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Abstract

Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a 

major risk factor for CVD development. One of the major age-related arterial phenotypes thought 

to be responsible for the development of CVD in older adults is endothelial dysfunction. 

Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing 

age is independently associated with the development of vascular endothelial dysfunction. This 

endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of 

endothelial oxidative stress and inflammation that can be further modulated by traditional CVD 

risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented 

production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from 

mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as 

regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a 

critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change 

and its activation induces transcription of pro-inflammatory cytokines that can further suppress 

endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two 

macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial 

dysfunction with advancing age as well as the cellular and molecular events that lead to the 

vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential 

mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent 

cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage have 

been shown to trigger cell senescence via the p53/p21 pathway that results in increased 

inflammatory signaling in arteries from older adults. This review will discuss the current state of 

knowledge regarding the emerging concepts of senescence and genomic instability as mechanisms 

underlying oxidative stress and inflammation in the aged endothelium. Lastly, energy sensitive/

stress resistance pathways (SIRT-1, AMPK, mTOR) are altered in endothelial cells and/or arteries 

with aging and these pathways may modulate endothelial function via key oxidative stress and 
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inflammation-related transcription factors. This review will also discuss what is known about the 

role of “energy sensing” longevity pathways in modulating endothelial function with advancing 

age. With the growing population of older adults, elucidating the cellular and molecular 

mechanisms of endothelial dysfunction with age is critical to establishing appropriate and 

measured strategies to utilize pharmacological and lifestyle interventions aimed at alleviating 

CVD risk.
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1. Cardiovascular Disease, Vascular Endothelial Function, and Aging

Cardiovascular diseases (CVD), largely defined as stroke, coronary artery disease, heart 

failure, and cardiac arrest, are the predominant killers of Americans, accounting for 

~752,000 deaths per year according to current statistics from the Centers for Disease Control 

[1]. CVDs cause ~35% of all deaths for Americans 65 years of age or older, making them 

the leading causes of death in this age group [1]. Furthermore, with advancing age, the 

prevalence of CVDs among Americans increases progressively, from ~5.5% in 25–44 year 

olds to ~41% in people 65 years of age or older [1]. Thus, CVDs can be considered true 

diseases of aging.

Heart disease, stroke, and hypertension are all diseases currently recognized to be caused, in 

part, by arterial dysfunction [2, 3]. Age-related alterations to arteries are thought to lead to a 

dysfunctional phenotype that precedes CVDs [2, 4, 5]. Importantly, the dysfunctional 

phenotype that develops in arteries with advancing age can occur in the absence of overt 

CVD and conventional CVD risk factors [6, 7], supporting the idea that these changes are a 

primary effect of aging that may be a precursor to the development of CVD. Large landmark 

studies, like the Baltimore Longitudinal Study on Aging (BLSA) and the Framingham Heart 

Study, demonstrated that the age-associated phenotype of arteries involves, among other 

changes, the development of a dysfunctional arterial endothelium [4, 8–10]. This 

dysfunctional endothelial phenotype is common to humans and non-human primates as well 

as rodents [11–13] and these changes contribute to a host of hemodynamic changes, 

including augmented large and resistance arterial tone, induction of greater oscillatory shear 

stress and elevated large artery stiffness[2, 10], that contribute to increases in arterial blood 

pressure [14] and atherosclerosis [3] seen with advancing age.

The arterial endothelium is extremely dynamic and performs many vital functions that vary 

from one segment of the arterial tree to another as well as from one organ system to another 

[15, 16]. The vascular endothelium releases molecules that act in an autocrine and paracrine 

manner to regulate the function and health of the vascular network. These include the 

maintenance of blood in a fluid state; exchange of fluid and molecules between the blood 

and surrounding tissues; creation of new vascular networks; participation and facilitation of 

the immune response; and the control of vascular resistance in response to changes in blood 

flow by regulating arterial tone in resistance arteries [15, 16]. A healthy vascular 

Donato et al. Page 2

J Mol Cell Cardiol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



endothelium is in a tightly regulated state of balance between pro- and anti-oxidants, 

vasodilators and vasoconstrictors, pro- and anti-inflammatory molecules, and pro- and anti-

thrombotic signals. A diseased or dysfunctional endothelium that has lost its tightly 

regulated balance and displays pro-oxidant, vasoconstrictor, pro-inflammatory and pro-

thrombotic properties. One hallmark of vascular endothelial dysfunction is impaired 

endothelial dependent dilation (EDD), which is predictive of future CVD events [3, 17]. 

Indeed, the Framingham Heart Study has recently demonstrated that increased age is the 

strongest independent correlate of EDD [18]. Therefore, it is of great clinical significance 

that we obtain a better understanding of the mechanisms underlying age-related decreases in 

endothelial function and to test the efficacy of interventions that may restore endothelial 

function in middle-aged and older adults.

2. Goal of the Review

The first goal of this review will be to introduce the two macro-mechanistic processes, 

oxidative stress and inflammation, that contribute to endothelial dysfunction in healthy older 

adults and rodent models. Next, we will discuss the cellular and molecular events that lead 

to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Then, we 

will discuss the emerging concepts of senescence and genomic instability as it relates to the 

aforementioned processes. Lastly, we explore how “energy sensing” longevity pathways that 

appear to modulate endothelial function with advancing age. In this review, we will focus 

first on in vivo or ex vivo studies that directly examined endothelial cells. However, a major 

obstacle to our understanding of the events that lead to endothelial dysfunction with 

advancing age is access to pure primary endothelial cells from humans or rodent models. 

Next, we will consider studies utilizing whole artery homogenates with the understanding 

that protein expression in whole arteries is strongly biased toward the smooth muscle cell 

component rather than the endothelium. Lastly, this review will explore the mechanisms of 

endothelium dysfunction defined as reductions in EDD assessed by the response to 

pharmacological or physiological stimuli. Our focus on EDD is because a majority of 

studies that perform mechanistic studies utilize this marker. It is not to say measures of 

angiogenesis, permeability, fibrinolysis or other markers of endothelial function are not as 

important; indeed these are critical functions which are vastly understudied, but at the 

present time, the mechanisms leading to impairments in these functions in aged endothelial 

cells or their direct relation to CVD development are not clearly understood.

