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Abstract

Mec1 (ATR in humans) is the principal kinase responsible for checkpoint activation in response to 

replication stress and DNA damage in Saccharomyces cerevisiae. Checkpoint initiation requires 

stimulation of Mec1 kinase activity by specific activators. The complexity of checkpoint initiation 

in yeast increases with the complexity of chromosomal states during the different phases of the 

cell cycle. In G1 phase, the checkpoint clamp 9-1-1 is both necessary and sufficient for full 

activation of Mec1 kinase whereas in G2/M, robust checkpoint function requires both 9-1-1 and 

the replisome assembly protein Dpb11 (human TopBP1). A third activator, Dna2, is employed 

specifically during S phase to stimulate Mec1 kinase and to initiate the replication checkpoint. 

Dna2 is an essential nuclease-helicase that is required for proper Okazaki fragment maturation, for 

double-strand break repair, and for protecting stalled replication forks. Remarkably, all three Mec1 

activators use an unstructured region of the protein, containing two critically important aromatic 

residues, in order to activate Mec1. A role for these checkpoint activators in channeling aberrant 

replication structures into checkpoint complexes is discussed.
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1. Introduction

Dna2 is an essential nuclease-helicase that was initially identified in Saccharomyces 

cerevisiae in a screen for DNA replication mutants [1,2]. Due to the presence of helicase 

motifs in its C-terminus as well as the DNA replication defect observed in dna2-1 mutants, 

Dna2 was originally suggested to be the replicative helicase [3]. However, it soon became 

clear that the protein also contained vigorous nuclease activity, which was identified as the 

essential function of Dna2 [4–6]. Based on biochemical interactions and genetic evidence it 

was shown that Dna2 and Rad27, the yeast homolog of Flap endonuclease 1 (FEN1), work 

together in the process of lagging strand maturation to cleave the single-stranded flaps 

formed at the 5′ ends of Okazaki fragments during displacement synthesis by Pol δ [7–9]. In 
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addition to its role in Okazaki fragment maturation, Dna2 has since been implicated in a 

number of other key processes that are of vital importance for genome maintenance. Here, 

we will first give a brief overview of the various functions of Dna2 and then focus on its 

recently reported role in checkpoint activation [10]. Our emphasis will be on the yeast 

protein, with some reference to the mammalian homologs where relevant.

2. Domain structure and activities of Dna2

Yeast Dna2 is a 170 kDa protein that contains a C-terminal superfamily I helicase domain, a 

central RecB family nuclease domain and an unstructured N-terminal tail (Figure 1A). It is 

found in eukaryotes from yeast to human, but amino acid identity is generally limited to the 

nuclease and helicase domains while the N-terminus is very poorly conserved [11–13].

Dna2 contains ssDNA-specific endonuclease, 5′-3′ helicase and DNA-dependent ATPase 

activities and is an essential enzyme [3,4,6]. Studies of separation-of-function mutants have 

established that the nuclease activity of the enzyme is essential for cell survival, whereas 

helicase-deficient variants are viable but show growth defects [5,6]. The nuclease activity 

can be either 5′-3′ or 3′-5′ oriented, although RPA stimulates the former and inhibits the 

latter, making the 5′-3′ polarity the in vivo relevant activity [14,15]. Dna2 preferentially 

binds to and acts on 5′-flap substrates and, moreover, requires a free ssDNA end for loading. 

It binds to the 5′-flap, threads over its 5′ end and tracks down the flap in order to cleave its 

substrate endonucleolytically until it is 5–6 nt from the base of the flap [8,9,16–18].

The C-terminal half of Dna2 contains its ATPase/helicase domain. The helicase activity is 

ATP-dependent, and mutation of the Walker A domain abolishes not only the ATPase 

activity but also the helicase function of Dna2 [3]. Dna2 cannot unwind fully duplex DNA 

but requires a ssDNA region and, similarly to the nuclease activity, has an absolute 

requirement for a free 5′ end in order to load [16]. The helicase activity of Dna2 has been 

considered weak; in fact, its presence in the human homolog has been questioned [19–21]. 

Although the helicase function of Dna2 is not absolutely essential for viability, helicase-

deficient variants exhibit growth defects and sensitivity to DNA damaging agents [5], 

indicating that the helicase activity nonetheless contributes to Dna2 function in vivo. 

