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Abstract

Unequal allocations have been used in clinical trials motivated by ethical, efficiency, or feasibility 

concerns. Commonly used permuted block randomization faces a tradeoff between effective 

imbalance control with a small block size and accurate allocation target with a large block size. 

Few other unequal allocation randomization designs have been proposed in literature with 

applications in real trials hardly ever been reported, partly due to their complexity in 

implementation compared to the permuted block randomization. Proposed in this paper is the mass 

weighted urn design, in which the number of balls in the urn equals to the number of treatments, 

and remains unchanged during the study. The chance a ball being randomly selected is 

proportional to the mass of the ball. After each treatment assignment, a part of the mass of the 

selected ball is re-distributed to all balls based on the target allocation ratio. This design allows 

any desired optimal unequal allocations be accurately targeted without approximation, and 

provides a consistent imbalance control throughout the allocation sequence. The statistical 

properties of this new design is evaluated with the Euclidean distance between the observed 

treatment distribution and the desired treatment distribution as the treatment imbalance measure; 

and the Euclidean distance between the conditional allocation probability and the target allocation 

probability as the allocation predictability measure. Computer simulation results are presented 

comparing the mass weighted urn design with other randomization designs currently available for 

unequal allocations.
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1. Introduction

Unequal treatment allocations have been frequently employed in clinical trials motivated by 

ethical, economical, trial efficiency, or trial feasibility considerations [1,2]. They are more 
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commonly used in Bayesian adaptive trials [3], early phase trials, and trials using response 

adaptive randomization [4]. Researches on unequal allocation randomization designs 

involve new concepts and challenges which are not relevant to equal allocation 

randomization designs. To facilitate the further discussion, the following concepts are 

defined:

1.1. Conventional unequal allocations versus optimal unequal allocations

Unequal allocations can be classified into two categories: optimal allocations and 

conventional allocations. Optimal allocations are derived from pre-defined optimization 

algorithms [1], and may include rational or irrational numbers. For example, in a two-arm 

trial with a binary outcome testing the simple difference between the response rates pA and 

pB, the optimal allocation which minimizes the total number of failures is . If the 

goal is to maximize the power of the trial under a fixed sample size, the optimal allocation is 

, known as Neyman allocation [1,2]. Assume pA = 0.35 and 

pB = 0.20, these two allocations are 1:1.3229, and 1:1.1924 respectively. Another instance 

where an unequal allocation is statistically desirable is when (m – 1) treatments are 

compared to a single control using the Dunnett procedure, in which, the optimal allocation is 

1 for each of the treatment arms and  for the control arm [1,5]. When m = 3, the 

optimal allocation is . Optimal unequal allocations are frequently used in Bayesian 

adaptive trials [3]. Connor et al. recently reported a design for a three-arm trial with a binary 

outcome aiming to identify the best treatment [6]. If the success rates obtained from the 

initial balanced phase of 300 subjects are 51%, 55%, and 64% respectively for the three 

arms, an unequal allocation of 6:11:33 is desired for the next 100 subjects in order to 

maximize the likelihood of identifying the best or the worst one among the three arms. 

Conventional allocations, sometimes called convenient allocations, are usually composed by 

small integers. Dumville et al. searched the Cochrane Library, Medline, PubMed and the 

Science Citation Index, and identified 65 trials with unequal allocations [7]. Among them, 

64 (98%) trials used allocations with integers no greater than 4. Of the 56 two-arm trials, 53 

(95%) used allocations 1: 2, 1:3, or 2:3. None of the trials Dumville searched used optimal 

unequal allocations. In fact, there is no randomization design currently available that is able 

to directly target optimal allocations, except the complete randomization, which is 

vulnerable to unwanted treatment imbalances.

1.2. The desired allocation, the target allocation, and the achieved allocation

The desired allocation is defined based on the study design or derived from accumulated 

study data. The target allocation is used by the randomization algorithm. The achieved 

allocation is the treatment distribution obtained in a randomization procedure. The 

distinction between the desired allocation and the target allocation occurs when the 

randomization design cannot target the desired allocation. For example, if the desired 

optimal allocation is 1:1.3229, one may choose a randomization design to target the 

allocation 2:3 or 3: 4. The difference between the desired allocation and the target allocation 

is defined as the allocation accuracy. The difference between the target allocation and the 

achieved allocation is defined as the allocation precision. The expected value of the 
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difference between the treatment distribution under the desired allocation and the 

distribution under the target allocation is proportional to the sample size. As the sample size 

increase, so does the impact of the allocation accuracy.