3. Mechanisms of Age-Associated Vascular Endothelial Dysfunction

Aging is associated with endothelial dysfunction in both men and women in the absence of 

clinical disease. A majority of the published studies describing this dysfunction measure 

EDD [19–24], but measures of fibrinolytic factors released from the endothelium [25], 

permeability [26] and angiogenesis [27, 28] have also been made. Multiple animal models of 

vascular aging phenocopy findings from human studies, have demonstrated impaired EDD 

[29], fibrinolysis [30], permeability [31], and angiogenesis [32] with advancing age. In older 

adults, several traditional fasted risk factors, i.e., elevated blood pressure [33], LDL 

cholesterol [34], blood glucose [35], sodium intake [36], as well as non-traditional markers, 

i.e., white blood cell count [37] and plasma norepinephrine [38], can modulate the severity 
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of endothelial dysfunction as assessed by EDD (as reviewed in depth by Seals et al.[6]). 

Interestingly most of these factors have been shown to modulate endothelial function via 

oxidative stress or inflammation, as described in detail below. Lastly, it is known that with 

advancing age post prandial clearance of elevated glucose and lipids decreases significantly 

even in healthy adults [39, 40]. Furthermore, this post prandial state is associated with acute 

endothelial dysfunction in young and middle aged adults [41, 42]. Thus, it is a tenable 

hypothesis that this post prandial state underlies the vascular aging phenotype since 

endothelial culture studies suggest that physiological elevations in glucose and lipids induce 

oxidative stress and inflammation and also negatively alter “energy sensitive” pathways 

[43–45]. Due to the lack of appropriate fasting time to resolve the acute metabolic insults, 

these alterations in apparently normal healthy middle aged and older adults may “set the 

table” for sustained endothelial dysfunction mediated by chronic vascular endothelial 

oxidative stress and inflammation. This viable hypothesis needs to be empirically tested, but 

would be consistent with the existing associative data.

3a. Aging, Nitric Oxide (NO) Bioavailability and Endothelial Function

In the vascular endothelium, L-arginine and the cofactors; BH4 and FADH, are necessary 

for the production of NO by the enzyme endothelial NO synthase (eNOS) [46]. NO is one of 

the most important vasodilatory and anti-atherosclerotic molecules produced by the 

endothelium [46–48]. The major mechanism involved in the age-related reduction in EDD is 

reduced vascular NO bioavailability [49]. While initially thought to be the result of reduced 

expression of eNOS [50–52], evidence from endothelial cells collected from human and 

animal arteries demonstrates that eNOS protein expression cannot explain the reduction in 

NO bioavailability with advancing age [19, 53–55]. Rather, it appears that alterations in 

eNOS activation status, substrate/cofactor availability and/or inactivation of NO underlie the 

age-related reduction in NO bioavailability and impairments in EDD. Recent evidence also 

suggests that prostanoid vasodilators, such as prostacyclin, are diminished with advanced 

age [56, 57] and may explain some of the reductions in vasodilation. Furthermore, it is 

appreciated that reductions in NO promote enhanced vasoconstriction mediated by 

endothelial derived ET-1 [58, 59]. It has been shown that aging results in elevated 

expression of ET-1 and cyclooxgenase (producer of vasoconstrictor prostaglandins) [19, 58, 

60, 61] and this elevation suppresses endothelial vasodilation in older adults and rodent 

models [19, 62]. Next we will delineate the two macro mechanistic processes which directly 

lead to suppression of endothelial function in older adults.

3b. Aging, Oxidative Stress and Endothelial Dysfunction

In humans, sedentary aging is considered a state of chronic, systemic “oxidative stress” [63] 

based primarily on observations of age-related elevations of plasma oxidative stress markers 

[21, 64, 65]. A key mechanism underlying age-associated reductions in EDD and NO 

bioavailability is the development of vascular oxidative stress [21, 49, 66–69]. Oxidative 

stress can be defined as a state in which the bioavailability of reactive oxygen species (ROS) 

is increased relative to antioxidant defenses [70–72]. Superoxide anion (O2
−) is a ROS 

produced by oxidant enzyme systems (NADPH oxidase-p67 phox, xanthine oxidase, 

cytochrome P450 2C9, uncoupled eNOS) [70, 71, 73, 74] that can inactivate NO [71, 75]. 

Interestingly, O2
− can also be produced in abundance in the mitochondria at complex 1 and 
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3 [76]. However, mitochondrial O2
− is released in the mitochondrial matrix (complex 1) or 

the intermembrane space (complex 3). Due to its highly reactive state, it is unlikely to 

navigate through multiple membranes to the cytosol in abundant quantities without being 

transformed to a less reactive form of ROS, such as hydrogen peroxide (H2O2). 

Nevertheless, O2
− in the cytosol or extracellular space interacts with NO to produce 

peroxynitrite (ONOO−), a ROS that itself nitrates cellular proteins forming nitrotyrosine, 

which can be used as a robust marker of cellular oxidative stress and ONOO− production 

[77–79]. Aging is associated with an increased abundance of arterial nitrotyrosine in animal 

models [29, 55, 80] and in arterial endothelial cells of humans [22]. In addition to the 

nitration of tyrosine which is irreversible, aged arteries also exhibit markers of lipid 

peroxidation such as 4-hydroxynonenal (4-HNE) or malodialdehyde (MDA) and/or other 

reversible regulatory oxidative stress marker glutathionylation at cysteine residues [81–84]. 

Collectively, these oxidative stress-driven biochemical events result in a reduction in NO 

bioavailability and, subsequently, impaired EDD [66, 68].

