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Abstract

In this paper, we study the detection boundary for minimax hypothesis testing in the context of 

high-dimensional, sparse binary regression models. Motivated by genetic sequencing association 

studies for rare variant effects, we investigate the complexity of the hypothesis testing problem 

when the design matrix is sparse. We observe a new phenomenon in the behavior of detection 

boundary which does not occur in the case of Gaussian linear regression. We derive the detection 

boundary as a function of two components: a design matrix sparsity index and signal strength, 

each of which is a function of the sparsity of the alternative. For any alternative, if the design 

matrix sparsity index is too high, any test is asymptotically powerless irrespective of the 

magnitude of signal strength. For binary design matrices with the sparsity index that is not too 

high, our results are parallel to those in the Gaussian case. In this context, we derive detection 

boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized 

likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism 

Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the 

theoretical results using simulation studies.
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1. Introduction

The problem of testing for the association between a set of covariates and a response is of 

fundamental statistical interest. In the context of testing for a linear relationship of 

covariates with a continuous response, R. A. Fisher introduced analysis of variance 

(ANOVA) in the 1920s, which is still widely used in the present day. In recent years, finding 

the detection boundary of various testing problems has gained substantial popularity. A 
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fruitful way of finding the detection boundary is to study the minimax error of testing and 

obtain a threshold of signal strength under which all testing procedures in the concerned 

problem are useless. For Gaussian linear models, this has been extensively studied by Arias-

Castro, Candès and Plan (2011) and Ingster, Tsybakov and Verzelen (2010); these works 

were inspired by the previous work on hypothesis testing in various contexts, such as sparse 

normal mixtures [Donoho and Jin (2004), Cai, Jeng and Jin (2011)], Gaussian sequence 

models [Ingster and Suslina (2003)] and correlated multivariate normal problems [Hall and 

Jin (2010)]. However, very little work has been done on detection boundaries in generalized 

linear models for discrete outcomes.

In this paper, we study the detection boundary for hypothesis testing in the context of high-

dimensional, sparse binary regression models. Motivated by case–control sequencing 

association studies for detecting the effects of rare variants on disease risk [Tang et al. 

(2014), Lee et al. (2014)], we are interested in the complexity of the hypothesis testing 

problem when the design matrix is sparse. Specifically, sequencing studies allow sequencing 

massive genetic variants in candidate genes or across the whole genome. A rapidly 

increasing number of sequencing association studies have been conducted, such as the 1000 

Genome Project [1000 Genomes Project Consortium (2012)] and the NHLBI Exome 

Sequencing Project [Fu et al. (2013)]. It is of substantial interest to study rare variant effects 

on diseases case–control candidate gene and whole genome sequencing association studies. 

A major challenge in analysis of sequencing data is that a vast majority of variants across 

the genome are rare variants [1000 Genomes Project Consortium (2012) (Figure 2b), Fu et 

al. (2013) (Figure 1a), Nelson et al. (2012) (Figure 1c)]. For a review of analysis of data of 

sequencing association studies, see Lee et al. (2014).

For example, in the Dallas Heart candidate gene sequencing study [Victor et al. (2004)], 

3476 individuals were sequenced in the region consisting of three genes ANGPTL3, 

ANGPTL4 and ANGPTL5. The goal of study was to test the effects of these genes on the 

risk of hypertriglyceridemia. A total of 93 genetic variants were observed in these genes. 

Each variant took values 0, 1, 2, which represents the number of minor alleles in a genetic 

variant. About half of the variants were singletons, that is, they were observed in only one 

person; 92 variants have the minor allele frequencies < 5%. The design matrix is hence very 

sparse, with a vast majority of its columns having <5% nonzero values (1 or 2), and the 

proportion of total nonzero elements in the design matrix being <2.5%. It is expected only a 

small number of variants might be associated with hypertriglyceridemia. The presence of the 

sparse design matrix and sparse signals for binary outcomes results in substantial challenges 

in testing the association of these genes and hypertriglyceridemia. Figure 1 provides the 

histogram of rare variants with minor allele frequencies less than 5%.

Suppose there are n samples of binary outcomes, p covariates for each. Consider a binary 

regression model linking the outcomes to the covariates. We are interested in testing a global 

null hypothesis that the regression coefficients are all zero and the alternative is sparse with 

k signals, where k = p1−α and α ∈ [0, 1]. For binary regression models, we observe a new 

phenomenon in the behavior of detection boundaries which does not occur in the Gaussian 

framework, as explained below.
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The main contribution of our paper is to derive the detection boundary for binary regression 

models as a function of two components: a design matrix sparsity index and signal strength, 

each of which is a function of the sparsity of the alternative, that is, α. Throughout the paper, 

we will call the first component as “design matrix sparsity index.” This is unlike the results 

in Gaussian linear regression which has a one component detection boundary, namely the 

necessary signal strength. In the Gaussian linear model framework, Arias-Castro, Candès 

and Plan (2011) and Ingster, Tsybakov and Verzelen (2010) show that if the design matrix 

satisfies certain “low coherence conditions,” then it is possible to detect the presence of a 

signal in a global sense, provided the signal strength exceeds a certain threshold. In contrast, 

our results suggest that for binary regression problems, the difficulty of the problem is also 

determined by the design matrix sparsity index. In this paper, we explore two key 

implications of this phenomenon which are outlined below.

First, if the design matrix sparsity index is too high, we show that no signal can be detected 

irrespective of its strength. In Section 3, we provide sufficient conditions on the design 

matrix sparsity index which yield such nondetectability problems. Such conditions on the 

design matrix sparsity index corresponds to the first component of the detection boundary. 

Plan and Vershynin (2013a, 2013b) discussed a difficulty in inference similar to that of ours, 

for design matrices with binary entries in the context of 1-bit compressive sensing and 

sparse logistic models. Our results in Section 3 pertain to sparse design matrices with 

arbitrary entries, which are not necessarily orthogonal. We give a few examples of design 

matrices which satisfy our criteria for nondetectability. These include block diagonal 

matrices and banded matrices.

Second, for design matrices with binary entries and with low correlation among the 

columns, we are able to characterize both components of the detection boundary. In 

particular, if the design matrix sparsity index, the first component of the detection boundary, 

is above a specified threshold, no signal is detectable irrespective of strength. Once the 

design matrix sparsity index is below the same threshold, we also obtain the optimal 

thresholds with respect to the second component of the detection boundary, that is, the 

minimum signal strength required for successful detection. In this regime, our results 

parallel the theory of detection boundary in Gaussian linear regression. We also provide 

relevant tests to attain the optimal detection boundaries. In the sparse regime ( ), our 

results are sharp and rate adaptive in terms of the signal strength component of the detection 

boundary. Moreover, we observe a phase transition in both components of the detection 

boundary depending on the sparsity (α) of the alternative. To the best of our knowledge, this 

is the first work optimally characterizing a two component detection boundary in global 

testing problems against sparse alternatives in binary regression.