1.3. Pre-generated randomization sequence and conditional allocation probability

Historically, a randomization sequence was generated before the trial started, and was kept 

in a secure place, such as sequentially numbered sealed envelopes locked in a file cabinet. 

When a subject was ready for randomization, the envelope with the smallest sequence 

number is opened for treatment assignment. Cases of suspicious selection biases and frauds 

associated with this old practice have been reported [8]. As computers have become widely 

available, a pre-generated randomization sequence can be stored in a computerized 

randomization system. Randomization codes are then used sequentially for treatment 

assignments. This method cannot handle unexpected, yet unavoidable, situations associated 

with study drug supply problems and clinical site trial operation misconducts [9]. As a better 

alternative to the pre-generated randomization sequence, an explicit conditional allocation 

probability formula allows randomization assignments being generated in real-time by a 

central computerized randomization system, adapting the entire randomization history. This 

approach not only eliminates prior randomization treatment assignment concealment 

failures, but also allows covariate adaptive randomization for treatment imbalance controls 

beyond stratification and response adaptive randomization [10].

In summary, desired features for a good unequal allocation randomization design include:

• High allocation accuracy to ensure that the target allocation of the randomization 

algorithm is close enough to the desired allocation.

• A consistent allocation precision to ensure that at any time point in the study the 

treatment imbalance between the achieved allocation and the target allocation is 

controlled within a pre-specified tolerated limit.

• A simple method for the calculation of the conditional allocation probability to 

ensure an easy implementation of the randomization algorithm.

In Section 2, currently available unequal allocation randomization designs are reviewed, and 

the need for a better design is presented. In section 3, the mass weighted urn design is 

proposed, followed by the evaluation of its statistical properties and performance 

comparison with other randomization designs in Section 4. Section 5 presents more 

discussions on the desired features for unequal allocation randomization designs and 

limitation of the proposed mass weighted urn design.

2. Background

Currently available unequal allocation randomization designs include the complete 

randomization (CP), the permuted block randomization (PBR), the modified Wei's urn 

design (mUD) described by Rosenberger and Lachin [1], the maximal procedure (MP) 

proposed by Berger et al. [11,12], the brick tunnel randomization (BTR) and its modified 

version, the wide brick tunnel randomization (WBT) propose by Kuznetsova and 

Tymofyeyev [13,14], and the block urn design (BUD) proposed by Zhao and Weng [15]. 
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Consider a target allocation r1:r2:···:rm, where rj (j =1,2,···,m) are integers without common 

divisor greater than 1. Let  be the sum of allocation elements, and wj = rj / R so 

that . Let nij be the number of subjects assigned to treatment j in the first i 

subjects, and pij be the probability of assigning subject i to treatment j. CR directly applies 

the target allocation probability to each treatment assignment, i.e:

(1)

It offers the lowest allocation predictability at the cost of a weak treatment imbalance 

control. Although it is extremely easy to implement, CR has rarely been used in practice. 

PBR sequences can be obtained based on an urn model [1,16]. Letb = αR be the block size 

with α being a positive integer. The conditional allocation probability for PBR is:

(2)

Here k = int[(i –1) / b] is the number of completed blocks among the first (i –1) assignments. 

Pre-generated PBR sequences are frequently used in practice. With formula (2), a PBR 

assignment can be generated in real-time when needed. The conditional allocation 

probability for BUD is:

(3)

Here k* is the number of complete balanced sets of R assignments among the first (i –1) 

subjects [15]. For both PBR and BUD, treatment imbalance is controlled by the block size. 

A small block size offers a tighten imbalance control. Meanwhile, it may reduce the 

accuracy of the target allocation. For example, for a desired allocation , choosing 

10:14:17 as the target allocation results a good allocation accuracy with a weak imbalance 

control because the minimal block size is 41. Choosing target allocation 2:3: 4 allows a 

block size as small as 9 at the cost of a noticeable allocation accuracy loss.