Evidence of oxidative stress-associated suppression of NO and EDD in older arteries is 

supplied by the observations that acute administration of antioxidants, such as vitamin C and 

superoxide dismutase (SOD) mimetics, that reduce O2
−, nearly unilaterally improve NO 

bioavailability and EDD in older animals and humans [21, 66, 85]. An important source of 

increased vascular O2
− and oxidative stress with aging appears to be NADPH oxidase [22, 

55, 75]. Animal studies have shown similar improvement in EDD after blockade of NADPH 

oxidase as that seen with the use of SOD mimetics [55, 86]. Uncoupled eNOS is another 

important source of O2
−. eNOS uncoupling occurs when the critical cofactor BH4is 

inadequate, leading eNOS to produce O2
− instead of NO [87]. Reducing uncoupled eNOS, 

by restoring BH4, improves EDD in older adults by reducing oxidative stress-mediated 

suppression of EDD [88]. This has been further supported by the observation of reduced O2
− 

after BH4 administration in ex vivo arterioles from old rats [89]. In contrast, we have not 

found an aging-related increase in expression and/or activity of the other major oxidant 

enzymes (i.e., xanthine oxidase and cytochrome P450) in the aorta of mice or in vascular 

endothelial cells obtained from humans [22, 55, 90, 91]. Furthermore, studies using 

pharmacological inhibitors of xanthine oxidase and cytochrome P450 2C9 have resulted in 

no improvement in EDD in older adults [90, 92]. Interestingly, mitochondrial ROS has been 

shown to contribute to the ROS production/spillover in arteries from old rodents. However, 

this mitochondrial ROS is in the form of H2O2 and not directly as O2
− [93] and is likely due 

to the production of O2
− in the mitochondrial matrix. Still, targeting mitochondrial O2

− 

reduces arterial O2
−, increases NO and improves EDD [94, 95]. This can be done either 

through genetic deletion of the mammalian Shc adaptor protein, p66shc (a protein that can 

increase mitochondrial H2O2 production and inhibit FoxO3a activity) or by introducing 

exogenous antioxidants targeted to the mitochondria, e.g. MitoQ.. Likewise, old MnSOD 

haploinsufficient mice have impaired EDD compared with old wildtype mice [96], 

supporting the importance of mitochondrial O2
− in aged arteries. The mechanism of action 

of this phenomenon has yet to be elucidated, but does suggest that O2
− produced in the 

mitochondria in excess indirectly alters NO, an effect that may result from the influence of 

H2O2 on cytosolic or extracellular O2
− producers, such as NADPH oxidase [97] or from 
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cycling of H2O2 into other ROS, such as Fenton reaction production of OH− that then maybe 

able to inactivate NO.

The contribution of reduced antioxidant defenses against the development of systemic and 

vascular oxidative stress with sedentary aging is less clear. Circulating markers of 

antioxidants have been shown to be either reduced [64, 65] or unchanged with aging in 

humans [21]. Similarly, reduced expression of antioxidant enzymes, including intracellular 

and extracellular isoforms of SOD, have been observed in the vasculature of old animals 

[98, 99], although not in all cases [100, 101]. Furthermore, the concentration of glutathione 

peroxidase, a critical regulator of H2O2, has been shown to be similar between young and 

old arteries [96, 102] though mice which lack glutathione peroxidase have potentiated 

arterial dysfunction (both smooth muscle and endothelial) and oxidative stress in late 

adulthood (1 yr. old) [81]. Our human endothelial cell data suggests similar levels of SOD 

(CnZn & Mn) and catalase between populations of healthy older adults and young controls 

[22]. However, it has been reported that nitration of MnSOD may independently reduce its 

activity [103] and nitration of MnSOD is elevated in middle-aged and old rat aortas [53], 

unfortunately activity of Mn SOD was not measured. Still, in two independent studies we 

have demonstrated similar MnSOD activity from young and old mice in whole aortic 

homogenates [29, 104]. Therefore, it remains unclear if this nitration of Mn SOD has 

functional consequences in aged arteries or if Mn SOD activity is reduced in older 

endothelial cells. A summary age-related endothelial cell changes is provided in Figure 1. 

Taken together, these findings indicate that the expected increase in the expression of 

antioxidant enzymes that would be appropriate in response to increased ROS production 

with aging does not occur and thus an inappropriate transcriptional response to enhance 

antioxidant defenses likely contributes subsequent oxidative stress.

One caveat to the interpretation of the age-related finding above is that this excess O2
− 

produced with aging is deleterious, whereas a normal amount of O2
− production is essential 

for transcriptional signaling. Furthermore, O2
− is actually essential for intact EDD in 

resistance arteries from young rodents and older rodents that have undergone exercise 

training or caloric restriction, as indicated by impaired EDD in response to SOD mimetics 

[86, 102, 105]. Likewise, antioxidants reduce brachial artery dilation to handgrip exercise in 

exercise-trained older adults [106]. Furthermore, some ROS, such as H2O2, are potent 

vasodilators that can compensate for reductions in NO [107, 108]. Thus, it is clear that ROS 

are necessary for proper arterial function, but when out of balance, can induce a critical 

dysfunction in the vascular endothelium.

3c. Aging, Inflammation and Endothelial Dysfunction

Initial observations made in circulating plasma suggested that aging was associated with 

chronic, low-grade inflammation characterized by increases in circulating acute phase 

proteins (e.g., C-reactive protein [CRP]) and pro-inflammatory cytokines [22, 91, 109], such 

as tumor necrosis factor alpha (TNF-α) [110] and interleukin (IL)-6 [22, 91, 111]. More 

recently, it has been demonstrated that expression of the pro-inflammatory cytokines TNF-

α, IL-1β, IL-6 and interferon gamma (IFN-γ) are also elevated in the large elastic arteries of 

old mice [112, 113] and humans [114]. This age-associated pro-inflammatory arterial 
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phenotype is downstream of increased nuclear factor κB (NFκB) activity. NFκB is a 

transcription factor that resides in the cytoplasm through its interaction with the inhibitory 

protein, I kappa B-alpha (IκB-α)[115, 116]. In response to inflammatory stimuli [116] or 

ROS [117–119], I kappa B kinase beta (IKKβ) is activated and subsequently phosphorylates 

IκB-α, releasing its inhibition and allowing NFκB to translocate into the nucleus where it 

can activate gene transcription of pro-inflammatory cytokines [120]. Supporting the critical 

role of NFκB in age-related inflammation dependent endothelial dysfunction is evidence 

that pharmacological inhibition of NFκB signaling significantly reduces cytokines and 

enhances EDD in old mice and humans [113, 121, 122].

This pro-inflammatory arterial phenotype has been demonstrated in the vascular endothelial 

cells of older healthy humans [22, 91] and underlies endothelial dysfunction in older humans 

and mice [113, 121]. Evidence for a direct role of inflammation in endothelial dysfunction is 

provided by studies in which exogenous administration of pro-inflammatory cytokines was 

shown to induce endothelial dysfunction or endothelial activation in primary endothelial 

cells or isolated arteries [123–125]. Such an inflammation-mediated endothelial dysfunction 

has also been observed in vivo in carotid arteries of aged rats [52] and in adipose tissue 

arteries of mice with diet-induced obesity [125], with the dysfunction occurring downstream 

of elevated TNF-α. In vivo arterial TNF-α may be produced locally by vascular cells [52, 

112] or by immune cells infiltrating the adventitia of the large arteries [112]. TNF-α 

associated pro-inflammatory signaling may occur both up- and down-stream of elevated 

NFκB activity which itself underlies vascular dysfunction, at least in part, via increases in 

oxidative stress [52, 112, 113].