To illustrate further, we contrast our results with the existing literature. In the case of a 

balanced one-way ANOVA type design matrix with each treatment having r independent 

replicates, for Gaussian linear models, Arias-Castro, Candès and Plan (2011) show that the 
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detection boundary is given by  in the dense regime ( ) and equals 

 in the sparse regime , where

(1.1)

and  matches the detection boundary in Donoho and Jin (2004) in the normal 

mixture problem. For given sparsity of the alternative, the detection boundary depends a 

single function of r.

For binary regression, we show that the detection boundary is drastically different and 

depends on two functions of r: a design matrix sparsity index and signal strength under the 

alternative hypothesis for a given regime. In particular, define the design matrix sparsity 

index of a design matrix as 1/r. For r = 1, every test is powerless irrespective of the signal 

sparsity and the signal strength under the alternative hypothesis. When r > 1, the behavior of 

the detection boundary can be categorized into three situations. In the dense regime where r 

> 1 and , the detection boundary matches that of the Gaussian case up to rates and the 

usual Generalized Likelihood Ratio Test achieves the detection boundary. In the sparse 

regime, that is, when , the detection boundary behaves differently for r ≪ log(p) and r 

≫ log(p). For  and r ≪ log(p), a new phenomenon that does not exist in the Gaussian 

case arises: all tests are asymptotically powerless irrespective of how strong the signal 

strength is in the alternative. For  and r ≫ log(p), our results are identical to the 

Gaussian case, up to a constant factor accounting for the Fisher information. In this regime, 

we construct a version of the Higher Criticism Test and show that this test achieves the 

lower bound. We use the strong embedding theorem [Komlós, Major and Tusnády (1975)] 

to obtain sharp detection boundary. Noting that this problem can also be cast as a test of 

homogeneity among p binomial populations with contamination in k of them. Hence, 

roughly speaking, the two component detection boundary in this binary problem setting 

equals [1, ) in the dense regime and ( , ] in the sparse 

regime, where the first component represents the design matrix sparsity index, which is of 

the order of 1/r, and the second component indicates the order of signal strength. Successful 

detection requires both components to be above the component-specific detection 

boundaries.

Borrowing ideas from orthogonal designs, we further obtain analogous results for general 

binary design matrices which are sparse and have weak correlation among columns, 

mimicking design matrices often observed in sequencing association studies. For such 

general binary designs, we are able to completely characterize the two component detection 

boundary in both dense and sparse regimes. Our versions of Generalized Likelihood Ratio 
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Test and the Higher Criticism Test continue to attain the optimal detection boundaries in 

dense and sparse regimes, respectively. Similar to orthogonal designs, our results are sharp 

in the sparse regime and we once again obtain optimal phase transition in the two 

component detection boundary depending on the sparsity (α) of the alternative. Our results 

show that under certain low correlation structures, the problem essentially behaves as an 

orthogonal problem.

The rest of the paper is organized as follows. We first formally introduce the model in 

Section 2 and discuss general strategies. Here, we also provide a set of notation to be used 

throughout the paper. In Section 3, we study the nondetectability for sparse design matrices 

with arbitrary entries. In Section 4, we formally introduce a class of designs for which we 

derive the sharp detection boundaries, namely, one-way ANOVA designs and weakly 

correlated binary designs. Section 5 introduces the Generalized Likelihood Ratio Test 

(GLRT) and the Higher Criticism Test in our designs, which will be used in subsequent 

sections to attain the sharp detection boundaries in two different regimes of sparsity. In 

Section 6, we first analyze the oneway ANOVA designs and derive the sharp detection 

boundary in different sparsity regimes. In Section 7, we derive the sharp detection boundary 

in different sparsity regimes for weakly correlated binary designs. Section 8 presents 

simulation studies which validate our theoretical results. Finally, we collect all the technical 

proofs in the supplementary material [Mukherjee, Pillai and Lin (2014)].

2. Preliminaries

Suppose there are n binary observations yi ∈ {0, 1}, for 1 ≤ i ≤ n, with covariates xi = (xi1, 

…, xip)t. The design matrix with rows  is denoted by X. Set y = (y1, y2, …, yn)t. The 

conditional distribution of yi given xi is given by

(2.1)

where β = (β1, …, βp)t ∈ ℝp is an unknown p-dimensional vector of regression coefficients. 

Henceforth, we will assume that θ is an arbitrary distribution function that is symmetric 

around 0, that is,

(2.2)

For some of the results, we will also require certain smoothness assumptions on θ(·) which 

we will state when and where required. Examples of such θ(·) include logistic and normal 

distributions which, respectively, correspond to logistic and probit regression models.

Let  and let . For some A > 0, we are 

interested in testing the global null hypothesis

(2.3)
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Set k = p1−α with α ∈ (0, 1]. We note that these types of alternatives have been considered 

by Arias-Castro, Candès and Plan (2011), referred to as the “Sparse Fixed Effects Model” or 

SFEM. In particular, under the alternative, β has at least k nonzero coefficients exceeding A 

in absolute values. Alternatives corresponding to  belong to the dense regime and 

those corresponding to  belong to the sparse regime. We will denote by π a prior 

distribution on . Throughout we will refer to A as the signal strength corresponding 

to the alternative in equation (2.3).

We first recall a few familiar concepts from statistical decision theory. Let a test be a 

measurable function of the data taking values in {0, 1}. The Bayes risk of a test T = T(X, y) 

for testing H0 : β = 0 versus H1 : β ~ π when H0 and H1 occur with the same probability, is 

defined as the sum of its probability of type I error (false positives) and its average 

probability of type II error (missed detection):

where ℙβdenotes the probability distribution of y under model (2.1) and π[·] is the 

expectation with respect to the prior π. We study the asymptotic properties of the binary 

regression model (2.1) in the high-dimensional regime, that is, with p → ∞ and n = n(p) → 

∞ and a sequence of priors {πp}. Adopting the terminology from Arias-Castro, Candès and 

Plan (2011), we say that a sequence of tests {Tn,p} is asymptotically powerful if limp→∞ 

Riskπp(Tn,p) = 0, and it is asymptotically powerless if lim infp→∞ Riskπp(Tn,p) ≥ 1. When 

no prior is specified, the risk is understood to be the worst case risk or the minimax risk 

defined as

The detection boundary of the testing problem (2.3) is the demarcation of signal strength A 

which determines whether all tests are asymptotically powerless (we call this lower bound of 

the problem) or there exists some test which is asymptotically powerful (we call this the 

upper bound of the problem).

To understand the minimax risk, set

where P0, P1 are two families of probability measures and |P – Q|1 = supB |P(A) – Q(A)|, 

with B being a Borel set in ℝn, denotes the total-variation norm. Then for any test T, we 

have [Wald (1950)]
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where conv denotes the convex hull. However,  is difficult to calculate. 

But it is easy to see that for any test T and any prior π, one has Risk(T) ≥ Riskπ(T). So in 

order to prove that a sequence of tests is asymptotically powerful, it suffices to bound from 

above the worst-case risk Risk(T). Similarly, in order to show that all tests are 

asymptotically powerless, it suffices to work with an appropriate prior to make calculations 

easier and bound the corresponding risk from below for any test T.