Rosenberger and Lachin described the mUD for two-arm trials with unequal allocation w1 : 

w2, where w1 + w2 =1. Starting from αw1 and αw2 balls in the urn for the two arms 

respectively, if a ball for arm 1 is drawn, βw2 balls are added to the urn for arm 2; and if a 

ball for arm 2 is drawn, βw1 balls are added to the urn for arm 1 [1]. Although it was not 

explicitly mentioned, it is assumed that the selected ball is returned to the urn after the 

treatment assignment, same as the original Wei's urn design [18]. By extending this model to 

m ≥ 2 scenarios, the conditional allocation probability for mUD is:

(4)

As i increases, the number of balls in the urn increases, and the treatment imbalance control 

decreases. For large trials, mUD has a weak treatment imbalance control similar to the 
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complete randomization [16], a limitation associated with the original urn design proposed 

by Wei for equal allocations [18].

Proposed by Berger, MP ensures that all permissible randomization sequences, under the 

condition of a given sequence length and the maximal tolerated imbalance (MTI), have the 

same chance being selected [12]. Equal probability sequence is important for designed-

based randomization tests in which the type I error is assessed based on the permutation of 

all permissible sequences under the randomization design. Proposed by Kuznetsova and 

Tymofyeyev, BTR ensures that the unconditional allocation probability for each treatment 

assignment in the randomization sequence equals to the target allocation ratio [13,19]. 

Preserving the unconditional allocation ratio helps selection bias prevention. However, few 

randomization designs offer both the equal probability sequence and the preserved 

unconditional allocation ratio. Consider a trial with a target allocation 2:3 between arms A 

and B, using MP with MTI = 2, there are 8 possible sequences for the first 5 assignments: 

ABABB, ABBAB, ABBBA, BAABB, BABAB, BABBA, BBAAB, and BBABA. Giving 

each sequence the same probability of 1/8, the unconditional allocation ratio is 1:1 for the 

third subject and 3:5 for the other 4 subjects; none of them equals to the target allocation 

ratio 2:3 [13]. On the other hand, if BTR is applied to preserve the unconditional allocation 

ratio, sequences 1, 4, 7 and 8 have 1/10 chance being used, and the other 4 sequences have 

3/ 20 chance being used [13], none of them equals to 1/ 8. What is common to MP and BTR 

is that both do not offer an explicit formula for the calculation of conditional allocation 

probabilities. Salama et al. provided an algorithm for the generation of MP randomization 

sequence [12]. It helps for short sequences and conventional allocations with small integers. 

The extensive amount of calculation and complex logic rules discouraged the MP being 

applied to more general unequal allocation trial scenarios. The creation of a BTR sequence 

involves a complex iterative procedure for the calculation of transition probabilities from 

each permissible allocation node to each permissible next node under the unconditional 

allocation ratio preserving condition. This procedure becomes more complex when the trial 

involves m < 2 arms and target allocations with large integers. BTR does not have a 

parameter to adjust the tradeoff between the allocation predictability and treatment 

imbalance. In the 5-assignment sequence discussed above, 36% assignments are 

deterministic, making BTR vulnerable to selection bias. For this reason, Kuznetsova and 

Tymofyeyev proposed the WBT by expending the BTR allocation space [14]. While the 

allocation predictability is improved in WBT, the implementation complexity is also 

increased, making it even harder being used in practice.

While each of these currently available unequal allocation randomization designs has some 

advantages and disadvantages, a better design is needed to simultaneously provide high 

allocation accuracy, a consistent imbalance control, and an explicit formula for conditional 

allocation probability, while maintain a low level of allocation predictability.

