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Abstract

DNA repair normally protects the genome against mutations that threaten genome integrity and 

thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion 

Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the 

disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from 

different DNA repair pathways have thus far been implicated in this process. This review will 

summarize recent findings from patients and from mouse models of these diseases that shed light 

on how these pathways may interact to cause repeat expansion.
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1. Introduction

DNA damage repair is essential for human survival. However, it is becoming increasingly 

apparent that some repair processes act as double-edged swords, protecting the genome 

against some sorts of mutations whilst increasing the risk of others. The Repeat Expansion 

Diseases may represent one such example of a class of human genetic disorders that arise 

because of DNA repair gone wrong. These diseases comprise the 20+ human genetic 

conditions that arise from an increase (expansion) in the number of repeats in a particularly 

unstable tandem repeat array (Table 1). The disease-associated tandem repeats that have 

been identified thus far involve units of 3-12 bases. The consequences of the expansion 

depend on some combination of the location of the repeat within the affected gene, the size 

of the repeat unit, the number of repeats present in the allele and the sequence of the repeat 

(Discussed in [1] and chapters therein). The mechanism of expansion is unknown. However, 

as will be discussed below, growing evidence supports the idea that disease critical 
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expansions result from the error-prone processing of these repeats by one or more DNA 

repair pathways that normally protect the genome against DNA damage.

The repeat instability in these disorders is likely to be very different from the generalized 

microsatellite instability (MSI) seen in many forms of cancer since MSI involves the gain or 

loss of a few repeat units (reviewed in [2]), while in the Repeat Expansion Diseases the 

repeat tract shows a strong expansion bias, in some cases adding hundreds, if not thousands 

of repeats in the space of a single generation. In addition, as will be discussed in more detail 

later, mutations that increase MSI actually decrease repeat expansion.

2. Disease associated repeats form unusual DNA structures

All of the disease-associated repeats form unusual secondary structures. Most repeats form 

intrastrand structures like hairpins/stem-loops, G-quadruplexes and i-motif tetraplexes, 

whilst others form intramolecular triplexesandor become unpaired under moderate 

superhelical stress (See [3-7] for recent reviews). Many of these structures contain single-

stranded regions, mismatched bases or unusual hydrogen bonding interactions such as 

Hoogsteen and other non-Watson-Crick base pairs. In principle, these structures could form 

any time that the DNA is unpaired e.g., during DNA replication, repair or transcription and 

there is evidence that some of these structures do indeed form in vivo [8, 9]. Interruptions to 

the purity of the repeat are commonly seen in different diseases and these interruptions 

frequently reduce both the stability of these secondary structures (e.g., [10, 11]) and the risk 

of expansion (e.g., [12-15]). Current thinking is that these structures are somehow 

responsible for the tendency of the repeats to expand.

Many of the repeats also form persistent co-transcriptional RNA:DNA hybrids (or R-loops) 

[8, 16-19]. Bidirectional transcription through these repeats can result in the generation of 

double R-loops [20]. The single-stranded regions of the R-loops may themselves be prone to 

damage that could trigger expansions. They are also likely to increase the chances that 

secondary structures are formed by the unpaired DNA strand.

Work in vitro, in E. coli, yeast, flies and various tissue culture model systems has provided 

important clues as to the many ways that expansions can be generated in different contexts 

and there are a number of comprehensive reviews that summarize this work in some detail 

[3-7]. Our current thinking about how these repeats expand in the Repeat Expansion 

Diseases is informed by this work. However, because of space limitations this review will 

focus on what we have learnt from the natural history of the expansion process in affected 

humans and from different mouse and human disease-derived models. Furthermore, while 

expansions and contractions may represent different outcomes of the same underlying 

process, evidence suggests that genetic and environmental factors that affect expansions 

don’t necessarily affect contractions the same way (e.g., [21-23]). Thus, it may be that 

expansions and contractions involve different mechanisms. Given the limited space 

available, this review will focus on data that specifically addresses the expansion process.
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3. Expansion in mammalian cells does not require chromosomal replication

In affected humans expansions are often seen in tissues with a low proliferative capacity 

including brain, liver and muscle (e.g., [24-27]). Expansions have been observed in non-

dividing cells in affected humans including neurons of patients with Huntington disease 