It is worth noting that, for any prior π on the set of k-sparse vectors in ℝp and for any test T, 

we have

where Lπ is the π-integrated likelihood ratio and E0 denotes the expectation under H0. For 

the model (2.1), we have

(2.4)

Hence, in order to assess the lower bound for the risk, it suffices to bound from above 

. By Fubini’s theorem, for fixed design matrix X, we have

(2.5)

where β, β′ ~ π are independent. In the rest of the paper, all of our analysis is based on 

studying  carefully for the prior distribution π chosen below.

In the context of finding an appropriate test matching the lower bound, by the Neyman–

Pearson lemma, the test which rejects when Lπ > 1 is the most powerful Bayes test and has 

risk equal to . However, this test requires knowledge of the sparsity index α 

and is also computationally intensive. Hence, we will construct tests which do not require 

knowledge of α and are computationally much less cumbersome.

Ideally, one seeks least favorable priors, that is, those priors for which the minimum Bayes 

risk equals the minimax risk. Inspired by Baraud (2002), we choose π to be uniform over all 

k sparse subsets of ℝp with signal strength either A or –A.

2.1. Notation

We provide a brief summary of notation used in the paper. For two sequences of real 

numbers ap and bp, we say ap ≪ bp or ap = o(bp), when  and we say ap 
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≲ bp or ap = O(bp) if . The indicator function of a set B will be denoted 

by I(B).

We take π to be uniform over all k sparse subsets of ℝp with signal strength either A or –A. 

Let M(k, p) be the collection of all subsets of {1, …, p} of size k. For each m ∈ M(k, p), let 

ξm = (ξj)j∈m be a sequence of independent Rademacher random variables taking values in 

{+1, −1} with equal probability. Given A > 0 for testing (2.3), a realization from the prior 

distribution π on ℝp can be expressed as

where  is the canonical basis of ℝp and m is uniformly chosen from M(k, p). Since, 

the alternative in (2.3) allows both positive and negative directions of signal strength βj, we 

call it a two-sided alternative. On the contrary, when we are given the extra information in 

(2.3) that the βj’s have the same sign, then we call the alternative a one-sided alternative. A 

realization from a prior distribution over one-sided k sparse alternatives can be expressed as 

Σj∈mAξej, where ξ is a single Rademacher random variable.

For any distribution π′ on M(k, p), by support(π′) we mean the smallest set I′ := {M : M ∈ 

M(k, p)} such that π′(I′) = 1. For any distribution π* over M(k, p), we say that another 

distribution π0 over M(k, p) is equivalent to π* (denoted by π0 ~ π*) if π0 is uniform on its 

support and

By the support of a vector υ ∈ ℝp, we mean the set {j ∈ {1,…, p}: υj ≠ 0}; the vector υ is Q-

sparse if the support of υ has at most Q elements. For i = 1,…, n, we will denote the support 

of the ith row of X by Si := {j :Xi,j ≠ 0} ⊂ {1,…, p}. Let BCl denote the set of all functions 

whose lth derivative is continuous and bounded over ℝ. By θ(·) ∈ BCl(0), we mean that the 

lth derivative of θ(·) is continuous and bounded in a neighborhood of 0. Finally, by saying 

that a sequence measurable map χn,p(y, X) of the data is tight, we mean that it is 

stochastically bounded as n, p →∞.

3. Sparse design matrices and nondetectability of signals

In this section, we study the effects of sparsity structures of the design matrix X on the 

detection of signals. Our key results in Theorem 3.1 below provide a sufficient condition on 

the sparsity structure of the X which renders all tests asymptotically powerless in the sparse 

regime irrespective of signal strength A. This result for nondetectability is quite general and 

are satisfied by different classes of sparse design matrices as we discuss below. We verify 

the hypothesis of Theorem 3.1 in a few instances where certain global detection problems 

can be extremely difficult.
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Let π0 ~ π and Rπ0 denote the support of π0. For a sequence of positive integers σp, we say 

that j1, j2 ∈ {1,…, p} are “σp-mutually close” if |j1 – j2| ≤ σp. For an m1 from π0 and N ≥ 0, 

let  denote the set of all {l1,…, lk} ∈ Rπ0 such that there are exactly N elements “σp-

mutually close” with members of m1.

Theorem 3.1

Let k = p1−α with . Let π0 ~ π and {σp} be a sequence of positive integers with σp ≪ pε 

for all ε > 0. Let m1 be drawn from π0. Suppose that for all N = 0,…, k and every m2 drawn 

from π0 with , the following holds for some sequence δp > 0:

(3.1)

where Si is defined in the last paragraph of Section 2. Then if δp ≪ log(p), all tests are 

asymptotically powerless.

An intuitive explanation of Theorem 3.1 is as follows. If the support of β under the 

alternative does not intersect the support of a row of the design matrix X, the observation 

corresponding to that particular row does not provide any information about the alternative 

hypothesis. If randomly selected draws from M(k, p) fail to intersect with the support of 

most of the rows, as quantified by equation (3.1), then all tests will be asymptotically 

powerless irrespective of the signal strength in the alternative. In the Gaussian linear 

regression, the effect of a similar situation is different. We provide an intuitive explanation 

for a special case in Section 6. Also intuitively, the quantity  in Theorem 3.1 is a candidate 

for the design matrix sparsity index of X. This is because if  is too large, as quantified by 

, then all tests are asymptotically powerless in the sparse regime irrespective of 

the signal strength. Now we provide a few examples where condition (3.1) can be verified to 

hold for appropriate parameters.

Example 1 (Block structure)—Suppose that, up to permutation of rows, X can be 

partitioned into a block diagonal matrix consisting of G(1),…, G(M) and a matrix G as 

follows:

(3.2)
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where . The matrices G, G(1),…, G(M) are arbitrary matrices of specified 

dimensions. Let c* = max1≤j≤M cj and l* = max1≤j≤M dj. Indeed c*, l* and the structure of G 
decide the sparsity of the design matrix X. In Theorem 3.2 below, we provide necessary 

conditions on c*, l* and G which dictate the validity of condition (3.1), and hence renders 

all tests asymptotically powerless irrespective of signal strength.

Design matrices in sequencing association studies for rare variants generally have this 

structure. Figure 2 shows a heat map of the genotype matrix of the subjects in the Dallas 

Heart study after a suitable rearrangement of subject indices, after removing the single 

common variant. It shows that the genotype matrix has the same structure as X described 

above. Specially, it can be partitioned into two parts. The top part of the matrix is an 

orthogonal block diagonal structure and the bottom part is a nonorthogonal sparse matrix 

which corresponds to G.

Theorem 3.2

Assume that the matrix X is of the form given by (3.2). Let k = p1−α with  and suppose 

that |∪i >n* Si| ≪ p where . Let l* ≪ pε for all ε > 0. If c* ≪ log p, then 

condition (3.1) holds, and thus all tests are asymptotically powerless.