Furthermore, recent work on a nuclease-dead variant of Dna2 reported strong helicase 

activity comparable to that of the vigorous Sgs1 helicase [22]. It was therefore suggested 

that the robust nuclease function of the enzyme masks the helicase activity, possibly by 

cleaving the 5′ overhangs that are required for helicase binding and initiation of unwinding.

The N-terminal domain (NTD) of Dna2 shows no strict conservation between species, and 

displays large variation in size (Figure 1A). The NTD of yeast Dna2 is predicted to be 

unstructured [10], while human Dna2 shows no unstructured N-terminal domain. However, 

the exact translation start site of human Dna2 is uncertain, and longer variants have been 

proposed (one 1146 aa in length) that would have a significant unstructured NTD [21,23]. 

Despite being redundant for nuclease and helicase activity, the NTD of yeast Dna2 is 

required for normal growth, as deletion of the first 405 amino acids of Dna2 leads to a 

temperature-sensitive phenotype [24]. This may be attributable to the ability of the N-

terminal domain to mediate Dna2 binding to secondary structure DNA [25]. It is 
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conceivable that cells expressing an N-terminal deletion mutant of Dna2 may be deficient in 

processing of flaps with secondary structure, causing the accumulation of these harmful 

intermediates. Consistent with this model, overexpression of RAD27, the gene for yeast 

FEN1, suppresses the temperature sensitivity of the dna2-Δ405 mutant [24]. Likely, the 

increased efficiency of the FEN1-dependent pathway reduces the dependence on Dna2, and 

its sub-optimal functionality is therefore tolerated.

More recently, the N-terminal domain has been found to mediate checkpoint activation by 

activating the essential Mec1ATR checkpoint kinase [10]. This new function requires Trp128 

and Tyr130 of yeast Dna2 and will be discussed in further detail in section 6. It should be 

noted that the temperature-sensitive phenotype that was caused by deletion of the entire 405 

aa Dna2 NTD [24] is much more severe than that caused by the targeted point mutations that 

inactivate the checkpoint function of Dna2 [10]. Therefore, the 405 aa NTD contains at least 

two activities, checkpoint activation and hairpin DNA binding, and whether and to what 

extent these activities overlap has not been determined.

Dna2 belongs to the growing list of proteins that has been found to contain an iron-sulfur 

domain. Conserved cysteines 519, 768, 771 and 777 contribute to an Fe-S cluster that flanks 

the nuclease active site (Figure 1A). Interestingly, mutants that lack the intact Fe-S domain 

have reduced nuclease as well as reduced helicase activity, suggesting that the Fe-S cluster 

is not only important for nuclease activity, but has a structural role and thus affects the 

stability of the entire protein [26].

3. Functions of Dna2

3.1. Role of Dna2 in Okazaki fragment maturation

The best-studied role for Dna2 is in the process of Okazaki fragment processing (Figure 1C). 

During DNA replication, the lagging strand is synthesized in discontinuous fragments that 

are primed by short RNA primers. When Pol δ lays down an Okazaki fragment, it displaces 

the 5′-end of the previous fragment, giving rise to a 5′-flap structure. The structure-specific 

Flap endonuclease 1 (FEN1) cuts at the base of these flaps, removing the RNA/DNA primer 

and giving rise to a ligatable end that is joined to the flanking Okazaki fragment by ligase 1. 

Generally, the length of the 5′-flap is restricted to only 1–2 nt by the action of FEN1, which 

efficiently cuts the emerging flap, and the action of the 3′-exonuclease activity of Pol δ, 

which degrades the replicated DNA back to the nick position [27] (Figure 1C). However, a 

subset of flaps escapes these controls and grows to a length exceeding 25 nt. These long 

flaps become coated with RPA and are thus refractory to FEN1 cleavage [28]. Dna2, 

however, can process these RPA-coated long flaps. It acts by digesting them close to their 

base to produce a short flap, which no longer binds RPA and can be further processed by 

FEN1 [7,9,29,30] (Figure 1C). Mutations or conditions that promote the generation of long 

flaps through increased strand displacement synthesis by Pol δ, e.g. Pol δ exonuclease 

deficiency, are very sensitive to Dna2 dysfunction [31]. Conversely, mutations or conditions 

that limit strand displacement synthesis and generate shorter flaps, e.g. overexpression of 

FEN1, deletion of the PIF1 helicase, or deletion of the POL32 subunit of Pol δ, suppress the 

phenotype of certain DNA2 mutants, and can even suppress the lethality of DNA2 deletion 

[27,29,32].
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Because Dna2 is critically required for the processing of long flaps during Okazaki fragment 

maturation, this process is considered the most important physiological function of Dna2. In 

wild-type cells, deletion of DNA2 leads to the persistent accumulation of long flaps that 

become RPA-coated and activate the checkpoint, leading to permanent cell cycle arrest [33].