(HD) [28, 29], Dentatorubral–pallidoluysian atrophy (DRPLA) [30] and Friedreich ataxia 

(FRDA) [31]. Expansions are also seen in the oocytes of women with myotonic dystrophy 

type 1 (DM1) [32, 33] and a maternal age effect is seen on the transmission of expanded 

alleles in DM1, Fragile X syndrome (FXS) and FRDA [13, 34, 35]. Since neurons are post-

mitotic and oocytes are suspended in dictyate arrest from late in fetal life, this would support 

the idea that expansion is independent of chromosomal replication. Furthermore, all mouse 

models for the Repeat Expansion Diseases studied to date also show expansions in tissues 

with a low proliferative capacity (e.g., [22, 36-38]). Expansion is seen in terminally 

differentiated neurons in different mouse models of HD [29, 39] and paternally transmitted 

expansions have been shown to occur in post-meiotic haploid cells in a mouse model of HD 

[40]. In embryonic fibroblasts from a DM1 mouse model, chemical or genetic cell arrest of 

the cell cycle at a variety of stages did not block expansions and in some cases actually 

increased the expansion frequency [41].

Thus, while some expansions may arise from problems associated with chromosomal 

replication, data from affected humans and of mouse models of the Repeat Expansion 

Diseases demonstrate that expansions in disease-relevant cells like neurons and gametes 

involves a process that is independent of genome duplication. Since expansion mechanisms 

involving chromosomal replication have been thoroughly covered elsewhere [3-6], this 

review will focus on mechanisms that can occur in non-dividing cells.

4. Expansion is facilitated by transcription or by transcriptionally 

competent chromatin

While depletion of proteins that cause transcriptional silencing or treatment with small 

molecule inhibitors of such proteins do affect repeat expansion in different ways [42-45], the 

reported effect is not thought to be mediated by a change in the chromatin or transcriptional 

activity of the repeat-containing sequence [42, 45]. Nonetheless, there is evidence from a 

number of different systems suggesting that transcription through the repeat is important for 

expansion. For example, a clear requirement for transcription or at least transcriptionally 

competent chromatin can be seen in FXS one of the Fragile X-related disorders (FXDs). In 

this disorder the repeat is stabilized when the gene in which the repeat is located undergoes 

repeat-mediated gene silencing [46-49]. Furthermore, in a mouse model of the FXDs where 

the repeat falls below the threshold for repeat-mediated silencing, expansions in females 

only occur when the repeat is on the active X chromosome [50]. A re-examination of data 

from women who carry similar sized alleles [51] demonstrates that the same is true in 

humans.

However, there is not a simple relationship between the amount of transcription and the 

extent of expansion in either mice or humans (e.g., [36, 37, 52]). It could be that expansion 

requires an open chromatin configuration rather than transcription per se or that 
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transcription is not rate limiting for expansion. It has also been suggested that the expansion 

frequency is related to the rate of transcription elongation rather than to the absolute levels 

of transcription [53]. This idea is based on a comparison of the repeat instability in the 

striatum and cerebellum of HD mouse models. While these two tissues show similar steady 

state levels of transcription, transcription elongation rates are higher in the striatum, which 

also shows higher levels of expansion [53]. However, the difference in the expansion rates 

of these tissues has also been correlated with differences in the levels of expression of some 

of the proteins involved in the expansion process [54, 55]. It remains to be seen whether 

either of these correlations hold up when additional tissues are analyzed.

5. A diverse collection of proteins involved in DNA repair are important for 

expansion

A number of different proteins have been implicated in repeat expansion (Table 2). These 

proteins include general DNA processing enzymes that are involved in a wide variety of 

different biological processesas well as proteins central to specific DNA repair and 

recombination pathways.

5.1. General DNA processing proteins

DNA ligase 1 (LIG1) is involved in sealing nicks generated during lagging strand DNA 

synthesis, as well as during DNA repair and recombination. A Lig1 hypomorphic mutation 

had no effect on repeat expansion in the FXD mouse [21]. However, the same mutation 

reduced maternally transmitted expansions in an HD mouse [56]. This may reflect a 

maternal-specific expansion process. However, since heterozygosity for this allele had the 

effect as homozygosity for this allele, this result is difficult to interpret. It has been 

suggested to reflect a potential dominant negative effect of the hypomorphic allele [56]. 