In addition to exacerbating inflammation downstream of NFκB transcription of pro-

inflammatory cytokines, inflammatory signaling also stimulates O2
− production and 

oxidative stress (and vice versa) through a number of mechanisms. These include increased 

NFκB mediated transcription of redox-sensitive genes like those encoding subunits of 

NADPH oxidase [126–128] that increase ROS bioactivity and further activation of IKK-

NFκB signaling. Thus, NFκB lies at the center of a vicious cycle that can exacerbate 

oxidative stress and inflammation (Figure 2). Interestingly, endothelial NFκB can impact the 

healthspan/lifespan beyond its effects on vascular function per se. Indeed, inhibition of 

endothelial NFκB signaling protects against not only age-associated vascular senescence 

and oxidative stress, but also protects against diet- and age-associated insulin resistance and 

increases lifespan in a mouse model expressing a dominant negative IKK in the endothelium 

[129].

In addition to NFκB signaling, there are a number of other inflammation-sensitive pathways 

that may also be involved in age-associated vascular dysfunction. Inflammatory and growth 

factor stimuli destabilize the vascular endothelium [130–132] via activation of the small 

GTPase, ADP-ribosylation factor 6 (ARF6), its activator ARF nucleotide binding site opener 

(ARNO) and the downstream GTPase, Rac [132]. ARF6-ARNO-Rac act to reduce 

endothelial cell-cell interactions promoting vascular permeability, leukocyte adhesion and 

angiogenesis [132–134]. Dysregulation of this inflammation-sensitive pathway can lead to 

disruption of normal endothelial barrier function, vascular leak, tissue disruption and 

pathological angiogenesis in retinal vascular disease [132, 134]. However, the impact of 
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aging on this pathway and its role in vascular aging are unknown. Similarly, inflammatory 

signaling activates the Notch pathway to inhibit cell growth and promote hyper permeability 

and cell senescence (the implications of which will be discussed later in this review)[135, 

136]. Interestingly, Notch signaling is enhanced in atherosclerotic regions of aortas from 

mice and humans and is activated in endothelial cells of older adults [135]. Notch activity is 

also increased in models of accelerated aging in response to progerin expression, a mutant 

“prelamin A” protein [137, 138]. Moreover, expression of the progerin protein is elevated in 

vascular tissues and cells from otherwise healthy aged humans [139, 140], suggesting that 

augmented Notch signaling may underlie at least some of the effects of vascular aging [141]. 

Thus, in addition to NFκB, other inflammation-sensitive pathways also have the potential to 

play a role in vascular dysfunction, e.g. impaired endothelial barrier function/vascular 

hyperpermeability [26, 31, 142, 143] and increases in cell senescence, all of which are 

associated with advancing age.

4. Cellular Senescence and Genomic Instability

4a. Cellular Senescence in Endothelial Aging

Cellular senescence, or permanent cell cycle arrest, is considered cellular aging, as it occurs 

in vitro after a certain number of cell cycles and in response to excessive intracellular and 

extracellular stressors [144, 145]. Senescence primarily occurs in the G0/G1 phase of the 

cell cycle and is a vital tumor suppressive mechanism that prevents passing damaged DNA 

to daughter cells or potential neoplastic transformation of damaged cells [144, 145]. Since 

being first described by Leonard Hayflick as an in vitro phenomenon in human fibroblasts, 

the potential role of senescence in in vivo aging and disease has been difficult to assess and 

somewhat controversial [146]. However, recent studies have shown that senescent cells 

accumulate in normal arterial tissue over the lifespan of humans [147, 148]. Likewise, the 

accumulation of senescent cells has been reported in diseased tissues, such as atherosclerotic 

plaques [149] and abdominal aortic aneurysms [150]. Baker et al. showed that clearance of 

senescent cells reversed aged and diseased phenotypes in a mouse model of accelerated 

aging [151]. This important study strongly suggested that there were phenotypic properties 

of senescent cells that were problematic to tissues, and potentially contribute to aging and 

chronic disease.

There are several causes of cellular senescence in mammalian cells, including excessive 

mitogenic signals [152], increases in extracellular or intracellular stressors like oxidative 

stress[153], chromatin disruptions [154], and DNA damage [155]. Senescence is induced by 

the two major tumor suppressor pathways, known as the p53 and p16/pRB pathways [156]. 

The p53 pathway depends on activation of the transcription factor p53 by a number of 

different signaling cascades [156]. One of the most important of these is the DNA damage 

response pathway [155, 157]. The p16/pRB pathway involves cyclin-dependent kinase 

inhibitors 2A (p16)-mediated inhibition of retinoblastoma-like protein 1 (pRB)[158]. The 

preference toward one pathway versus another appears to be cell type-specific [156, 159], 

with variation across species [160]. For example, telomere dysfunction can lead to activation 

of the p53 or p16/pRB pathway in human cells, but will only trigger the p53 pathway in 

rodent cells [160]. The general consensus seems to be that senescence via the p53 pathway 
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is activated primarily by DNA damage and telomere dysfunction, while the p16/pRB 

pathway is linked primarily to mitogenic stress, chromatin disruptions, or general cellular 

stress [156, 159, 161].

In vitro senescent cells are characterized by a pro-inflammatory, pro-oxidative senescence-

associated phenotype (SASP)[144]. The release of inflammatory mediators and ROS 

production likely reinforces cell cycle arrest in an autocrine fashion and activates immune 

cell surveillance of senescent cells [144, 162]. The SASP occurs within a few days of 

senescence induction in cells and appears to be irreversible due to stable chromatin 

modifications around clusters of SASP genes [163–165]. The SASP profile in vascular 

endothelial cells from humans and rodents has been characterized by in vitro studies using 

comprehensive arrays of inflammatory cytokines and chemokines [144, 165–169]. The 

release of IL-6, IL-1, IL-8, TNF-α, and monocyte chemoattractant protein-1 (MCP-1) has 

been linked to p53-mediated senescence in human vascular cells in vitro [170, 171]. 