3.2. Role of Dna2 in DNA end resection

In addition to its well-established role in Okazaki fragment maturation, Dna2 has an 

important function in DNA end resection during homologous recombination. DNA double-

strand breaks are one of the most cytotoxic forms of DNA damage in the cell and they can 

be repaired by homologous recombination (HR). HR requires resection of the 5′ DNA end in 

order to produce a 3′ single-stranded overhang that becomes coated with Rad51 to form a 

nucleoprotein filament that catalyzes homologous pairing and strand invasion. One of the 

complexes mediating end resection consists of Dna2 working together with the Sgs1-Top3-

Rmi1 complex [14,15,34,35]. Interestingly, the helicase activity of Dna2 is dispensable for 

end resection, suggesting that Sgs1 provides the helicase activity while Dna2 acts as 

nuclease to degrade the 5′ strand [34]. RPA directs the nuclease activity of Dna2 to the 5′ 

DNA end and prevents degradation of the 3′ strand [14,15]. For a more detailed description 

of the role of different nucleases in end resection, the reader is directed to excellent recent 

reviews [36,37].

3.3. Dna2 in telomere maintenance

Dna2 also appears to play a role in telomere maintenance. One clue pointing at this function 

came from localization studies, where Dna2 was shown to localize to telomeres during G1, 

redistribute throughout the genome in S-phase, and return to telomeres in late S-phase or G2 

[38]. Also mammalian Dna2 is localized to telomeres and has been found to be essential for 

proper telomere maintenance. In fact, Dna2 haploinsufficiency leads to an increase in fragile 

telomeres and other telomere defects in mouse mouse embryonic fibroblasts [39].

There is mounting evidence that telomeres, as well as other internal G-rich sequences, fold 

into stable G-quadruplex structures in vivo [40,41]. These secondary structures are 

problematic for DNA replication because they may block the progression of the replication 

fork if not resolved by ancillary proteins. Interestingly, both human and yeast Dna2 have 

been reported to bind and act on G-quadruplexes by unwinding and/or cleaving them 

[39,42]. The role of Dna2 at telomeres may therefore involve removal of G-quadruplexes in 

order to permit continuing replication. Its activity on G-quadruplexes may also be of use in 

resolving these structures on the lagging strand during Okazaki fragment maturation.

3.4. Dna2 in mitochondrial DNA maintenance

In 2006, a study of the suppression of Dna2 lethality by pif1Δ implicated Dna2 in 

mitochondrial DNA maintenance in yeast [32]. Pif1 exists in both a nuclear and 

mitochondrial form, but the pif1-m2 variant localizes only to mitochondria and shows full 

mitochondrial function [43]. Deletion of PIF1 suppresses the lethality of dna2Δ cells. 

However, although the pif1-m2 mutant grew normally on a non-fermentable carbon source 

because it still produced the mitochondrial form of Pif1, pif1-m2 dna2Δ double mutants 

failed to show growth on glycerol media, suggestive of a role for Dna2 in mitochondrial 
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DNA maintenance [32]. Two years later, human Dna2 was reported to be partially targeted 

to mitochondria [23,44]. A fraction of it colocalizes with mitochondrial DNA nucleoids and 

with the mitochondrial helicase Twinkle. Furthermore, Dna2 was recruited to mitochondrial 

DNA nucleoids upon replication stalling and its depletion hindered repair of damaged 

mtDNA [44]. Finally, the discovery of Dna2 mutations in patients suffering from 

progressive myopathy and mitochondrial DNA deletions leaves little doubt that this 

multifaceted protein is involved in the maintenance of not only the nuclear, but also the 

mitochondrial genome [45].