However, given that a Lig1 null mutation is embryonic lethal, it might be premature to 

exclude a more general role for this protein in repeat expansion.

There is also currently no genetic evidence for a role for Flap endonuclease 1 (FEN1) in 

repeat expansion in mammals. FEN1 often works upstream of LIG1 to generate the correct 

substrates for ligation in a variety of different DNA processing pathways. Despite the fact 

that work in vitro has shown that hairpins formed by some of the repeats block FEN1 

processing [57], heterozygosity for a Fen1 null mutation did not reduce expansions in DM1, 

HD or FXD mouse models [21, 58, 59]. However, absence of FEN1 is also embryonic lethal 

and since it is possible that Fen1 heterozygous mice are not haplo insufficient, it is probably 

also too early to exclude a role for FEN1 in the expansion process.

5.2. Double-strand break repair (DSBR) proteins

Loss of RAD52, a protein involved in homologous recombination (HR), reduced the size of 

germ line but not somatic expansions in a mouse model of DM1 [60]. However, neither the 

loss of this protein nor the loss of RAD54, another HR protein, affected the expansion 

frequency [60]. Furthermore, expansions are seen in haploid sperm of HD mice in which 

there is no sister chromosome or sister chromatid with which to recombine [40]. Thus an 

HR-based mechanism for expansion is unlikely. However, since RAD52 also cooperates 
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with 8-oxoguanine DNA glycosylase (OGG1) in the repair of oxidative lesions via base 

excision repair (BER) [61], this protein may affect the expansion size independent of its role 

in DSBR. The absence of DNA-dependent protein kinase (DNA-PK), a protein involved in 

non-homologous end joining (NHEJ), had no effect on the expansion frequency in this 

model [60].

5.3. Mismatch Repair (MMR) proteins

While the loss of MMR proteins increases MSI, the opposite is true in mouse and human 

cell models of repeat expansion where some of these proteins are actually required for 

expansion to occur. MutSα, a heterodimer of the MutS homolog 2 (MSH2) and the MutS 

homolog 6 (MSH6), and MutSβ, a heterodimer of MSH2 and the MutS homolog 3 (MSH3), 

are the complexes responsible for lesion recognition in the MMR pathway [62]. The 

substrates with which they interact are partially overlapping, with MutSα recognizing single 

base mismatches and small insertions and deletions (INDELs), and MutSβ recognizing 

larger INDELs. While there is some variability between different mouse models (e.g., [63, 

64]), a case can be made for MutSβ being required for expansions in most mouse models 

[22, 45, 65-68]. However, MSH6, and thus MutSα has been suggested to promote somatic 

expansions in an FRDA mouse model [69]. The effect of knockdown of MSH6 in induced 

pluripotent stem cells derived from FRDA patients [70] and overexpression of MutSβ in a 

human tissue culture model [71] also supports a role for these complexes in generating 

expansions in humans.

The requirement for MMR proteins extends to complexes that act downstream of MutS in 

the MMR pathway such as MutLα, a heterodimer of MutL homolog 1 (MLH1) and 

postmeiotic segregation increased 2 (PMS2), and MutLγ, a heterodimer of MLH1 and the 

MutL homolog 3 (MLH3) protein. MutLα has been implicated in at least 50% of somatic 

expansions in a DM1 mouse model [72] but seems to be excluded from a role in expansion 

in the FRDA mouse [69]. MutLγ is required for all somatic expansions in an HD mouse 

model [73] and perhaps, by inference, in a FRDA mouse model as well [69, 74]. The 

importance of MutLγ is consistent with the observation that MutSβ is required for expansion 

in most mouse models and the fact that MutLγ is thought to interact with MutSβ but not 

MutSα [75].

While it was once thought that MMR was confined to S phase, recent work in vitro has 

shown that extrahelical CAG-repeats can activate the latent endonuclease activity of MutLα. 

This activation occurs in the absence of the strand discontinuities that arise during genomic 

replication that normally serve this purpose [76]. This activation allows loading of 

proliferating cell nuclear antigen (PCNA) thus enabling successful MMR to occur outside of 

S phase. However, whether other repeats are able to activate MutLα or whether the repeats 

are able to activate MutLγ is unknown.