3. Method

3.1. The conceptual model for the mass weighted urn design

Unlike in traditional urn designs where each ball in the urn always has the same chance to be 

selected, in the mass weighted urn design (MWUD) the probability a ball being selected is 
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proportional to its mass. Each ball can have its mass as a real number, such as an integer, a 

rational number, or an irrational number. Consider a study comparing m treatments with a 

target allocation W = (w1,w2,···,wm), where wj > 0 (j =1,2,···,m) and . There are 

m balls in the urn, each represents one treatment. Let Ti be the treatment allocation for the ith 

subject, and xij be the mass of the ball for treatment j after treatment assignment Ti. Initially 

each ball has its mass proportional to the target allocation, i.e. x0,j = αwj (j =1,2,···,m). Here 

α is a parameter controlling the maximal tolerated treatment imbalance. The MWUD 

procedure follows the steps below:

Step 1: When eligible subject i is ready for randomization, among all balls with a 

positive mass, a ball is randomly drawn from the urn with the probability proportional 

to its mass. The subject is assigned to the treatment associated with the selected ball, 

denoted as Ti.

Step 2: One unit mass is taken from the selected ball, and redistributed among the m 

balls, including the selected ball, based on the target allocation ratio. Then, the selected 

ball is returned to the urn.

Step 3: Repeat the steps 1 to 2 until the end of the study.

After treatment assignment Ti, the contents of the urn are changed as follows:

(5)

The total mass of the m balls in the urn , (i = 0,1,2,···) is a constant. In certain 

circumstances, a ball could have a negative mass. When this situation occurs, that ball is not 

available for the next random draw, and the associated treatment is excluded from the 

randomization for the next subject. After the randomization for the next subject to one of the 

other treatments, that ball will receive its share of the redistributed mass. It will become 

available for randomization as soon as its mass turns to positive.

3.2. The conditional allocation probability

With the mass weighted urn model, the conditional allocation probability pij is fully 

determined by the current contents of the urn, i.e. Xi–1 = (xi–1,1, xi–1,2,···, xi–1,m). Let Ni = 

(ni,1,ni,2,···,ni,m) be the treatment distribution among the previous i subjects. Before Ti, there 

is:

(6)

The conditional allocation probability for MWUD is:

(7)

Here δi–1,j = ni–1,j –(i –1)wj represents the difference between the observed number of 

assignments to treatment j and the desired number of assignments to treatment j among the (i 
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– 1) subjects under the target allocation. It is noticed that formula (7) may have negative 

values when α is small. To solve this problem, negative values of xi–1,j is replaced by zero, 

and the remaining conditional allocation probability items are rescaled so that their sum 

equals to 1. With this scenario taken into account, the following formula is used for 

implementation of MWUD:

(7a)

For example, in a three-arm trial with the targeting allocation of 1:2:3 = 1/6:1/3:1/2 and α = 

3, if the first subject is assigned to arm 1, the conditional allocation probabilities obtained 

from (7) are −1/9, 4/9, 6/9 respectively for the three arms. By replace −1/9 with 0 and 

rescale 4/9 and 6/9 based (7a) we have 0, 2/5, 3/5 as the conditional allocation probabilities 

for assigning the second subject to the three arms respectively.

With the conditional allocation probability Pi = (pi1, pi2,···, pim), a random variable Y ~ 

Uniform(0,1) is employed to facilitate the subject randomization procedure. Subject i is 

assigned to treatment j if:

(8)

3.3. The maximal treatment imbalance

The primary goal of using a restricted randomization design is to control treatment 

imbalance so that the difference between the achieved treatment distribution and the desired 

allocation is within a tolerated range. Let Hi = (iw1,iw2,···,iwm) be the treatment distribution 

under the target allocation. The treatment imbalance di is defined as the Euclidian distance 

between Ni and Hi:

(9)

Here δij = nij –iwj (i =1,2,···; j =1,2,···,m) represents the imbalance component in treatment j 

after assignment Ti. For two-arm equal allocation trials, formula (9) is reduced to 

, proportional to the absolute difference of the two treatment group sizes. 