In Theorem 3.2, the condition |∪i>n* Si| ≪ p is an assumption on the structure of G which 

restricts the locations of nonzero elements of G. This condition on G is not tight and can be 

much relaxed provided one assumes further structures on G. In fact, this implies that 

asymptotically the bulk of the information about the alternatives comes from the block 

diagonal part of X and the information from G is asymptotically negligible.

Further, intuitively,  is the candidate for the design matrix sparsity index. Since if  is too 

high, as quantified by , then all tests are asymptotically powerless in the sparse 

regime. It is natural to ask about the situation when the design matrix sparsity index is below 

the specified threshold of , that is, c* ≫ log(p). To this end, it is possible to analyze 

the necessary and sufficient conditions on the signal strength A dictating asymptotic 

detectability in problem (2.3) when c* ≫ log(p) for X in (3.2) but possibly with |∪i>n* Si| ≫ 

p. In Section 7, we provide an answer to this question when X has binary entries.

Example 2 (Banded matrix)—Suppose X has the following banded structure, possibly 

after a permutation of its rows. Suppose there exists l2 > l1 such that for i = 1,…, n, Xi,j = 0 

for j < i – l1 or j > i + l2. Further, let |∪i>n Si| ≪ p. Note that this allows design matrices X 
which can be partitioned into a banded matrix of band-width l2 – l1 and an arbitrary design 

matrix with sparsity restrictions as specified by |∪i>n Si| ≪ p.
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Theorem 3.3. Let k = p1−α with . Suppose X is a banded design matrix as described 

above. Suppose that l2 – l1 ≪ log(p). Then condition (3.1) holds and thus all tests are 

asymptotically powerless.

4. Design matrices

In Section 3, we provided conditions on X under which all tests are asymptotically 

powerless irrespective of signal strength A. To complement those results, the subsequent 

sections will be devoted toward analyzing situations when X is not pathologically sparse, 

and hence one can expect to study nontrivial conditions on the signal strength A that 

determine the complexity in (2.3). In this section, we introduce certain design matrices with 

binary entries motivated by sequencing association studies. In subsequent sections, we will 

derive the detection boundary for binary regression models with these design matrices.

In order to introduce the design matrices we wish to study, we need some notation. Set Ω* = 

{i : |Si| = 1}. For j = 1,…, p, let  with rj = |{i ∈ Ω* :Si = {j}}|. Let r* = 

max1≤j≤p rj and r* = min1≤j≤p rj. Also, let  and n* = n – n*. In words, for each j, 

 is the collection of individuals with only one nonzero informative covariate appearing as 

the jth covariate and rj is the number of such individuals.

A binary design matrix, as described above, is orthogonal if and only if all of its rows have 

at most one nonzero element. Hence, up to a permutation of rows, any binary design matrix 

can be potentially partitioned as a oneway ANOVA type design and an arbitrary matrix. In 

particular, up to a permutation of rows, any binary design matrix is equivalent to equation 

(3.2) where each , cj = rj, dj = 1, c* = r*, l* = 1, c̃ = n* and G is an 

arbitrary matrix with binary entries. Keeping this in mind, we have the following definitions.

Definition 4.1

A design matrix X is defined as a Weakly Correlated Design with parameters (n*,n*, r*, r*, 

Qn,p, γn,p) if the following conditions hold:

(C1) The design matrix Xn×p has binary entries;

(C2) |Si| ≤ Qn,p for all i = 1,…, n, for some sequence Qn,p;

(C3)
 for some sequence γn,p →∞.

As a special case of the above definition, we have the following definition.

Definition 4.2

A design matrix X is called an ANOVA design with parameter r, and denoted by X ∈ 

ANOVA(r), if it is a Weakly Correlated Design with r* = r* = r and n* = 0.

A few comments are in order for the above set of assumptions in Definitions 4.1 and 4.2. 

The motivation for condition (C1) comes from genetic association studies assuming a 
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dominant model. As our proofs will suggest, this can be easily relaxed, allowing the 

elements of X to be uniformly bounded above and below. Condition (C2) imposes sparsity 

on X. Finally, since the part of X without G is exactly orthogonal, condition (C3) restricts 

the deviation of X from exact orthogonality. In particular, if the size of G is “not too large” 

compared to the orthogonal part of X, as we will quantify later, then the behavior of the 

detection problem is similar to the one with an exactly orthogonal design. In essence, this 

captures low correlation designs suitable for binary regression with ideas similar to low 

coherence designs as imposed by Arias-Castro, Candès and Plan (2011) for Gaussian linear 

regression.

Because of the presence of G, Weakly Correlated Designs in Definition 4.1 allow for 

correlated binary design matrices with sparse structures. However, condition (C3) restricts 

the size of G (numerator) compared to the orthogonal part (denominator) by a factor of γn,p. 

Intuitively, this implies low correlation structures in X. The condition (C3) restricts the 

effect of G on the correlation structures of X by not allowing too many rows compared to 

the size of the orthogonal part of X. It is easy to see that when n*Qp ≪ p, then since |∪i∉ Ω* 

Si| ≪ p, one can essentially ignore the rows outside Ω* using an argument similar to that in 

the proof of Theorem 3.2 and the problem becomes equivalent to ANOVA(r*) designs. 

However, condition (C3) allows for the cases |∪i∉Ω* Si| ≫ p. For example, if Q = log(p)b for 

some b > 0, then as long as r* γp ≫ pap log(p)b for some sequence ap→∞, one can 

potentially have n*Qp ≫ p, and hence the simple reduction of the problem as in proof of 

Theorem 3.2 is no longer possible. In order to show that the detection problem still behaves 

similar to an orthogonal design, one needs much subtler analysis to ignore the information 

about the alternative coming from the subjects corresponding to G part of the design X. 

Therefore, condition (C3) allows for a rich class of correlation structures in X.

The genotype matrix of the Dallas Heart study data shown in Figure 2 provides empirical 

evidence that the assumptions in Definition 4.1 are reasonable for design matrices in 

sequencing data. Specifically, Table 1 provides the values of the parameters used in 

Definition 4.1 that were calculated using the Dallas Heart study data for different 

subpopulations of the study to motivate our conditions. Here, we assumed a dominant 

coding of the alleles for the rare variants (MAF < 5%). In most cases, whenever a subject 

has more than one mutation, it does not have more than 2 mutations, which effectively 

yields Q = 2 in our conditions. The last three columns of Table 1 refer to condition (C3). In 

particular, small values in these columns suggest that the size of G is much smaller than the 

orthogonal part of the design, supporting condition (C3).

In subsequent sections, we study the role of the parameter vector (n*, n*, r*, r*, Qn,p, γn,p) in 

deciding the detection boundary. We first present the analysis of relatively simpler ANOVA 

designs followed by the study of Weakly Correlated Designs. The analysis of simpler 

ANOVA designs provides the crux of insight for the study of detection boundary under 

Weakly Correlated Designs, and at the same time yields cleaner results for easier 

interpretation. We will demonstrate that the quantity  is the design matrix sparsity index 

when X ∈ ANOVA(r). In the case of Weakly Correlated Designs, r* and r* play the same 

role as that of r in ANOVA(r) designs. We divide our study of each design into two main 
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sections, namely the Dense Regime ( ) and the Sparse Regime ( ). In the next 

section, we first introduce the tests which will be essential for attaining the optimal detection 

boundaries in dense and sparse regimes, respectively.