While the requirement for MutS and MutL proteins makes a strong case for an MMR-based 

mechanism, work in Cynthia McMurray’s laboratory has shown that binding of MutSβ to 

the CAG-hairpin changes the properties of mismatch recognition [77]. While this result has 

been challenged [78], the McMurray group have gone on to show using single-molecule 

fluorescence resonance energy transfer (smFRET) that a subset of the hairpins form a unique 
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DNA junction that traps MutSβ on the template [79]. It has been suggested that this prevents 

classical MMR and may divert the hairpin substrate into another DNA repair pathway that 

ultimately gives rise to expansions. Expansion in an in vitro model system can be seen even 

in the absence of MMR proteins [80, 81]. Furthermore, in a HeLa nuclear extract, excess 

MutSβ does not inhibit or promote CTG or CAG repair of preformed hairpin substrates [78, 

82]. This would be consistent with the idea that MutSβ promotes a process such as the 

formation of secondary structures rather than determining repair outcome.

5.4. Base Excision Repair (BER) proteins

Loss of the DNA glycosylases OGG1 and nei endonuclease VIII-like 1 (NEIL1) reduces 

somatic expansions in a mouse model of HD [83, 84]. OGG1 and NEIL1 are involved in 

BER, the major pathway by which oxidative damage is repaired in mammals. Both enzymes 

are involved in the removal of oxidized bases from DNA, one of the first steps in the BER 

pathway. A more general role of oxidative damage repair in generating expansions is 

suggested by the observation that potassium bromate (KBrO3), a potent DNA oxidizing 

agent, increases germ line expansions in a mouse model of the FXDs [21]. The loss of 

NEIL1 in the HD mouse model also reduces the average size of expansions seen on 

intergenerational transmission although it does not affect the absolute germline expansion 

frequency [84]. The fact that neither OGG1 nor NEIL1 reduce germ line expansion 

frequencies may reflect the contribution of other DNA glycosylases to the expansion 

process. However, mutations in alkyladenine glycosylase (AAG), a DNA glycosylase that 

excises a variety of alkylated bases, or homologue of Escherichia coli endonuclease III 

(NTH1), which prefers to excise thymine glycol, did not reduce expansions in the HD 

mouse model [83]. The action of DNA glycosylases results in the generation of an a basic 

site that is the substrate for the apurinic/apyrimidinic endonuclease 1 (APE1). The nicks 

generated by APE1 are then channeled into either the single nucleotide (SN) or short patch 

(SP) BER pathway or the long patch (LP) BER pathway. It is possible that BER-mediated 

expansion could be initiated in response to other sources of a basic sites or nicks. One 

potential source of such a basic sites is depurination which is thought to be very common in 

GC-rich regions [85]. Such sites can be processed by APE1 to generate a nick upon which 

the BER process can act. However, at this time there is no data implicating proteins that act 

downstream of the generation of a basic sites in the repeat expansion process in any model 

or tissue culture model.

5.5. Nucleotide Excision Repair (NER) proteins

Proteins involved in NER also affect repeat expansion. Two overlapping NER pathways 

operate in mammalian cells, Global Genome Repair (GGR) and Transcription Coupled 

Repair (TCR) (reviewed in [86]). The TCR pathway is confined to the repair of transcription 

blocking lesions on the transcribed strand of active genes, while GGR occurs genome wide. 

The GGR and TCR pathways converge downstream of the DNA damage recognition step.

The only NER protein specific for GGR that has been examined in mice is xeroderma 

pigmentosum, complementation group C (XPC), the earliest DNA damage detector in the 

initiation of GGR. Loss of XPC did not affect striatal expansions or germ line expansions in 

a mouse model of HD [64]. However, loss of the xeroderma pigmentosum, complementation 

Zhao and Usdin Page 6

DNA Repair (Amst). Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



group A (XPA) protein that acts in both GGR and TCR does affect repeat expansion in a 

mouse model of SCA1 [88]. Loss of XPA did not affect the intergenerational expansion 

frequency or the extent of somatic expansion in liver and kidney, but it did dramatically 

reduce the expansions seen in striatum, hippocampus and cerebral cortex [88]. Although 

expansions were dramatically reduced, they were not eliminated completely even in neural 

tissue suggesting that XPA may be playing an auxiliary role in expansion outside of NER. 