Based on the definition of δij, at any given time point i, there is:

(10)

According to (7) and (8), if δij > αwj, there are pi+1,j < 0, Ti+1 ≠ j, ni+1,j = nij, and δi+1,j =δij – 

wj. The maximum of δij occurs when δi+1,j is in its minimal positive value and the ball j is 

selected:

(11)

Based on (10), there is:
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(12)

Comparing (11) and (12), there is max(δij)<|min(δij)|. Therefore, the treatment imbalance di 

defined by (9) will not exceed the limit below:

(13)

For example, for target allocation  with α = 4, there is:

In reality, at any given time point in a sequential allocation procedure, there could be no 

more than one imbalance component δij reaches its maximum or its minimum. The actual 

maximal treatment imbalance will be smaller than the one given in (13). Formula (13) 

indicated that the proposed MWUD provides a consistent treatment imbalance control 

throughout the study. The maximal imbalance, measured by the Euclidian distance between 

the observed treatment distribution and the targeted treatment distribution, is capped through 

parameter α.

3.4. The allocation predictability

Allocation predictability is an important property for randomization designs. For two-arm 

equal allocation trials, the correct guess probability defined based on the Blackwell and 

Hodges’ convergence strategy [20] and the proportion of deterministic assignments are 

widely employed as the measures for allocation predictability [16,10]. For trials with m ≥ 2 

and unequal allocations, a generally applicable assessment for allocation predictability is 

needed. CP uses the target allocation probability for each treatment assignment, and has the 

lowest allocation predictability. Therefore, the difference between the conditional allocation 

probability Pi = (pi1, pi2,···, pim) and the target allocation probability W = (w1,w2,···,wm) can 

be a generalizable measure for the allocation predictability:

(14)

Insert (7) and (9) into (14), there is:

(15)

Formula (15) indicated that for MWUD, when both are measured by the Euclidian distance, 

the allocation predictability of a treatment assignment is proportional to the treatment 

imbalance prior to that treatment assignment.

Zhao Page 8

Contemp Clin Trials. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Results

The MWUD described in Section 3 applies to all target allocations, equal or unequal, two 

arms or more than two arms, and is easy for implementation due to the simple formula for 

conditional allocation probability (7a). In this section, the statistical and operation properties 

of this new randomization design are assessed with computer simulations and are compared 

to those of PBR, mUD, and CR.

4.1. A sample MWUD randomization sequence

Consider a trial with a target allocation  and a sample size of 300. Table 1 shows the 

details of MWUD process with α = 4, including information before, during, and after the 

first 10 and last 10treatment assignments. Using formulas (7a), conditional allocation 

probability can be easily calculated based on the target allocation, the current treatment 

distribution and the parameter α. Treatment assignment Ti is made based on (8). The 

treatment imbalance and the allocation predictability are measured by (9) and (14) 

respectively. Under the target allocation , a deterministic 

assignment to treatment 1, 2, or 3 has the predictability of 0.8703, 0.8703, and 0.7174 

respectively. The observed allocation predictability is much lower than those of 

deterministic assignments, indicating a high level of allocation randomness. Based on 

formula (13), the treatment imbalance cap for this trial setting is 6.9346. Observed treatment 

imbalances are much smaller than this cap. This sample randomization sequence 

demonstrates that the proposed MWUD is able to achieve the optimal target allocation 

accurately and precisely while maintaining a low allocation predictability.

4.2. Performance comparison with alternative designs for optimal unequal allocation

Computer simulations are conducted for a trial with a desired optimal allocation 

and a sample size of 100, comparing MWUD with CR, PBR, and mUD. The CR, mUD, and 

MWUD directly target the optimal allocation. Three conventional allocations are used as the 

target allocation for PBR. They are 2:3:4,5:7:8, and 10:14:17. The minimal block size b = 9, 

20, or 41, is used for each scenario respectively. Four levels of parameter α, 2, 4, 6, and 8, 

are used for MWUD. Fifty thousand replications are run for each simulation scenario.

Figure 1a and 1b show the treatment imbalance for each assignment in the randomization 

sequence averaged across simulation runs. Figure 1a indicates that mUD has a treatment 

imbalance increasing as the sequence increases, similar to CR. PBR with a small block size 

has a low allocation accuracy, due to the difference between the desired allocation and the 

target allocation. The treatment imbalance grows along with the allocation sequence. With a 

large block size, the target allocation is closer to the desired allocation. However, this occurs 

only at the end of each block. The treatment imbalance in the middle of each block increases 

as the block size increases. In Figure 1b, the proposed MWUD demonstrates its capacity of 

accurately targeting the optimal allocation with a consistent imbalance control throughout 

the randomization sequence. Table 2 lists the average treatment imbalance and the average 

allocation predictability for the 9 simulation scenarios. Results show that the MWUD with 

parameter α equals to 4 or 6 offers better overall performance when compared to CR, mUD, 

and PBR for optimal unequal allocation . It can be expected that as the sample size 
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increases, the advantageous of the MWUD over other designs will become even more 

significant.