Interestingly, P16/pRB-induced senescence has not been shown to lead to a SASP in human 

cells [144, 164]. Additionally, human arterial endothelial cells that had undergone 

replicative senescence in vitro exhibited elevated levels of H2O2 and O2
− as well as 

reductions in NO [172, 173]. This SASP profile is possibly due to mitochondrial uncoupling 

or alterations in eNOS [172, 174]. Several lines of evidence support a major role for NFκB 

in the induction and maintenance of the p53-mediated SASP in human and rodent cells 

[175–177]. Indeed, inhibition of NFκB allowed cells to escape p53-mediated senescence and 

reduced oxidative stress in rodents [175, 177]. This alludes to the importance of the SASP in 

reinforcing p53-mediated senescence and the importance of NFκB in promoting the SASP. 

Additionally, p53 activation leads to a shift from glycolytic to oxidative phosphorylation 

energy metabolism [178], which could result in increased flux through the electron transport 

chain and ROS release from mitochondria. Taken together endothelial cell senescence could 

be cause or consequence of the age-related increase in oxidative stress and likely contributes 

to the spread of vascular inflammation via the SASP, from senescent cells (Figure 3). Lastly 

this chronic inflammation could persist and accumulate, indefinitely in the vasculature until 

removal of the senescent cells, thus limiting therapeutic options.

4b. Aging, Genomic Instability, Cellular Senescence and Endothelial Dysfunction

Genomic instability, or DNA damage acquired over time, is an important mechanism that 

may underlie the age-related accumulation of senescent cells reported in arterial tissues 

[147, 148]. Age-related genomic instability in vascular cells can occur from a variety of 

genotoxic insults, including oxidative stress [179, 180] and mechanical stress [181]. DNA 

damage results in temporary cell cycle arrest to allow DNA repair pathways time to repair 

breaks prior to a cell entering S phase during replication [155]. If damage is persistent or 

extensive, permanent cell cycle arrest or even apoptosis will ensue [155]. Common forms of 

DNA damage relevant to aging include single and double strand DNA breaks and DNA 

adducts. While the age-related accumulation of DNA breaks and DNA adducts have not 

been shown in human vascular cells, DNA breaks have been shown to occur with advancing 

age in sperm cells [182] and the mitochondrial DNA of skeletal muscle [183, 184]. 

Microsatellite instability and loss of heterozygosity, which is thought to be a consequence of 

DNA breaks, has been linked to pulmonary artery hypertension [185] and atherosclerosis 
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[186–191] in humans. Interestingly, two recently developed mouse models of disrupted 

DNA adduct repair (xeroderma pigmentosum D (XPD)ttd and ERCC1d/− mice) demonstrated 

age-related impairments in EDD in response to acetylcholine, reduced eNOS expression and 

activity, and increased p53 expression and ROS content [192].

Telomere dysfunction is another form of genomic instability that may lead to cellular 

senescence with advancing age. First described by Harley et al., senescence triggered by 

replication-dependent telomere dysfunction is often referred to as replicative senescence 

[193]. Telomeres can be damaged by the genotoxic stressors described above [194, 195], 

and in vitro studies in various human cell types have clearly shown that the breakdown of 

telomere structure, referred to as telomere uncapping, leads to p53 activation and senescence 

[196, 197]. The only previous study to measure arterial telomere uncapping reported greater 

uncapping with advancing age, which was linked to p53-mediated senescence [148].

A vicious cycle of oxidative stress leading to DNA damage or telomere uncapping-mediated 

p53 activation and subsequent senescence-associated oxidative stress is a simple model of 

the role of genomic instability in age-related endothelial dysfunction. However, a more 

integrative model might consider the influence of p53-mediated shifts in energy metabolism 

on the following [178] energy sensitive pathways: SIRT-1, AMPK and mTOR that are 

known to influence both aging and endothelial function and that are discussed next.

5. Energy Sensing Longevity Pathways

5a. SIRT-1, Aging and Endothelial Dysfunction

Sirtuins were originally discovered in a screen for gene silencing factors in yeast and, 

therefore, given the name Sir2 (silent information regulator 2). Little research was 

conducted on the Sir2 family until Guarente et al. identified these proteins as critical 

regulators of longevity [198–200]. Thereafter, Sir2 and its mammalian homologues, the 

sirtuin family (SIRT1-7), of NAD+-dependent protein deacetylases and ADP-

ribosyltransferases were quickly identified. In mammals, SIRT1-4 have been implicated in 

the control of cellular metabolism with SIRT-2, 3 and 4 predominantly expressed in the 

mitochondria and SIRT-1 expressed in the nucleus, with some cytoplasmic expression [201–

203]. The sirtuin family and specifically SIRT-1 are implicated in a majority of the 

physiological benefits of caloric restriction [203–205]. SIRT-1 expression decreases in a 

multitude of tissues with advancing age [206–208]. SIRT-1 function is related to 

deacetylation and thereby modulating activity of nuclear transcription factors, co-regulators 

and proteins to adapt gene expression in response to the cellular energy state and provide 

“stress resistance” by reducing pro-inflammatory and oxidative stress pathways [209]. 

Interestingly, activation of SIRT-1 with the small molecule SRT1720 increases lifespan and 

preserves glucose tolerance in rodents [210] Taken together these data suggest that SIRT-1 

activation may have significant promise for improving endothelial function with aging or 

CVD.

SIRT-1 has been reported to modulate NO and endothelial function in small and large 

arteries directly via deacetylation and subsequent activation of eNOS [207, 211]. Our group 

has demonstrated that SIRT-1 expression and activity decrease with age in the vasculature in 
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both mice and humans [104, 207, 212, 213], and this is associated with age-related 

endothelial dysfunction in mice [104, 207]. Interestingly in rodent models, both short and 

long term caloric restriction can prevent the decline in arterial SIRT-1 and endothelial 

function [104, 212, 214]. Most of the data related to the vascular endothelium and SIRT-1 

activators is restricted to studies utilizing resveratrol, a naturally occurring polyphenol [215]. 