For example, XPA is known to bind with higher affinity to DNA junctions than to DNA 

damage [89]. XPA may thus help stabilize the secondary structures thought to be the 

substrates for expansion. While the different effects of the loss of XPA in different tissues 

could suggest the existence of tissue-specific expansion mechanisms, it is also possible that 

in some tissues the core factors necessary for expansions are present in sufficient quantities 

such that auxiliary proteins are not needed.

Cockayne Syndrome B (CSB), a transcription elongation factor that is essential for early 

steps in TCR, promotes both germ line and somatic expansions in the FXD mouse [90]. 

However, CSB is not essential for expansions either since its loss does not eliminate them 

all. Thus CSB is also likely acting as an accessory factor to promote expansions in a 

pathway other than TCR. It might facilitate expansion via a BER-based mechanism since 

CSB is known to up-regulate OGG1 expression [91] and to promote the incision activities of 

OGG1, NEIL1 [92, 93] and APE1 [94]. It could also act via its ability to modify chromatin 

and/or increase transcription elongation [95, 96]. While very few genetic modifiers of 

expansion risk in humans have thus far been identified, it is interesting to note that single 

nucleotide polymorphisms (SNPs) in three TCR-related genes are associated with an 

increased expansion risk in Machado-Joseph Disease (MJD/SCA3) alleles, including one in 

the ERCC6/CSB gene [97].

6. An integrated model for repeat expansion

Thus, while DSBR does not seem to be involved in repeat expansion in mammalian systems, 

proteins from a variety of other DNA repair pathways have been shown to contribute 

significantly to expansion. Given the different contributions of some of these proteins in 

different disease models, in males and females and in different cell types, it is possible that 

more than one expansion mechanism is responsible. However, since expansions have a 

number of unique features and share a common dependence on MMR factors, it could be 

argued that a single mechanism is at work. Most of the reported differences between disease 

models, tissue and genders could be related to the effects of different genetic backgrounds, 

the differential expression of the proteins involved and/or the variable contribution of 

proteins that promote but are not essential for expansion. Furthermore, although the proteins 

implicated in repeat expansion act in a wide variety of different DNA repair pathways, it is 

becoming increasingly apparent that there is a lot of cross talk between these pathways (e.g., 

[98, 99]).

Thus, it may be possible to reconcile all of the data described above into a single model. 

Such a model would have to accommodate the fact that expansions can occur independent of 

genomic replication via a process in which transcription or an open chromatin configuration 

is important. It should also account for the strong expansion bias that is seen in the Repeat 

Zhao and Usdin Page 7

DNA Repair (Amst). Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Expansion Diseases. It would also have to accommodate the contribution of MMR proteins 

and the involvement of proteins more typically associated with BER and TCR. The 

requirement for transcriptionally competent chromatin may simply reflect the fact that 

transcription through the repeat creates the opportunity for the secondary structures that are 

thought to be the expansion substrates to form. However, it is also possible that it reflects a 

DNA repair process other than TCR that is also confined to actively transcribed regions of 

the genome. Models for repeat expansion that involve LP BER are thus appealing since 

recent work suggests this process occurs preferentially in actively transcribed regions of the 

genome [100, 101].

The role of DNA glycosylases normally involved in the initiation of BER in response to 

oxidative stress suggests that an early step in the expansion process may be the recognition 

and removal of damaged bases in DNA and the generation of nicks as illustrated in Fig. 1. It 

has been suggested that LP BER is the major BER pathway for the repair of 8-oxoG lesions 

and AP sites [102]. LP BER occurs via one of two sub-pathways. Both sub-pathways 

involve Polβ, the polymerase responsible for SP BER. One sub-pathway also involves Polδ/

Polε, two processive polymerases with stronger strand displacement activities than Polβ. 