5. Tests

We propose in this section the Generalized Likelihood Ratio Test and a Higher Criticism 

Test for binary regression models. We begin by defining Z-statistics for Weakly Correlated 

Designs which will be required for introducing and analyzing upper bounds later. Also, in 

order to separate the information about the alternative coming from the G part of X, we 

define a Z-statistic separately for the nonorthogonal part. With this in mind, we have the 

following definitions.

Definition 5.1

Let X be a Weakly Correlated Design as in Definition 4.1.

1. Define the jth Z-statistic as follows:

2. Letting G = {Gij}n*×p define

With these definitions, we are now ready to construct our tests.

5.1. The Generalized Likelihood Ratio Test (GLRT)—We now introduce a test that 

will be used to attain the detection boundary in the dense regime. Let Zj be the jth Z-statistic 

in Definition 5.1. Then the Generalized Likelihood Ratio Test is based on the following test 

statistic:

(5.1)

Under H0, we have EH0 (TGLRT) = p and VarH0(TGLRT) = O (p). Hence,  is tight. 

Our test rejects the null when

for a suitable tp to be decided later.
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Note that this test only uses partial information from the data. Since we shall show that, 

asymptotically using this partial information is sufficient, we will not lose power in an 

asymptotic sense. However, from finite sample performance point of view, it is more 

desirable to use the following test using all the data by incorporating information from G as 

well. This test can be viewed as a combination of GLRT statistics using the orthogonal and 

nonorthogonal parts of X, respectively. Specifically, we reject the null hypothesis

Note that given a particular G, the quantities  and  can be 

easily calculated by simple moment calculations of Bernoulli random variables. We do not 

go into specific details here. Finally, since combining correct size tests by Bonferroni 

correction does not change asymptotic power, our proofs about asymptotic power continue 

to hold for this modified GLRT without any change.

5.2. Extended Higher Criticism Test—Assume r* ≥ 2. Let Rj be a generic Bin(rj, ) 

random variable and Bj, , respectively, denote the distribution function and the survival 

function of . Hence,

From Definition 5.1, the Zj’s are independent Bin(rj, ) under H0 for j = 1,…, p. Let

Now we define the Higher Criticism Test as

(5.2)

where ℕ denotes the set of natural numbers. The next theorem provides the rejection region 

for the Higher Criticism Test.

Theorem 5.2

For Weakly Correlated Designs, limp→∞ ℙH0 (THC > log(p)) = 0.
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Hence, one can use (1 + ε) log(p) as a cutoff to construct a test based on THC for any 

arbitrary fixed ε > 0:

(5.3)

By Theorem 5.2, the above test based on THC has asymptotic type I error converging to 0. 

We note that, when r* ≫ log (p), we can obtain a rejection region of the form 

 while maintaining asymptotic type I error control. This type of 

rejection region is common in the Higher Criticism literature. As we will see in Section 6, 

the interesting regime where the Higher Criticism Test is important is when r* ≫ log(p). In 

this regime, we can have the same rejection region of the Higher Criticism as obtained in 

Donoho and Jin (2004) and Hall and Jin (2010). However, for generality we will instead 

work with the rejection region given by equation (5.3).

Note that this test only uses partial information from the data. We shall show that, 

asymptotically, using this partial information is sufficient, we will not lose power in an 

asymptotic sense. However, from a finite sample performance point of view, it is more 

desirable to use the following test using all the data by incorporating information from G. 

The below can be viewed as a combination of Higher Criticism Tests based on the 

orthogonal and nonorthogonal parts of X, respectively.

Specifically, letting gj = Σi>n* Xij, j = 1, …, p, define the Higher Criticism type test statistic 

based on G as

The quantities  and  can be 

suitably approximated based on G. However, we omit the specific details here for coherence 

of exposition. Finally, defining

one can follow the previous steps in defining the Higher Criticism Test with exactly similar 

arguments. Since combining correct size tests by Bonferroni correction does not change 

asymptotic power, the proofs concerning the power of the resulting test goes through with 

similar arguments. We omit the details here.

6. Detection boundary and asymptotic analysis for ANOVA designs

We begin by noting that the ANOVA(r) designs can be equivalently cast as a problem of 

testing homogeneity among p different binomial populations with r trials each. Suppose
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(6.1)

Let ν = (ν1, …, νp)t. For some Δ ∈ (0, ], we are interested in testing the global null 

hypothesis

(6.2)

When X ∈ ANOVA(r), models (2.1) and (6.1) are equivalent with . Hence, 

sparsity in β is equivalent to sparsity in ν in the sense that  if and only if . 

Further, the rate of Δ, which determines the asymptotic detectability of (6.2), can be related 

to the rate of A, which determines detectability in (2.3) when the link function θ is 

continuously differentiable in a neighborhood around 0.

Remark 6.1

When θ is the distribution function for a uniform random variable ), then νj = βj 

for all j = 1, …, p. Hence, the detection boundary in problem (6.2) follows from that in 

problem (2.3) by taking θ to be the distribution function of , that is, 

.

Remark 6.2

The prior πeq that we will use for testing for the binomial homogeneity of proportions is as 

follows. For each m ∈ M (k, p), let ξm = (ξj)j ∈ m be a sequence of independent Rademacher 

random variables taking values in {+1, −1} with equal probability. Given Δ ∈ (0, ) for 

testing (6.2), a realization from the prior distribution πeq on ℝp can be expressed as νξ,m = 

Σj ∈ m Δξjej, where  is the canonical basis of ℝp and m is uniformly chosen from M (k, 

p). Note that given the prior π on β = (β1, …, βp)r discussed earlier, πeq is the prior induced 

on ν = (ν1, …, νp)t with  for j = 1, …, p.

Owing to Remark 6.1, one can deduce the detection boundary of the binomial proportion 

model (6.1) from the detection boundary in ANOVA(r) designs. However, for the sake of 

easy reference, we provide the detection boundaries for both models. Before proceeding 

further, we first state a simple result about ANOVA designs, a part of which directly follows 

from Theorem 3.1. Note that ANOVA(1) design corresponds to the case when the design 

matrix is identity Ip×p. Unlike Gaussian linear models, for binary regression, when the 

design matrix is identity, for two-sided alternatives, all tests are asymptotically powerless 

irrespective of sparsity (i.e., in both dense and sparse regimes) and signal strengths. Such a 
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result arises for r = 1 because we allow the alternative to be two-sided. In the modified 

problem where one only considers the one-sided alternatives, all tests still remain 

asymptotically powerless irrespective of signal strengths when r = 1 in the sparse regime, 

that is, when . However, in the dense regime, that is, when , the problem becomes 

nontrivial and the test based on the total number of successes attains the detection boundary. 