Unfortunately, resveratrol must be used at high doses to activate SIRT-1 [216] and is known 

to activate over 15 unique pathways in addition to being a potent antioxidant and 

phytoestrogen [215, 217–221]. While these characteristics of resveratrol do not alter its 

potential therapeutic value, they do generate some difficulty in elucidating its mechanism of 

action, specifically whether SIRT-1 activation is responsible for its beneficial effects. It has 

been shown that very high doses of resveratrol (2400 mg/kg of food) improves EDD in 

isolated arteries from middle-aged animals after 1 year of treatment [222], although it is 

unknown by what mechanism(s) this effect was achieved. Subsequently, we have utilized 

SRT-1720 treatment in old mice and have demonstrated that four weeks of SRT-1720 

normalizes SIRT-1 activity and reduces age-related NFκB acetylation, arterial inflammation 

and oxidative stress [213, 223]. Somewhat surprisingly SRT-1720 improvements in EDD 

were not mediated by increased NO bioavailabilty in old mice, but rather via augmented 

COX-2 vasodilators [213, 223]. Therefore, despite strong evidence suggesting a role of 

reduced SIRT-1 in the age-related reduction in NO bioavailability and endothelial 

dysfunction, treatment with a SIRT-1 activator improves endothelial function and reduced 

oxidative stress and inflammation, but does not restore NO. Future studies will be needed 

using small molecule activators of sirtuins to determine if they can ameliorate age-related 

CVD pathologies.

5b. AMP-activated protein kinase (AMPK), Aging and Endothelial Dysfunction

AMPK, a highly conserved heterotrimeric serine-threonine kinase, is an important energy 

sensing signaling protein that integrates energy balance, metabolism and stress resistance 

[224, 225]. AMPK is activated in response to increases in the AMP:ATP ratio and following 

physiological stimuli such as shear stress, heat shock, exercise and hypoxia [226]. AMPK is 

made up of a catalytic α subunit, a structural β subunit and the AMPK binding site 

containing γ subunit, each of which exist in multiple isoforms [226]. Activation of AMPK 

requires phosphorylation of the α subunit and occurs downstream of two kinases; LKB1 and 

Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) (reviewed elsewhere [226, 

227]). Shear stress-induced AMPK activation in endothelial cells is independent of Akt and 

involves the activation of the α2 subunit via LKB1 [226]. AMPK activation can also be 

mediated pharmacologically with aminoimidazole carboxamide ribonucleotide (AICAR) or 

metformin. AICAR is a direct activator of AMPK that acts downstream of LKB1 leading to 

phosphorylation of the α2 subunit of AMPK [226]. In contrast, metformin is an indirect 

activator of AMPK [228], actions of which are mediated by an increase in the AMP:ATP 

ratio resulting from inhibition of Complex I of the respiratory chain [229, 230]. However, 

such inhibition of oxidative phosphorylation, and a subsequent increase in glycolysis, can 

have numerous effects independent of AMPK, e.g., metformin effects transcription factors 

and kinases involved in numerous cell cycle and metabolic pathways (p53, p38, MAPK, 

PKC and Akt)[231–234]. Therefore, as with resveratrol, metformin and other non-specific 
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agents are not optimal for mechanistic studies evaluating these pathways but do afford 

insights as potential therapeutic agents.

AMPK activation in vascular endothelial cells can contribute to both angiogenesis and NO 

production. Angiogenic effects of AMPK occur both upstream and downstream of vascular 

endothelial growth factor (VEGF), with the effects of AMPK signaling promoting 

differentiation of endothelial progenitor cells [235] as well as angiogenesis in isolated 

myocardial microvascular endothelial cells [236], in ischemic skeletal muscle [237] and 

during hypoxia both in vitro and in vivo [238]. AMPK activation also results in increased 

activation of eNOS [239, 240] via signaling through Rac1 and Akt [238, 240], as well as 

through direct phosphorylation of eNOS [241, 242]. While the pro-angiogenic effects of 

AMPK have been linked to increased VEGF expression [236, 237], AMPK has also been 

demonstrated to transcriptionally regulate a number of other proteins involved in 

inflammation, mitochondrial biogenesis, fatty acid and cholesterol synthesis, glucose 

metabolism, cell growth and oxidative stress signaling [226], all of which may impact 

vascular function. Taken together, these findings suggest that augmenting AMPK signaling 

may not only enhance angiogenesis and increase bioavailability of NO and vasodilatory 

responses [235, 238, 240], but may also impact upstream mediators of age-associated 

endothelial dysfunction, such as inflammation and oxidative stress. Indeed, AMPK 

activation improves endothelial function in type I and II diabetic rodents [243–245] but, less 

is known about the activation state of AMPK in aged arteries or its role in age-associated 

vascular dysfunction.

In the context of vascular aging, although there is a report of increased AMPK activation in 

endothelial cells cultured to senescence, a cellular model of aging [246], AMPK activity is 

reduced in the aorta[247] and cerebral arteries [248] of old rodents. Furthermore, the 

pharmacological activation of AMPK by AICAR increases EDD in old mice [247], 

suggesting that inactivation of arterial AMPK contributes to age-associated endothelial 

dysfunction. However, despite evidence for AMPK-mediated eNOS activation [238, 240–

242], the effect of in vivo AMPK activation by AICAR to improve dilation in arteries from 

old mice was not mediated by an increased NO bioavailability [247]. Similar NO 

independent effects of AICAR were also found after acute in vitro administration to isolated 

aortic rings, in which AICAR induced relaxation of agonist constricted vessels independent 

of NO [249]. Similar to treatment of old mice with SIRT-1 activators, AMPK activators 

therefore reduce arterial oxidative stress and improve endothelial function, but do so in an 

NO independent mechanism.

5c. Mammalian target of rapamycin (mTOR), Aging and Endothelial Dysfunction

Rapamycin was discovered more than 30 years ago from an Easter Island soil sample. It is a 

potent antifungal metabolite produced from bacteria and in addition to its antifungal 

properties was quickly found to have antiproliferative and immunosuppressant properties 

when used in high quantities. The mammalian target of rapamycin (mTOR) is a signaling 

protein which responds to nutrients (i.e. amino acids) or growth factors (i.e. insulin) in order 

to modulate mRNA translation, protein synthesis and cellular growth [250]. mTOR 

signaling is composed of two distinct pathways the mTOR complex 1 (mTORC1), the more 
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typically studied and rapamycin “sensitive”, and mTOR complex 2 (mTORC2), the less 

clearly identified and less sensitive to rapamycin. Most information to date on the role of 

mTOR has studied the insulin/nutrient signaling via the mTORC1 and significantly less in 

known about the role of mTORC2 (in this review, future references measure either 

mTORC1 or general mTOR activity)[251]. Earlier this decade studies showed that 

decreasing TOR signaling, genetically or with rapamycin, in yeast, Drosophila, and C. 