This generally results in the synthesis of 2-13 nucleotides [103]. The second sub-pathway 

involves Polβ acting without Polδ or Polε to carry out a more limited gap-filling reaction 

that involves the synthesis of fewer nucleotides [104]. There is in vitro data to support the 

idea that expansions could arise in the Polβ/Polδ/Polε-dependent pathway if strand-slippage 

occurred on the nascent strand, an event that would be facilitated by secondary structure 

formation, and if priming by Polβ then occurred from the slipped position [105]. Expansions 

may also arise by structure formation on the displaced strand that prevents proper flap 

processing. Expansions could arise even via the Polδ/Polε-independent sub-pathway if some 

Polβ-mediated strand displacement occurs that results in the formation of a secondary 

structure that is not properly processed by FEN1 as illustrated in the bottom right hand side 

of Fig. 1. A form of alternate FEN1 cleavage has been suggested to facilitate this process 

[106]. A role for both sub-pathways may help explain the different “jump sizes” are seen in 

different organs of mouse models (e.g., [36, 83, 107]). For example, expansion in organs 

showing large “jumps” could occur via the use of the first pathway while small “jumps” 

occur via the use of the second. The choice of which pathway is used may depend on the 

relative levels of Polβ, Polδ and/or Polε. Models in which expansions result from the failure 

to properly process 5’ flaps generated by strand-displacement synthesis are appealing since 

they could account for the strong expansion bias observed in many Repeat Expansion 

Diseases.

CSB may contribute to the generation of nicks via its ability to enhance the activity of DNA 

glycosylases and APE1, while RAD52 may also act at this step to enhance OGG1 incision. 

The effect of CSB and RAD52 may only be apparent in cells in which the incision process is 

somehow limiting. MMR proteins may increase the likelihood that oxidative damage will 

occur by stabilizing secondary structures that are sensitive to such damage [108]. XPA may 

act in an auxiliary capacity to facilitate expansion by contributing to this stabilization since 

MutSβ generates a strong bend when it binds to an INDEL [109] and XPA binds 

preferentially to bent DNA [87]. The effect of XPA may only be apparent in neural cells if 
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MutSβ is limiting there but not in other cells. Alternatively another protein may substitute 

for XPA outside the central nervous system (CNS). MMR proteins may also act later in the 

LP BER pathway by stabilizing the hairpins generated by strand-slippage thus increasing the 

likelihood that priming will occur from the slipped position during repair synthesis. They 

may also reduce the likelihood that FEN1 would be able to properly process any flaps 

generated by strand-displacement during LP BER.

However, the fact that MutL complexes that act downstream of MutSβ/MutSα in the MMR 

pathway are important for expansions suggests that the role of MMR proteins may extend 

beyond simply stabilizing the substrates for expansion. Thus it is possible that MMR can use 

the nicks generated during early steps of BER to load EXO1 and other proteins required for 

MMR as illustrated in Fig. 1(b).

Perhaps the most intriguing finding in the field in recent months is that there is a specific 

requirement for MutLγ rather than MutLα for expansion in some mouse models. This is of 

interest since MutLγ is present only in very low levels in mammalian cells and while it 

colocalizes with sites of DNA damage, it has been suggested that it does not contribute 

significantly to normal MMR in mammals [110]. The role of MutLγ is thus enigmatic and a 

better understanding of the pathways in which it acts is essential to our understanding of the 

expansion mechanism.

Note added in Proof

We have recently demonstrated that heterozygosity for a hypomorphic PolB mutation 

reduces the expansion frequency in a FXD mouse model (Lokanga, Senejani, Sweasy and 

Usdin. Heterozygosity for a hypomorphic PolB mutation reduces the expansion frequency in 

a mouse model of the Fragile X-related disorders. PLoS Genetics. 11, 2015, e1005181). It 

also results in a preferential loss of smaller expansions. These data lend support to the model 

shown in Fig. 1.
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Fig. 1. An integrated model for the repeat expansion mechanism in mammals
Proteins directly implicated in generating expansions in mouse models or human cells are 

shown as colored spheres. MMR refers to a complex consisting of the MMR proteins MutSα 

or MutSβ together with either MutLα or MutLγ. Red strands represent newly synthesized 

DNA. The repair of DNA damage within the repeat is initiated by DNA glycosylases in 

response to oxidized bases. This is followed by the removal of the abasic site by APE1 to 

generate a nick. (a) Repair of the nick may proceed via an LP BER pathway that involves 