3.5. Additional roles for Dna2 in maintenance of genetic stability

As is evident from the summary above, Dna2 is involved in a plethora of processes that all 

contribute in one way or another to the maintenance of genetic stability. The list above is not 

complete, however, and additional functions may be added in the future. Recently, Hu et al. 

presented appealing evidence for Dna2’s nuclease involvement in preventing fork reversal 

into so-called chicken foot structures in Schizosaccharomyces pombe (Figure 1B). 

Checkpoint-dependent phosphorylation of Dna2 was required for its continued association 

with stalled replication forks and prevention of fork reversal upon replication stress, induced 

by hydroxyurea or MMS treatment [46]. Importantly, checkpoint signaling was not 

compromised in the dna2− spores, indicating that the increased fork reversal in dna2− or 

dna2ts cells was not due to a defect in checkpoint activation but rather to a role of Dna2 that 

lies downstream of checkpoint initiation. Overexpression of FEN1 did not suppress the 

increased fork reversal phenotype of dna2− cells, suggesting that this function of Dna2 is 

unrelated to that of Okazaki fragment maturation.

Human Dna2 has also been suggested to have a role in genome stability that appears to be 

distinct from its role in Okazaki fragment maturation or telomere maintenance. Cells 

depleted of hDna2 accumulate in S/G2 phase of the cell cycle and accumulate internuclear 

chromatin bridges, a defect that was not suppressed by FEN1 overexpression [44,47]. 

Furthermore, a recent elegant study implicates even human Dna2 in processing and restart of 

reversed replication forks [48], suggesting that the reported function of S. pombe Dna2 in 

replication restart may be conserved [46]. As in S. pombe, the nuclease, but not the helicase, 

activity of Dna2 was required for the processing of reversed forks in a process that also 

involves the WRN helicase [48].

4. DNA damage and replication checkpoint pathways

Genomic stability is of vital importance for all cells and the cell cycle checkpoint response is 

one of the fundamental mechanisms guarding it in eukaryotes. These signal transduction 

pathways recognize and respond to DNA damage or replication stress and act to slow down 

or stop cell cycle progression until the DNA damage or aberrant DNA structures have been 

cleared. Triggering of the checkpoint leads to stabilization of stalled replication forks, 

increased repair and dNTP synthesis, inhibition of late origin firing and changes in gene 

expression that allow the cell to overcome the DNA damage or, if the damage is too severe, 

initiates apoptosis (reviewed in [49]). In this way, the accurate transmission of genomic 

information to daughter cells is guaranteed. The importance of functional checkpoints is 

underscored by their involvement in human disease: defects in the different checkpoint 

Wanrooij and Burgers Page 5

DNA Repair (Amst). Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proteins lead to conditions such as Ataxia telangiectasia, the rare Seckel syndrome and 

increased cancer disposition as a consequence of the increased genome instability [50,51].

In S. cerevisiae the checkpoints rely on two apical protein kinases of the 

phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, namely Mec1 and Tel1. 

Classically, Mec1 (the homolog of human ATR) is considered to respond to stretches of 

RPA-coated ssDNA [52], while Tel1 (ATM in human) becomes activated in response to 

DNA double-strand breaks (DSBs) [53]. However, it is clear that partial redundancy 

between the Mec1ATR and Tel1ATM pathways exists [54]. Tel1ATM and Mec1ATR can also 

be sequentially activated within one process, as is the case with DSB repair [55]. DSBs 

initially activate Tel1ATM, but resection of the 5′-strand results in exposure of ssDNA 

regions and acts as an efficient switch from Tel1ATM to Mec1ATR signaling [56].

Tel1ATM exists as a homodimer that dissociates into an active monomer in response to 

DSBs [57,58]. In contrast, Mec1ATR is always found tightly associated with Ddc2 (the 

ortholog of human ATRIP) and there is no evidence of it acting as a monomer [59]. 

Mec1ATR-Ddc2ATRIP forms a heterodimeric complex, and there is evidence for the 

existence of higher-ordered complexes [60,61].

Mec1ATR and Tel1ATM are the critical upstream regulators of the checkpoint but they rely 

on interaction with other proteins in order to initiate checkpoint signaling. Upon recognition 

of DNA damage or extensive lengths of RPA-coated ssDNA, the PIKKs are recruited to the 

site of damage, where they are activated by binding of sensor proteins that have been 

independently recruited. This “two-man rule” of checkpoint activation prevents aberrant 

triggering of the signaling pathway. Once activated, the checkpoint kinases phosphorylate 

downstream mediator and effector proteins, triggering a cascade of phosphorylation events 

that regulate numerous target proteins and cellular processes (reviewed in [49]).