The detection boundary for this particular problem is provided in Theorem 6.3 part 2(b). 

Also, in the one-sided problem, the Bayes test can be explicitly evaluated and quite 

intuitively turns out to be a function of the total number of successes. In the next theorem, 

we collect all these results.

Theorem 6.3

Assume X ∈ ANOVA(1), which assumes r = 1 and X= I. Then the following holds for both 

problems (2.3) and (6.3).

1. For two-sided alternatives all tests are asymptotically powerless irrespective of 

sparsity and signal strength.

2. For one-sided alternatives:

a. Suppose θ ∈ BC1(0), which is defined in Section 2.1. Then in the dense 

regime ( ), all tests are asymptotically powerless if  in 

problem (2.3) or  in problem (6.2). Further, if  in 

problem (2.3) or  in problem (6.2), then the test based on the 

total number of successes ( ) is asymptotically powerful.

b.
In sparse regime ( ), all tests are asymptotically powerless.

The case of two-sided of alternatives when r = 1 can indeed be understood in the following 

way. Under the null hypothesis, each yi is an independent Bernoulli(1/2) random variable 

and under the prior on the alternative which allows each βi to be +A or −A with probability 

, the yi’s are again independent Bernoulli(1/2) random variables. So, of course, there is no 

way to distinguish them based on the observations yi’s when the β is generated according to 

the prior mentioned earlier. Our proof is based on this heuristic. However, the above 

argument is invalid even for r > 1 and one can expect nontrivial detectability conditions on 

A when r > 1. In the dense regime, we observe that simply r > 1 is enough for this purpose. 

However, the sparse regime requires a more delicate approach in terms of the effect of r > 1.

Remark 6.4

Note that Theorem 6.3, other than part 2(a), requires no additional assumption on θ other 

than the symmetry requirement in equation (2.2).
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6.1. Dense regime ( )—The detection complexity in the dense regime with r > 1 

matches the Gaussian linear model case. Interestingly, just by increasing 1 observation per 

treatment from the identity design matrix scenario, the detection boundary changes 

completely. The following theorem provides the lower and upper bound for the dense 

regime when r > 1.

Theorem 6.5

Let X ∈ ANOVA(r). Let k = p1−α with  and the block size/binomial denominator r > 

1.

1. Consider the model (2.1) and the testing problem given by (2.3). Assume θ ∈ 

BC1(0). Then:

a.

If , then all tests are asymptotically powerless.

b.

If , then the GLRT is asymptotically powerful.

2. Consider model (6.1) and the testing problem (6.2). Then:

a.

If , then all tests are asymptotically powerless.

b.

If , then the GLRT is asymptotically powerful.

Also when  or  remains bounded away from 0 and ∞, the asymptotic power of 

GLRT remains bounded between 0 and 1. The upper and lower bound rates of the minimum 

signal strength match with that of Arias-Castro, Candès and Plan (2011) and Ingster, 

Tsybakov and Verzelen (2010).

6.2. Sparse regime ( )—Unlike the dense regime, the sparse regime depends more 

heavily on the value of r. The next theorem quantifies this result; it shows that in the sparse 

regime if r ≪ log(p), then all tests are asymptotically powerless. Indeed this can be argued 

from Theorems 3.1 and 3.2. However, for the sake of completeness, we provide it here.

Theorem 6.6

Let k = p1−α with . If r ≪ log(p), then for both the problems and (2.3) and (6.2), all 

tests are asymptotically powerless.
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Remark 6.7

Theorem 6.6 requires no additional smoothness assumption on θ other than the symmetry 

requirement in equation (2.2).

Thus, for the rest of this section we consider the case where  and r ≫ log(p). We 

first divide our analysis into two parts, where we study the lower bound and upper bound of 

the problem separately.

6.2.1. Lower bound—To introduce a sharp lower bound in the regime where  and r 

≫ log(p) in the binary regression model (2.1) and the testing problem (2.3) for the 

ANOVA(r) design, we define the following functions. Figure 3 provides a graphical 

representation of the detection boundary. Define

(6.3)

This is the same as the Gaussian detection boundary (1.1) multiplied by 1/4(θ′ (0))2. The 

reason for the appearance of the factor 1/4(θ′ (0))2 is that the Fisher information for a single 

Bernoulli sample under binary regression model (2.1) is equal to .

For every j ∈ {1, …, p}, we have

where  under H0 and  under H1. To see this, note that under H1 

we have  where δ > 0 is small and denotes a departure of the 

Bernoulli proportion from the null value of , that is, under H1, the outcomes corresponding 

to the signals follow  or . This implies 

should yield a detection boundary similar to the multivariate Gaussian model case.

For the detection boundary in the corresponding binomial proportion model (6.1) and the 

testing problem (6.2), we define the following function:

(6.4)

The following theorem provides the exact lower boundary for the ANOVA(r) designs for 

the binary regression model as well as the corresponding binomial problem.
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Theorem 6.8

Let X ∈ ANOVA(r). Suppose r ≫ log (p) and k = p1−α with 

1. Consider the binary regression model (2.1) and the testing problem (2.3). Further 

suppose that θ ∈ BC2 (0). Let . If , all tests are 

asymptotically powerless.

2. Consider the binomial model (6.1) and the testing problem (6.2). Let 

. If , all tests are asymptotically powerless.

Remark 6.9

As mentioned in the Introduction, the analysis turns out to be surprisingly nontrivial since it 

seems not possible to simply reduce the calculations to the Gaussian case by doing a Taylor 

expansion of Lπ around β = 0. In particular, a natural approach to analyze these problems is 

to expand the integrand of Lπ by a Taylor series around β = 0 and thereby reducing the 

analysis to calculations in the Gaussian situation and a subsequent analysis of the remainder 

term. However, in order to find the sharp detection boundary, the analysis of the remainder 

term turns out to be very complicated and nontrivial. Thus, our proof to Theorem 6.8 is not a 

simple application of results from the Gaussian linear model.

6.2.2. Upper bound—According to Theorem 6.8, all tests are asymptotically powerless if 

 in the sparse regime. In this section, we introduce tests which reach the lower 

bound discussed in the previous section. We divide our analysis into two subsections. In 

Section 6.2.2.1, we study the Higher Criticism Test defined by (5.2) which is asymptotically 

powerful as soon as  in the sparse regime. In Section 6.2.2.3, we discuss a more 

familiar Max Test or minimum p-value test which attains the sharp detection boundary only 

for .

6.2.2.1. The Higher Criticism Test: In this section, we study the version of Higher 

Criticism introduced in Section 6.2. Recall, we have by Theorem 5.2 that the type I error of 

the Higher Criticism Test, as defined by equation (5.3), converges to 0. The next theorem 

states the optimality of the Higher Criticism Test as soon as the signal strength exceeds the 

detection boundary.

Theorem 6.10

Let X ∈ ANOVA(r). Suppose r ≫ log (p) and k = p1−α with .
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1. Consider the binary regression model (2.1) and the testing problem (2.3). Further 

suppose that θ ∈ BC2(0). Let . If , then the Higher 

Criticism Test is asymptotically powerful.