Polβ, Polδ and perhaps Polε [111]. Strand-slippage/hairpin formation at the 3’ terminus of 

the nascent strand arising during strand displacement synthesis by Polδ/Polε could result in 

expansion if the hairpin is not removed because Polβ synthesis prevents proof-reading by 

Polδ/Polε [105]. Formation of a secondary structure on a displaced flap could also result in 

expansion if proper processing were blocked. A second LP BER pathway that involves Polβ 

but not Polδ/Polε may generate small expansions by stepwise and distributive gap-filling by 

Polβ and single-nucleotide gap formation by FEN1 [106]. Improper coordination between 

Polβ and FEN1 could lead to a small amount of strand displacement with the formation of a 

small hairpin in the displaced flap. FEN1 “alternate cleavage” of a short 5’ flap at the base 

of the hairpin could produce a ligatable nick that after ligation results in incorporation of 

hairpin bases into the “repaired” strand.(b) Alternatively, a nick close to a repeat loop-out 

formed during transcription or replication may allow loading of MutSβ/MutSα complexes 

and the diversion of the normal BER process to produce an MMR-dependent expansion. 

MMR proteins may also act in the LP BER-based expansion processes shown in (a) to 
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stabilize secondary structures formed by the repeats and perhaps to prevent their removal by 

enzymes like FEN1. XPA, CSB and RAD52 may act in an auxiliary capacity in either of 

these pathways via the ability to stabilize secondary structures in the case of XPA, to 

facilitate incision by OGG1 in the case of RAD52 [61] and to increase incision or to 

facilitate the formation of an optimal chromatin or transcriptional state in the case of CSB 

(reviewed in [112]). Loops generated at any stage of the expansion process are susceptible to 

oxidative damage that could produce result in repeated “toxic oxidation cycles” that could 

result in multiple rounds of BER-mediated expansions [108].
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Table1

1
The disorders are organized based on the sequence of the repeat unit in the coding sequence of the affected gene and on its location within that 

gene. However, in some cases an antisense transcript is produced that may contribute to disease pathology. In addition, Repeat-associated Non-
ATG (RAN) translation can occur in some of these genes. Thus while the repeat may nominally be a non-coding region of the affected gene, 
pathology may nevertheless arise from the production of a toxic polypeptide.

2
This table does not include a disorders like SCA31 that result from the “insertion” of a complex microsatellite [160]and the 9+ disorders that 

resultfrom the presence of a frequently interrupted and often stable microsatellite that encodes a polyalanine tract [161].
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3
A firm link has yet to be established between the repeat expansion mutation and symptoms of autism spectrum disorder reported in 2 families 

[141].

4
These three diseases are all members of the Fragile X-related or FMR1-related disorders. Alleles with 55-200 repeats are referred to as 

Premutation (PM) alleles while alleles with >200 repeats are referred to as Full mutation (FM) alleles.
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Table 2

DNA repair proteins directly implicated in repeat expansion

Protein Model system Cells affected References

General factors

LIG1 HD mouse maternal germ line [56]

MMR proteins

MSH2 DM1, FXD and HD mice; tissue culture 
model of CTG/CAG and GAA/TTC-repeats

germ line and somatic cells [22, 40, 45, 60, 66, 71, 
162]

MSH3 DM1and HD mice, tissue culture model of 
CTG/CAG and GAA/TTC-repeats

germ line and somatic cells [45, 65, 67, 68, 71, 163]

MSH6 FRDA mouse; FRDA iPSCs somatic cells, iPSCs [69, 70]

MLH1 HD and FRDA mice germ line* and somatic cells** [73, 74]

PMS2 DM1 mouse somatic cells** [72]

MLH3 HD mouse somatic cells** [73]

BER proteins

OGG1 HD mouse somatic cells [164]

NEIL1 HD mouse somatic cells [84]

NER proteins

CSB FXD mouse maternal germ line, some somatic cells [90]

XPA SCA1 mouse neural cells [88]

Recombination proteins

RAD52 DM1 mouse germ line [60]

*
in the FRDA mouse model loss of one Mlh1 allele led to significant decrease in germ line expansions

**
homozygous null mice are sterile so the effect of this mutation on germ line expansion was not examined in either the HD or the DM1 mouse 

models.
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