5. Mec1ATR activation

Mec1ATR-Ddc2ATRIP is recruited to stretches of ssDNA through the interaction of the N-

terminus of Ddc2ATRIP with the RPA70 subunit [52,62,63]. However, stimulation of 

Mec1ATR kinase activity requires its interaction with a sensor protein, three of which have 

been discovered in S. cerevisiae. These three activators show partial redundancy for 

checkpoint activation in a manner that is dependent on the cell cycle phase (Figure 2). The 

first activator is the Ddc1-Rad17-Mec3 (human Rad9-Rad1-Hus1; hence the designation 

9-1-1) checkpoint clamp that is essential for checkpoint activation in G1- and G2- cell cycle 

phases but dispensable in S-phase [64–67]. The 9-1-1 complex shows structural similarity 

with the replication clamp PCNA (proliferating-cell nuclear antigen) [68,69]. Unlike PCNA, 

which is loaded onto 3′-ds-ssDNA junctions, 9-1-1 is loaded by the Rad24-RFC (replication 

factor C) clamp loader with an opposite polarity onto 5′-ds-ssDNA junctions [70–72]. In S. 

cerevisiae, the 9-1-1 complex can directly stimulate Mec1ATR kinase [60], but this activity 

has not been reported in S. pombe or in metazoans [67]. Consistent with Ddc1 mediating the 

stimulation by 9-1-1, mutation of two critical Trp residues in the C-terminal tail of Ddc1 

completely abrogates the ability of 9-1-1 to trigger the checkpoint in G1 [67]. Therefore, the 

9-1-1 complex is the only activator of Mec1 in the G1 phase of the cell cycle [73].
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In G2, 9-1-1 plays a dual role in checkpoint activation: in addition to directly activating 

Mec1ATR, it is also required for recruitment of the replication initiation protein 

Dpb11TopBP1, which in turn binds Mec1ATR and activates its kinase [67]. The C-terminus of 

Ddc1Rad9 contains a conserved serine/threonine phosphorylation site that is involved in 

Dpb11TopBP1 recruitment [74]. Indeed, phosphorylation of yeast Ddc1Rad9 on Thr-602 is 

essential for recruitment of Dpb11TopBP1 to the vicinity of Mec1 and the consequent 

stimulation of Mec1ATR by Dpb11TopBP1 [74,75]. The direct activation of Mec1ATR by 

Ddc1Rad9 and the indirect activation by Ddc1Rad9 via Dpb11TopBP1 constitute two separable 

and partially redundant activation mechanisms; the G2 checkpoint in response to treatment 

with the UV-mimetic chemical 4-nitroquinoline-oxide is only abolished if both mechanisms 

are disabled. Conversely, full G2 checkpoint signal requires that both stimulatory pathways 

are intact [67]. As mentioned above, the direct stimulation of Mec1ATR by Ddc1Rad9 has 

only been established for S. cerevisiae. In all other systems studied, Dpb11TopBP1 is the only 

factor that has been reported to directly activate Mec1ATR, although 9-1-1 is required for 

Dpb11TopBP1 recruitment [74,76,77].

6. Dna2 as a Mec1ATR activator

While the checkpoint is mediated by 9-1-1 in G1 and by both Dpb11TopBP1 and 9-1-1 in G2, 

the S-phase checkpoint shows even more complexity. The existence of an additional S-phase 

activator(s) was indicated by the remaining activity of the replication checkpoint even in the 

absence of the checkpoint functions of Ddc1Rad9 and Dpb11TopBP1 [78]. A biochemical 

screen for Mec1ATR activators identified Dna2 as an S-phase-specific activator of the 

Mec1ATR kinase. The stimulatory activity of Dna2 was independent of its nuclease and 

helicase activities, and was determined to derive from its N-terminal domain, anchored by 

the two aromatic residues Trp128 and Tyr130 [10]. Replacement of these two residues with 

alanines resulted in a mutant (Dna2-WY-AA) that lacked Mec1ATR stimulatory activity both 

in vitro and in vivo when replication forks were stalled by hydroxyurea-induced dNTP 

depletion. The checkpoint function of all three proteins, Dna2, Ddc1Rad9 and Dpb11TopBP1 

had to be inactivated in order to completely abrogate Mec1 function in S-phase, consistent 

with the contribution of all three activators to Mec1 stimulation at stalled replication forks. 