elegans is able to slow aging and increase lifespan [252–255]. Follow-up studies out of 

Richard Miller’s laboratory reproduced these findings in mice fed a diet with rapamycin 

incorporated [256, 257]. These studies suggested that inhibiting mTOR via rapamycin could 

delay age-associated diseases and extend lifespan in mammals. A subsequent study 

replicated these findings by genetically manipulating a downstream target of mTOR, 

ribosomal S6 protein kinase (S6K1) and demonstrated a similar phenotype of reduced risk 

factors for age-related diseases (bone density, insulin sensitivity) and increase lifespan 

[258]. These studies unilaterally implicate elevated mTOR signaling in accelerated aging 

and associated diseases. Currently, very little is known about mTOR and endothelial 

function. We have demonstrated that mTOR signaling is augmented in arteries from older 

mice which display endothelial dysfunction and lifelong caloric restriction prevents 

augmented arterial mTOR signaling and endothelial dysfunction [104]. Furthermore, 

preliminary studies in our lab suggest that 6–8 weeks of dietary supplementation of 

rapamycin improve NO and endothelial function in old mice [259]. Chronic rapamycin and 

other rapamycin analog studies are warranted to determine if inhibition of the mTOR 

pathway is a viable method to improve endothelial function in older adults.

6. Interactions of mTOR, SIRT1 and AMPK: Role in the Vascular Aging 

Phenotype

Although the energy sensor pathways, SIRT-1, AMPK activation and mTOR inhibition have 

been linked to the vascular aging phenotype, when viewed from a wider perspective, what 

becomes evident is that these pathways do not, in fact, act in parallel to independently 

impact the macromechanistic processes (e.g. inflammation, oxidative stress and senescence) 

associated with vascular dysfunction. Rather, there are points of convergence and crosstalk 

among these pathways that not only impact the downstream effects, but also the expression 

of the signaling molecules themselves. Indeed, signaling through the transcription factors 
NFκB, FoxO and p53, represent points of convergence for signaling downstream of mTOR, 

SIRT-1 and AMPK.

6a. NFκB

The acetylation of NFκB p65 subunit by p300 prevents the nuclear export of NFκB, while 

its deacetylation by SIRT-1 allows for the association of NFκB with IκB-α and its 

subsequent nuclear export and inactivation [260]. Inhibition of mTOR (complex 1) by 

rapamycin inhibits phosphorylation of NFκB and subsequent nuclear translocation via its 

influence on IKKβ activity [261–263]. AMPK signaling has a complex interaction with 

NFκB [264], such that AMPK can both indirectly inhibit pro-inflammatory NFκB signaling 

[265–267] and activate NFκB signaling leading to its anti-apoptotic effects in endothelial 

cells [268]. Taken together these studies indicate that SIRT-1, mTOR and AMPK can all 
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alter the pro-inflammatory transcription factor NFκB activity by both distinct and 

intersecting pathways. It also indicates that reductions in AMPK and SIRT-1 activity and 

conversely increased mTOR activity may increase NFκB signaling resulting in a pro-

inflammatory phenotype similar to that observed in older arteries

6b. FoxO transcription factors

Fox nuclear transcription factors are a family of proteins characterized by a conserved 100 

amino-acid sequence known as the “forkhead box.” The FoxO subgroup have been 

implicated in ROS detoxification, cell cycle regulation, apoptosis, and DNA repair [269]. 

The activity of this subgroup is dependent on posttranslational modifications, such as 

phosphorylation and acetylation. FoxO proteins are constitutively held in the cytoplasm, and 

phosphorylation by signaling kinases inhibit their transcriptional activity by preventing 

nuclear translocation [270]. Phosphorylated FoxO is retained in the cytoplasm by the 14-3-3 

chaperone protein, and phosphorylation at serine residues 256/253 [271] targets FoxO 

proteins for degradation via ubiquitination [272]. The downstream targets of nuclear FoxO 

activity are determined by acetylation [273]. For example, p300-mediated FoxO3a 

acetylation induces the preferential transcription of pro-apoptotic gene targets. SIRT-1 

deacetylates FoxO3a, leading to the preferential transcription of genes related to stress 

resistance, such as the antioxidants MnSOD and catalase [273–275]. Furthermore, the 

FoxO4 isoform is an endogenous NFκB inhibitor, whose activity is enhanced when bound to 

SIRT-1 [276]. The interaction of mTOR and FoxO signaling occurs through modulation of 

other signaling kinases, such as protein kinase B (Akt) and serum- and glucocorticoid-

regulated kinase-1 (SGK1). The phosphorylation of FoxO proteins by these kinases leads to 

the cytoplasmic retention and inactivation of FoxO transcription factors [277]. Rapamycin, 

an inhibitior of mTOR, can inhibit SGK1 activity downstream of the mTORC1 complex 

[278] and may, as a result, increase FoxO-mediated transcription of anti-oxidant gene 

targets. AMPK can also directly phosphorylate the 3a isoform of FoxO leading to its 

activation and subsequent inhibition of NFκB [279].

6c. p53

p53 is a transcription factor that acts as a tumor suppressor preventing the survival of 

malignant cells. p53 is activated by stress such as DNA damage, telomere attrition and 

hypoxia and leads to cell cycle arrest and apoptosis [280]. Endothelial dysfunction in older 

adults is associated with telomere dysfunction and subsequent increases in p53-mediated cell 

cycle arrest via increases in the cyclin dependent kinase inhibitor, p21 expression [148]. 

Furthermore, recent evidence points to a link between the DNA damage response and 

energy sensitive pathways via SIRT-1 activity and expression. SIRT-1 is involved in the 

DNA repair and its activity has been shown to protect human and rodent vascular cells from 

DNA damage in the context of atherosclerosis [281]. Thus, age-related reductions in 

endothelial SIRT-1 expression and activity [207] may be partly the result of depleted protein 

levels caused by increased need for repair of accumulating DNA damage. Conversely, 

reductions in endothelial SIRT-1 expression may lead to genomic instability with advancing 

age. Specifically SIRT-1 deacetylates p53 resulting in its inactivation and the promotion of 

cell survival, thus reductions in SIRT-1 activity with aging may contribute to p53 activation 

and increased cell senescence [282, 283]. Conversely, AMPK phosphorylates p53 on ser15 
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and ser20 [284, 285] leading to p53 stabilization, activation and cell cycle arrest [286]. 

