should improve the ability of well users to make informed 

decisions about alternative treatments or water sources. Public and freely accessible tools 

need to be developed across other states and countries. The NH DES application is expected 

to be available to the public in mid-2015. The USGS is developing water supply technology 

in glacial aquifers (that overlie high-arsenic bedrock aquifers) that will potentially eliminate 

exposure to arsenic in private supplies (U.S. Patent Application 14/488,097).

Goal #4: Develop novel and cost-effective approaches to reduce arsenic exposure in juice 
and rice, while recommending the consumption of rice that contains little to no arsenic, 
the major food staple in the world

Several approaches are under investigation to reduce arsenic uptake by rice. Investigators 

have identified a number of candidate genes that may be responsible for arsenic uptake by 

rice plants, and we encourage efforts to identify cultivars that do not accumulate arsenic in 

the grain and to develop ways to bring this rice to market [49, 52]. Rosen and his colleagues 

have created transgenic rice and transgenic soil microorganisms that have the ability to turn 
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arsenic into gas, which is eliminated from the rice plant [62]. Pinson and her colleagues have 

studied more than 1,700 strains of rice and have identified varieties that accumulate different 

levels of arsenic even when grown under identical conditions [75]. Another approach to 

reduce arsenic in rice is to add microbes to soil to make arsenic less accessible to plants 

(U.S. Patent 8,318,636, Compositions and Methods for Improved Rice Growth and 

Restricting Arsenic Uptake. Issued: November 27, 2012). Moreover, removing the husk and 

converting brown rice into white removes most of the arsenic, which accumulates in the 

outermost layers of the grain, although other minerals and nutrients are also removed in this 

process. One of the easiest solutions to reduce the amount of arsenic in rice is to use three 

times more arsenic-free water than rice when cooking, and rinsing the rice before and after 

cooking, an activity that reduces the amount of arsenic in rice by 30% [40]. Also, aeration of 

contaminated groundwater during irrigation has been found to significantly reduce arsenic 

uptake by rice by causing the co-precipitation of arsenic with iron, a commonly occurring 

co-contaminant of arsenic [59]. The team that will work on this topic is dedicated to 

enhancing the development of novel and cost-effective approaches to reduce arsenic 

exposure in juice and rice, while encouraging the consumption of non-contaminated rice, the 

major food staple in the world.

On July 12, 2013 the U.S. FDA announced new draft guidelines that limit the amount of 

arsenic in apple juice to 10 μg/L; however, to date the FDA has not set an enforceable 

standard for arsenic in apple juice. We recommend that the FDA follow up on their draft 

guidelines to limit arsenic in apple juice, and all juice, especially those consumed by 

children, to 5 μg/L, and that additional research be conducted to determine “safe” levels of 

arsenic in juice. Given the widespread ingestion of apple juice by children, and the potential 

for adverse developmental effects caused by arsenic, this is an important issue requiring 

both surveillance and communication.

Goal #5: Develop an Arsenic Education Plan to guide the development of K-12 science 
curricula as well as community outreach and education programs that serve to inform 
students and consumers about arsenic exposure and engage them in well water testing 
and development of remediation strategies

The plan will provide background information on arsenic, provide a rationale for arsenic 

education, and include suggested activities, references and links to resources for K-12 and 

community educators [76]. Examples of existing and planned education projects will be 

included. One example is a collaborative initiative that emerged from the 2014 Arsenic 

Summit to create and pilot a national model of environmental education that encourages 

schools and community organizations to work together to address the public health risks of 

exposure to arsenic in drinking water. The objectives of this initiative are to: 1) Create an 

“All About Arsenic” (A3) website with activities, resources, and links to existing 

groundwater curricula, a data portal with mapping capabilities, and a blog for students. The 

site will host case studies that result from this pilot project; 2) Link three Community Health 

Partner (CHP) organizations to teachers and students in seven schools in Maine and New 

Hampshire so that they can collaborate on arsenic monitoring and mitigation projects; 3) 

Develop guidance criteria for sub-awards to CHPs and schools to fund their collaborative 

projects; 4) Work with schools to adapt existing groundwater curricula to focus on arsenic, 
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well-water testing, and collaboration with CHPs; and 5) Document the collaborative process 

between schools and CHPs so that other communities in the U.S. can implement similar 

projects. Anticipated outcomes include increased environmental health literacy of all project 

participants, increased self-confidence of teachers to engage in collaborative environmental 

education projects with community partners, a growing pool of young people with sufficient 

research and collaboration skills and scientific knowledge to be effective environmental 

stewards and develop interest in environmental health careers, additional data and fine scale 

maps of arsenic in Maine and New Hampshire, and case studies to facilitate project 

replication.

Conclusions

In conclusion, we who participated in the MDI Biological Laboratory Human and 

Environmental Sustainability Summit on August 13–15, 2014 titled “Environmental and 

Human Health Consequences of Arsenic” are committed to reducing exposure to arsenic, 

building awareness and education about its health impacts, and developing a committed 

network of stakeholders to achieve these goals. We will meet again in August 2015 to 

develop and discuss more detailed plans to achieve team goals to: (1) Establish science-

based evidence for setting standards at the local, state, national, and global levels for arsenic 

in water and food; (2) Work with government agencies to set regulations for arsenic in water 

and food, to establish and strengthen non-regulatory programs, and to strengthen 

collaboration among government agencies, NGOs, academia, and others; (3) Develop novel 

and cost-effective technologies for identification and reduction of exposure to arsenic in 

water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice 

and rice, while reassuring the public about the consumption of rice, a major food staple in 

the world; and (5) Develop an Arsenic Education Plan to guide the development of K-12 

science curricula as well as community outreach and education programs that serve to 

inform students and consumers about arsenic exposure and engage them in well water 

testing and development of remediation strategies.
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