Dna2 does not significantly contribute to the checkpoints in G1 or G2.

Evidently, there is a high level of redundancy in activation of the S-phase checkpoint. In 

agreement with earlier reports [79,80], Kumar and Burgers found that Tel1ATM could 

partially mediate the S-phase checkpoint signal in response to 4-NQO treatment or 

hydroxyurea-induced replication stalling. Therefore, full abrogation of the S-phase 

checkpoint required inactivation of all three Mec1ATR activators (or Mec1ATR itself) and 

Tel1ATM [10]. It should be noted here that MEC1 deficiency confers lethality in yeast, but 

this can be suppressed by deletion of SML1, an inhibitor of ribonucleotide reductase. 

Therefore, mec1Δ sml1Δ strains are viable [81,82].

The reason for the extensive redundancy in activation of the replication checkpoint is 

somewhat unclear, but may relate to the critical importance of the S-phase checkpoint. 

Indeed, ddc1Δ cells that lack a functional G1 and G2 checkpoint do not show a significant 

growth defect [67], but cells that are completely deficient in S-phase checkpoint signaling 
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are very sick and grow poorly even in the absence of DNA damaging agents [10,83]. This 

suggests that some checkpoint function is required during normal DNA replication. In 

support of this hypothesis, checkpoint-defective cells fail to complete DNA replication 

efficiently even in the absence of induced DNA damage. However, normal S-phase 

progression and cell growth is restored when any single activation mechanism (either by 

DNA2, DPB11, DDC1 or TEL1) is restored.

7. Unique and common features of Mec1ATR activators

One possible explanation for the presence of multiple Mec1ATR activators is that they 

recognize and react to different DNA structures or different types of DNA damage. The 

specificity of 9-1-1 loading onto 5′-ds-ssDNA junctions provides a unique targeting 

mechanism at the 5′-ends of Okazaki fragments, at resected double-strand DNA breaks, and 

at ssDNA gaps that have been generated during the process of nucleotide excision repair. 

Since Dpb11TopBP1 is recruited by Ddc1Rad9 [75], it is expected to be found at the same 

DNA structures as 9-1-1. Conversely, Dna2 prefers 5′-flap structures [18,72]. Both 5′-flaps 

and 5′-dsDNA junctions are natural intermediates during lagging strand replication (Figure 

1C), and therefore, the major replication checkpoint targeting mode likely proceeds through 

the lagging strand. However, if re-priming on the leading strand occurs as a consequence of 

replication fork stalling, 5′-junctions should also be available for 9-1-1 loading at gaps on 

the leading strand [84]. Furthermore, in light of the reported ability of Dna2 to bind 

secondary structures and G4 DNA [25,39,42], it could also mediate checkpoint activation in 

response to replication fork stalling at such structures. Since Dna2 travels with the 

replication fork [46], its recruitment to stalled forks would not be required, while 9-1-1 and 

Dpb11TopBP1are only recruited once forks stall.

Although the three Mec1ATR activators are structurally unrelated and have different overall 

functions in the cell, their similarity with regard to Mec1ATR-activating features is 

remarkable. All three proteins contain both structured domain(s) with highly specific 

functions as well as an unstructured region. Our current understanding of these activators is 

that the structured domain has both checkpoint-independent and checkpoint-dependent 

functions. As part of checkpoint initiation the structured domain binds certain forms of DNA 

damage or aberrant DNA structures that may occur during different phases of the cell cycle. 

The DNA-bound activator will then signal checkpoint initiation via its unstructured 

activation tail provided that it is localized near sufficient RPA-coated ssDNA in order to 

recruit Mec1ATR through its Ddc2ATRIP subunit. As an example of this two-component 

activator model, the G1 DNA damage checkpoint is absolutely dependent on 9-1-1, which 

localizes to DNA repair gaps and activates Mec1ATR through the C-terminal tail of the Ddc1 

subunit. Removal of this tail abrogates the G1 checkpoint. However, it can be restored by 

fusing the N-terminal tail of Dna2 to the truncated C-terminus of Ddc1 [10]. Even though 

the NTD of Dna2 normally only functions in S phase, it now has gained G1 function by 

virtue of being linked to 9-1-1.