4.3. Tradeoff between treatment imbalance and allocation predictability

A tradeoff between treatment imbalance and allocation predictability is commonly exist in 

all restricted randomization designs. For a specific randomization design, a reduction in 

imbalance tolerance is often associated with an increase in allocation predictability, and vice 

versa. However, for different randomization designs, with the same cost in allocation 

predictability, the gain in treatment balancing are not always the same [16]. To compare the 

proposed MWUD to the most commonly used PBR with the focus on the tradeoff 

performance between treatment imbalance and allocation predictability, four trial scenarios 

are simulated: (1) a two-arm trial with desired allocation 3:5; (2) a three-arm trial with 

desired allocation 3:5:8; (3) a four-arm trial with equal allocation 1:1:1:1; and (4) a five-arm 

trial with desired allocation 2:3:3:4:5. In all these cases, the desired allocation can be 

directly targeted by both PBR and MWUR, so the simulation results solely represent the 

tradeoff mechanism of each design. For this purpose, wide ranges of block size b for PBR 

and parameter α for MWUD are simulated. The sample size for all simulation scenarios is 

set to 300 so that the periodical variation of treatment imbalance and allocation 

predictability can be reduced by taking the average across the sample size. To gain stable 

estimates, each simulation scenario is repeated 5000 times. Figure 2 shows that in the three 

unequal allocation scenarios, MWUD demonstrates better performances than PBR. With the 

same level of treatment imbalance control, MWUD provides lower allocation predictability 

than PBR. Contrasted with the discrete block sizes available in PBR, a continuous space for 

parameter α is offered in MWUD. In addition, the high proportion of deterministic 

assignments associated with PBR has been considered as one of the major risk factor for 

selection bias [10,16,17, 21]. When α ≥ 3, deterministic assignments are almost eliminated 

from MWUD sequence. For equal allocations, there is no big difference between MWUD 

and PBR with regards to the tradeoff performance. In fact, it is not hard to prove that 

MWUD with α =1 is identical to PBR with block size b = m.

4. Discussion

Originally created by Friedman [22], the urn model with integer components had been used 

to illustrate various randomization designs for sequential clinical trials, including Wei's urn 

design [18], Chen's Ehrenfest urn design [23], and Zhao and Weng's BUD [15], the 

commonly used PBR [1, 16], and the mUD [1]. The use of continuous contents, such as the 

mass weighted rule, in an urn model is not new [24]. It allows the MWUD to target any 

desired unequal allocation in the real number domain without approximation. After using 

conventional allocations with small integers for decades, people may challenge the 

relevance of having allocations with real numbers. The growing use of Bayesian adaptive 

design and response adaptive designs call for unequal allocation designs better than the 

commonly used PBR. It is important to realize that, compared to PBR, the proposed MWUD 

offers better tradeoff performance between treatment imbalance control and allocation 

predictability, equally easy implementation with a simple formula for the calculation of 
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conditional allocation probability. The accurate allocation targeting of MWUD is an 

additional advantageous feature for an unequal allocation randomization design.

A consistent unconditional allocation probability for each treatment assignment in a 

randomization sequence is a good feature for a randomization design [13,14,19]. To exam 

this feature for MWUD, consider a two-arm trial with target allocation w1 : w2. Without the 

loss of generality, assume w1 ≤ w2 and w1 + w2 =1. Let pi1 and pi2 =1– pi1 be the conditional 

allocation probability, ui1 and ui2 = 1 –ui1 be the unconditional allocation probability for 

treatment assignment Ti. Let ni1 and ni2 =i–ni1 be the observed treatment distribution after 

Ti. The unconditional allocation probability for T1 is u1,1 = p0,1 = w1. The unconditional 

allocation probability for T2 is:

(16)