2. Consider the binomial model (6.1) and the testing problem (6.2). Let 

. If , then the Higher Criticism Test is 

asymptotically powerful.

6.2.2.2. Comparison with the original Higher Criticism Test—We begin by 

providing a slight simplification of THC in ANOVA(r) designs. Let S be a generic Bin(r, ) 

random variable and B, B̄, respectively, denote the distribution function and the survival 

function of . Hence,

In the case of ANOVA(r) designs, . The original Higher 

Criticism Test as defined by Donoho and Jin (2004) can also be calculated as a maximum 

over some appropriate function of p-values. By that token, ideally we would like to define 

the Higher Criticism Test statistic as

However, due to difficulties in calculating the null distribution for deciding a cut-off for the 

rejection region, we instead work with a discretized version of it. We detail this below in the 

context of ANOVA(r) designs. Define the jth p-value as 

for 1, …, p and let q(1), …, q(p) be the ordered p-values based on exact binomial distribution 

probabilities. Define

It is difficult to analyze the distribution of  under the null to decide a valid cut-off for 

testing. The following proposition yields a relationship between THC,  and .
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Proposition 6.11

Let  denote the jth order statistics based on , i = 1, …, p. For t such that 

, we have

Hence, from Proposition 6.11, we observe that we have the following inequality:

(6.5)

This unlike the results in Donoho and Jin (2004) and Cai, Jeng and Jin (2011), where the 

leftmost inequality is a equality. Therefore, it is worth further comparing the above 

discussion to the Higher Criticism Test introduced by Donoho and Jin (2004), Hall and Jin 

(2010) in the Gaussian framework. In the case of orthogonal Gaussian linear models, THC, 

 and  are defined by standard normal survival functions and p-values, respectively, 

and one uses Zj instead of  in the definition of THC. This yields that in the 

Gaussian framework the leftmost inequality of (6.5) is an equality. Moreover, under the 

framework, standard empirical process results for continuous distribution functions yield 

asymptotics for  under the null. Therefore, in the Gaussian case the uncountable 

supremum in the definition of  is attained and the statistic is algebraically equal to a 

maximum over finitely many functions of p-values, namely, . However, due to the 

possibility of strict inequality in Proposition 6.11 for the binomial distribution, we cannot 

reduce our computation to p-values as in the Gaussian case. Although it is true that 

marginally each qj is stochastically smaller than a U(0, 1) random variable, we are unable to 

find a suitable upper bound for the rate of  since it also depends on the joint distribution 

of q(1), …, q(p). It might be possible to estimate the gaps between ,  and THC, but 

since this is not essential for our purpose, we do not attempt this.

6.2.2.3. Rate optimal upper bound: Max Test—A popular multiple comparison 

procedure is the minimum p-value test. In the context of Gaussian linear regression, Donoho 

and Jin (2004) and Arias-Castro, Candès and Plan (2011) showed that the minimum p-value 

test reaches the sharp detection boundary if and only if . In this section, we introduce 

and study the minimum p-value test in binary regression models.

As before, define the jth p-value as
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for j = 1, …, p and let q(1), …, q(p) be the ordered p-values. We will study the test based on 

the minimum p-value q(1). Note that it is equivalent to study the test based on the statistic

From now on, we will call this the Max Test. In the following theorem, we show that similar 

to Gaussian linear models, for binary regression, the Max Test attains the sharp detection 

boundary if and only if . However, if one is interested in rate optimal testing, that is, 

only the rate or order of the detection boundary rather than the exact constants, the Max Test 

continues to perform well in the entire sparse regime.

Theorem 6.12

Let X ∈ ANOVA(r). Suppose r ≫ (log r)2 log(p) and k = p1−α with .

1.

Suppose θ ∈ BC2 (0) and let . Set 

Then in the model (2.1) and problem (2.3) one has the following:

a. If , then the Max Test is asymptotically powerful.

b. If , then the Max Test is asymptotically powerless.

2.

Let . Set . Then in the model (6.1) 

and problem (6.2) one has the following:

a. If , then the Max Test is asymptotically powerful.

b. If , then the Max Test is asymptotically powerless.

Theorem 6.12 implies that the detection boundary for the Max Test matches the detection 

boundary of the Higher Criticism Test only for . For , the detection boundary of 

the Max Test lies strictly above that of the Higher Criticism Test. Hence, the Max Test fails 

to attain the sharp detection boundary in the moderate sparsity regime, . Thus, if one is 

certain of high sparsity it can be reasonable to use the Max Test whereas the Higher 

Criticism Test performs well throughout the sparse regime. It is worth noting that the 

requirement r ≫ (log(r))2 log(p) is a technical constraint and can be relaxed. In most 
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situations, it does not differ much from the actual necessary condition r ≫ log(p), and hence 

we use r ≫ (log(r))2 log(p) for proving Theorem 6.12.

7. Detection boundary and asymptotic analysis for Weakly Correlated 

Designs

In this section, we study the role of the parameter vector (n*,n*, r*, r*,Qn,p, γn,p) in deciding 

the detection boundary for Weakly Correlated Designs defined in Definition 4.1. For the 

sake of brevity, we will often drop the subscripts n, p from Q and γ when there is no 

confusion. Recall Ω* from Section 4.

If we just concentrate on the observations corresponding to the rows with index in Ω*, we 

have an orthogonal design matrix similar to ANOVA(r) designs. Our proofs of lower 

bounds in both dense and sparse regimes and also the test statistics proposed for the 

attaining the sharp upper bound is motivated by this fact. Similar to ANOVA(r) designs, we 

divide our analysis into the dense and sparse regimes. Also, owing to the possible 

nonorthogonality of X for Weakly Correlated Designs, we cannot directly reduce this 

problem to testing homogeneity of binomial proportions as in (6.2). So, henceforth, we will 

be analyzing model (2.1) and corresponding testing problem (2.3). However, as we shall see, 

under certain combinations of (n*,n*, r*, r*,Q, γ), one can essentially treat the problem as an 

orthogonal design like in ANOVA(r) designs. This is explained in the following two 

sections.

7.1. Dense regime 

We recall the definition of the GLRT from equation (5.1). The following theorem provides 

the lower and upper bound for the dense regime.

Theorem 7.1—Let X be a Weakly Correlated Design as in Definition 4.1. Suppose Let k = 

p1−α with  and r* > 1. Assume θ ∈ BC2(0) and set γ = p(1/2)−α. Then we have the 

following:

1.

If , then all tests are asymptotically powerless.

2.

If , then the GLRT is asymptotically powerful.

We note that the form of the detection boundary is exactly same as that in Theorem 6.5 for 

ANOVA(r) designs with r* and r* playing the role of r. This implies that when n*Q2 is not 

too large ( ); we can still recover the same results as in ANOVA(r) 

designs because the columns of the design matrix are weakly correlated.