Phosphorylation of p53 at these sites has also been associated with reductions in 

inflammation [284]. Although, AMPK induced decreases in cell senescence does not likely 

contribute to the aging vascular phenotype, a loss of the p53-associated anti-inflammatory 

effects of AMPK may be an important factor. The crosstalk between p53 and mTOR occurs 

in the inverse manner as described for SIRT-1 and AMPK, with p53 inhibiting mTOR 

activity [287]. However, as both p53 and mTOR activation is increased with vascular aging, 

it is unlikely that this inhibitory interaction is a significant contributor to the vascular aging 

phenotype.

7. Conclusions

Since the initial observations of endothelial dysfunction in older adults in the early 1990s, 

the field has achieved several significant milestones. First, due to initial work and reviews 

by early researchers, vascular aging now is appreciated as a critical step in the development 

of age-related CVD. This recognition has allowed for funding and expansion of the field of 

study. Second, the vascular aging research community has expanded dramatically in the last 

20 years and has established viable primate and rodent models that phenocopy human aging. 

These models have allowed for greater mechanistic insight into the cellular and molecular 

mechanisms of endothelial dysfunction as well as the translation of interventions to human 

endothelial physiology studies. Third, in the past 25 years, the research community has 

identified multiple pathways that directly influence oxidative stress and inflammation, the 

major mechanisms of endothelial dysfunction with advancing age. Emerging evidence has 

suggested several promising pathways that could be viable candidates to reverse age-related 

endothelial dysfunction that require further exploration in areas outside of endothelial 

dilation; such as fibrinolysis, permeability and angiogenesis. Unfortunately, it is still 

unknown what the initiating events are that alter the cellular machinery to induce the well 

described vicious cycle of oxidative stress and inflammation. Indeed, although deregulation 

of the energy sensing pathways, e.g., SIRT-1, mTOR and AMPK, are attractive possible 

mechanisms, to date, pharmacological interventions that restore normal pathway activity in 

older animals have proven only partially effective at restoring endothelial function to that of 

young animals. Finally, treating older adults with prescription drugs to improve endothelial 

function as a preventative measure against CVD is not currently acceptable in the absence of 

clinical disease. Unless the definition of “clinical disease” is extended to include endothelial 

dysfunction, the only viable preventative interventions are those involving lifestyle changes 

or treatments with nutraceuticals. Overall, despite impressive advancements in our 

understanding of the biology of aging in the endothelium, we as a research community still 

have fundamental questions to answer including: What are the initiating events that lead to 

the arterial aging phenotype? And if a target pathway can be identified and viable drugs 

created to improve endothelial dysfunction in older adults, when should such therapy be 

initiated?
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Research Highlights

• Aging and endothelial dysfunction are risk factors for cardiovascular disease

• Both oxidative stress and inflammation suppress endothelial function in older 

adults

• Genomic instability and senescence are present in older arteries

• Dysregulated energy sensing pathways contribute to the age-related endothelial 

phenotype

• The initiating events leading to age-related endothelial dysfunction are still 

unknown
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Figure 1. Age-associated Endothelial Oxidative Stress and Impaired NO Bioavailability
In younger endothelial cells (Upper Panel), endothelial nitric oxide synthase (eNOS) has 

adequate cofactor availability, e.g., tetrahydrobiopterin (BH4), and produces nitric oxide 

(NO) through the conversion of L-arginine to L-citrulline. Reactive oxygen species (ROS), 

e.g., superoxide (O2
−) and hydrogen peroxide (H2O2), produced by the mitochondrial 

electron transport chain (ETC) or cytosolic oxidant enzymes, such as NADPH oxidase 

(NOX), are quenched by endogenous antioxidant enzymes (superoxide dismutase [SOD] 

and catalase). In older endothelial cells (Lower Panel), ROS produced in the mitochondria 

increase NOX mediated O2
−, this quenches NO bioavailability, through its conversion to 

peroxynitrite (ONOO−), as well as uncouple eNOS by reducing BH4 availability. In the face 

of unchanged antioxidant defenses, these effects lead to a reduction in NO bioavailability 

and a pro-oxidant phenotype in the aged endothelium.
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Figure 2. Inflammation and Oxidative Stress in the Aged Endothelium: A Vicious Cycle
The pro-inflammatory transcription factor, nuclear factor kappa B (NFκB) normally resides 

in the cytosol, where it is inactive, and endothelial nitric oxide synthase (eNOS) produces 

nitric oxide (NO) that is released from the endothelium and acts on the vascular smooth 

muscle to cause relaxation. With aging, the endothelial environment is perturbed by 

increases in cytokines and reactive oxygen species (ROS; e.g., superoxide [O2
−]), that can 

both be produced within the endothelium or by neighboring immune cells. These cytokines 

exacerbate oxidative stress and inflammation in the endothelium by activating oxidant 

enzymes, such as NADPH oxidase (NOX) increasing O2
− production, as well as by acting in 

a feed forward manner to increase pro-inflammatory NFκB transcription. Likewise, the 

oxidative stress produced in the microenvironment of aged arteries, also acts in a feed 

forward manner to increase pro-inflammatory NFκB activity and activate neighboring 

immune cells as well as contributes directly to impaired NO by reducing eNOS activity via 

decreased BH4 availability as well as by quenching NO, leading to impaired endothelium 

dependent dilation in aged arteries. Thus, with aging there is a vicious cycle in aged arteries, 

in which inflammation and oxidative stress exacerbate one another impairing NO 

bioavailability and endothelial function.
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Figure 3. Endothelial Senescence and Aging
With advancing age, reactive oxygen species (ROS), as well as genotoxic stressors and 

telomere dysfunction, lead to double strand DNA breaks and genomic instability (Upper 
Panel). This genomic instability induces the DNA damage response, leading to the 

activation, p53 and nuclear factor kappa B (NFκB) that then transcribe genes that contribute 

to cell senescence such as the cyclin dependent kinase inhibitor, p21; oxidative stress, e.g., 

NADPH oxidase (NOX); and inflammatory cytokines. The cytokines and ROS act in a 

paracrine manner to impair function in neighboring endothelial cells (Lower Panel).
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