This result indicates that when α < w2 / w1, the unconditional allocation probability u2,1 will 

be greater than the target allocation w1. For example, when w1 =1/ 4, w2 = 3/4, and α = 2 < 

w2/ w1 = 3, the unconditional allocation probability u2,1 =1/ 4+1/ 32. This fact shows that 

MWUD does not hold the allocation ratio preservation feature. Similar issue occurs to the 

mUD. Under the same trial setting, consider mUD with parameters α = 4, and β = 8, so that 

the urn starts with 1 ball for arm 1 and 3 balls for arm 2. If a ball is drawn for arm 1, 6 balls 

are added to the urn for arm 2. If a ball is drawn for arm 2, 2 balls are added to the urn for 

arm 1.

(17)

Computer simulations are conducted to exam the magnitude of the shift in the unconditional 

allocation probability of MWUD for a two-arm trial with allocation 2:3. Results are shown 

in Table 3. . . In this specific case, when α ≥ 2 the unconditional allocation probability shift 

is trivial. In general, α ≥ 4 is recommended for MWUD, so that the concerns for the 

unconditional allocation probability shift can be eased. It is worth to point out that, 

compared to the unconditional allocation probability shift, the high proportion of 

deterministic assignments with conditional allocation probability equals to 1.0 is a more 

harmful factor inviting selection bias, especially when perfect blinding is not available.

In addition to computer simulation studies under limited trial setting scenarios, further works 

are needed to explore the statistical properties of MWUD with different approaches. It is 

also worth to extend the implementation of this unequal allocation randomization design in 

trials where baseline covariate balancing is desired.
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Figure 1. 
Treatment Imbalances for Optimal Unequal Allocation

Desired allocation = , Sample size = 100, Simulation = 50,000/scenario
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Figure 2. 
Performance Comparison between MWUD and PBR for Conventional Allocation Sample 

size = 300, Simulation = 5,000/scenario
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Table 2
Performance comparison between MWUD and alternative designs

Optimal allocation = 1: √2: √3, sample size = 100, simulation = 50,000 per scenario

Randomization design Target allocation Parameter Average Allocation Predictability
*

Average Treatment Imbalance
†

Complete randomization 1: √2: √3 0 4.8072

Modified Urn Design 1: √2: √3 α = 1, β = 1 0.0586 3.9141

Permuted Block 
Randomization (block size 

= b)

2 : 3 : 4 b = 9 0.2841 1.9584

5 : 7 : 8 b = 20 0.2121 1.7374

10 : 14 : 17 b = 41 0.1378 1.8466

Mass Weighted Urn Design 1: √2: √3

α = 2 0.3480 0.7747

α = 4 0.2501 1.0268

α = 6 0.2032 1.2359

α = 8 0.1747 1.4134

†
Calculated based on the Euclidean distance between the desired treatment distribution and the achieved treatment distribution, averaged across the 

randomization sequence and the simulation runs.

*
Calculated based on the Euclidean distance between the desired allocation probability and the conditional allocation probability, averaged across 

the randomization sequence and the simulation runs.
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Table 3
Estimation of unconditional allocation probability for MWUD

Allocation = 2:3. Simulation replicate = 10,000 per scenario

Sequence α = 1 α = 2 α = 3 α = 4 α = 5 α = 6

1 0.4 0.4 0.4 0.4 0.4 0.4

2 0.3967 0.4001 0.3983 0.3998 0.4010 0.4002

3 0.3226 0.3974 0.4000 0.4012 0.4012 0.4007

4 0.4288 0.3951 0.4006 0.4013 0.4009 0.4002

5 0.3396 0.3977 0.3984 0.4021 0.4003 0.4020

6 0.4000 0.4014 0.3959 0.4015 0.4028 0.4032

7 0.3978 0.3965 0.3972 0.4010 0.3998 0.4030

8 0.3177 0.3974 0.3985 0.4000 0.3996 0.4022

9 0.4219 0.3963 0.3995 0.4006 0.4005 0.4024

10 0.3205 0.3930 0.4016 0.3999 0.3997 0.4007

Unconditional probability is estimated based on the average conditional allocation probability for each assignment in the sequence across 
simulation runs.
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