All three unstructured tails contain two critical aromatic residues that are essential for 

stimulation of Mec1ATR kinase activity. However, these two aromatic residues can be 

separated by as little as one amino acid in Dna2 and by as many as 192 amino acid residues 
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in Ddc1 [10,67,78]. Furthermore, no significant sequence similarity is evident even within 

the immediate surroundings of the activating aromatic residues. The specificity of activation 

may instead stem from the aromatic residues being presented within a certain secondary 

structure context. The activation motif of Ddc1Rad9 forms a potential β strand-loop-β strand 

motif [68,69] and mutations that abolish either β strand eliminate the ability of the protein to 

activate Mec1ATR [67]. The key aromatic residues are located at the β strand -loop 

boundary, and this property appears to be conserved for Dna2 and Dpb11TopBP1 (P. 

Wanrooij, unpublished observations). However, further studies are required in order for us 

to gain full understanding of the specificity and mechanism of Mec1ATR activation.

Understanding the distinctive roles of the three different Mec1ATR activators when and 

where chromosomes are challenged, along with mechanistic insight of their interaction with 

this essential kinase, are intriguing directions for future investigation.
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Abbreviations

9-1-1 human Rad9, Rad1, Hus1 (yeast Ddc1, Rad17, Mec3) checkpoint clamp

ATM ataxia-telangiectasia mutated

ATR ATM and Rad3 –related

ATRIP ATR interacting protein

DSB double-strand break

dsDNA double-stranded DNA

ssDNA single-stranded DNA

FEN1 flap endonuclease 1

NTD N-terminal domain

PIKK phosphatidylinositol 3-kinase-related protein kinase

RPA replication protein A
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Figure 1. The structure and functions of Dna2
(A) A schematic representation of the domain structure of S. cerevisiae and human Dna2 

nuclease/helicase. The nuclease and helicase domains are depicted in green and blue, 

respectively. The N-terminal unstructured domain of yeast Dna2 is in light brown. The N-

terminal domain of human Dna2 is shorter than that of its yeast counterpart and does not 

contain an appreciable unstructured region. The cysteines that coordinate the iron-sulfur 

domain as well as the Trp and Tyr that mediate Mec1ATR activation are indicated. (B) Some 

of the functions of Dna2 in maintenance of nuclear genome stability. Left panel, Dna2 

mediates processing of long flaps during Okazaki fragment maturation. Middle panel, Dna2 

works in conjunction with Sgs1/BLM helicase in a pathway of DSB end resection. Right 

panel, Dna2 prevents reversal of replication forks. Additional details are found in the text. 

(C) The role of Dna2 during Okazaki fragment maturation. On the lagging strand, 

displacement synthesis by Pol δ generates flaps of 1–2nt that are cleaved by FEN1 to create 

a ligatable nick (short flap pathway, top of figure). Some flaps escape FEN1 cleavage and 

grow long enough to bind RPA (long flap pathway, bottom of figure). These long flaps 

require initial cleavage by Dna2 to allow final processing by FEN1 (flap trimming). 

Conditions or mutations that promote generation of long flaps (Pol δ exonuclease deficiency 

or fen1-Δ) are dependent on a functional Dna2, whereas FEN1 overexpression, deletion of 

the POL32 subunit of Pol δ or deletion of PIF1 promote the short flap pathway and show 

less dependence on Dna2 [27]. Dna2 bound to long flaps may trigger the checkpoint by 

activating Mec1ATR.
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Figure 2. Mec1ATR activation during different cell cycle phases in S. cerevisiae
Top panel, 9-1-1 (orange) is the sole activator of Mec1 in G1 phase. Middle panel, In G2/M, 

Mec1 can be activated through two redundant pathways that are separable. The first involves 

direct activation by 9-1-1 and depends on two aromatic residues in the unstructured C-

terminus of the Ddc1 subunit of 9-1-1. The second pathway relies on activation by Dpb11 

(in blue), although 9-1-1 is still required for Dpb11 recruitment. Bottom panel, Dna2 

(green), 9-1-1 (orange) and Dpb11 (blue) act in a redundant fashion to stimulate Mec1 upon 

replication stalling induced by hydroxyurea. Dna2 is depicted as bound to long flaps, while 

9-1-1 and thereby Dpb11 bind 5′-ssDNA-dsDNA junctions.
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