Mukherjee et al. Page 24

Ann Stat. Author manuscript; available in PMC 2015 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.2. Sparse regime 

Unlike the dense regime, the sparse regime depends more heavily on the values of r* and r*. 

The next theorem quantifies this result; it shows that in the sparse regime if r* ≪ log(p), 

then all tests are asymptotically powerless. This result is analogous to Theorem 6.6 for 

ANOVA(r) designs. Indeed this can be argued from Theorems 3.1 and 3.2. However, for the 

sake of completeness, we provide it here.

Theorem 7.2—Let X be a Weakly Correlated Design as in Definition 4.1. Let k = p1−α 

with  and let |∪i∉Ω* Si| ≪ p. If r* ≪ log(p), then all tests are asymptotically powerless.

Remark 7.3—The condition |∪i∉Ω* Si| ≪ p, restricts the location of nonzero elements in 

the support of rows of X when the row has more than one nonzero element. This restriction 

imposes a structure on the deviation of X from orthogonality. As the proof of Theorem 7.2 

will suggest, this condition ensures that the assumptions of Theorem 3.1 hold, and hence 

renders all tests asymptotically powerless irrespective of signal strength.

The following theorem provides the value of γ that is defined in condition (C3) in Definition 

4.1, to ensure the results parallel to Theorem 6.8. Not surprisingly, the test attaining the 

sharp lower bound turns to be the version of the Higher Criticism Test introduced in Section 

6. Similar to the ANOVA(r) design, it is also possible to introduce and study the Max Test 

which attains the sharp detection boundary only for . However, we omit this since it 

can be easily derived from the existing arguments.

Theorem 7.4—Let X be a Weakly Correlated Design as in Definition 4.1 and k = p1−α 

with . Suppose r* ≫ log(p), γ = log(p), where γ is defined in Definition 4.1. Further 

suppose that θ ∈ BC2(0).

1.

Let . If , then all tests are asymptotically powerless.

2.

Let . If , then the Higher Criticism Test is 

asymptotically powerful.

Remark 7.5—The assumptions on the design matrix in Theorem 7.4 is weaker than the 

assumptions in Theorem 7.2. In particular, one is allowed to go beyond |∪i∉Ω* Si| ≪ p in 

Theorem 7.2 as long as the condition (C3) is satisfied with γ = log(p). This is expected since 

the conditions under which all tests are asymptotically powerless irrespective of sample size 

are often more stringent.

Remark 7.6—Theorem 7.4 states that the Higher Criticism Test attains the sharp detection 

boundary in the sparse regime. Note that the difference in the denominators of A in the 

statement of upper and lower bound in Theorem 7.4 is unavoidable and the difference 
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vanishes asymptotically if r*/r* → 1. This is expected since the detection boundary depends 

on the column norms of the design matrix.

8. Simulation studies

We complement our study with some numerical simulations which illustrate the empirical 

performance of the test statistics described in earlier sections for finite sample sizes. Since 

detection complexity of the general weakly correlated binary design matrices depend on the 

behavior of ANOVA(r) type designs, we only provide simulations for strong one-way 

ANOVA type design. Let X be a balanced design matrix with p = 10,000 covariates and r 

replicates per covariate. For different values of sparsity index α ∈ (0, 1) and r, we study the 

performance of Higher Criticism Test, GLRT and Max Test, respectively, for different 

values of t, where t which corresponds to .

Following Arias-Castro, Candès and Plan (2011), the performance of each of the three 

methods is computed in terms of the empirical risk defined as the sum of probabilities of 

type I and II errors achievable across all thresholds. The errors are averaged over 300 trials. 

Even though the theoretical calculation of null distribution of the Higher Criticism Test 

statistic computed from p-values remains a challenge, we found that using the p-value based 

statistic  yielded expected results similar to our version of 

discretized Higher Criticism.

To be precise, the performance of the test based on  was 

similar to the performance of the test based on THC defined in Section 5.2. Note that this 

statistic is different from  in that the maximum is taken over the first  elements instead 

of all p of them. The main reason for this is the fact that, as noted by Donoho and Jin (2004), 

the information about the signal in the sample lies away from the extreme p-values. The 

GLRT is based on TGLRT as defined in Section 5.1 and the Max Test is based on the test 

statistic defined in Section 6.2.2.3.

The results are reported in Figures 4 and 5. For  and k = 2, 7 which 

corresponds to , that is, the sparse regime, we can see that all tests are 

asymptotically powerless in Figure 4 which is expected from the theoretical results. 

However, even when , for the dense regime, and k = 159 and 631, 

we see from Figure 4 that the GLRT is asymptotically powerful whereas the other two tests 

are asymptotically powerless. Once r is much larger than log(p) in Figure 5, our 

observations are similar to Arias-Castro, Candès and Plan (2011). Here, we employ 

simulations for k = 2, 7, 40 which correspond to the sparse regime and for k = 159 which 

corresponds to the dense regime. We note that the performance of GLRT improves very 

quickly as the sparsity decreases and begins dominating the Max Test. The performance of 
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the Max Test follows the opposite pattern with errors of testing increasing as k increases. 

The Higher Criticism Test, however, continues to have good performance across the 

different sparsity levels once r ≫ log(p).

9. Discussions

In this paper, we study testing of the global null hypothesis against sparse alternatives in the 

context of general binary regression. We show that, unlike Gaussian regression, the problem 

depends not only on signal sparsity and strength, but also heavily on a design matrix sparsity 

index. We provide conditions on the design matrix which render all tests asymptotically 

powerless irrespective of signal strength. In the special case of design matrices with binary 

entries and certain sparsity structures, we derive the lower and upper bounds for the testing 

problem in both dense (rate optimal) and sparse regimes (sharp including constants). In this 

context, we also develop a version of the Higher Criticism Test statistic applicable for binary 

data which attains the sharp detection boundary in the sparse regime.

In this paper, we constructed tests by combining tests based on Z-statistics from the 

orthogonal part and the nonorthogonal part of the X. In particular, we combine procedures 

based on Zj and  separately. This helps us achieve optimal rates for upper bounds on 

testing errors under the same conditions required for lower bounds in these problems. 

Indeed, one can consider constructing GLRT and Higher Criticism Test using Z-statistics 

constructed based on whole X, that is, based on , j = 1,…, p directly. We could 

obtain similar results based on the combined Z-statistics under stronger structural 

information on G than what we require here.

In particular, the conditions regarding the relative size of G with respect to the orthogonal 

part of the design matrix, can be substantially relaxed if more structural assumptions on G 
are made. For example, for sequencing data, as observed in the Dallas Heart study data, for 

people having more than one mutation, the locations of the mutations are in fact usually 

clustered, due to linkage disequilibrium. For such structures, strong results can be obtained. 

We omit those results here due to space limitation. Future research is also needed to study 

the detection boundary for binary regression for more general design matrices.

The study of detection boundaries associated with binary regression models for a general 

design matrix is much more delicate. We allow in this paper for a more general sparse 

design when the nonorthogonal columns of the design matrix are sufficiently sparse and the 

number of subjects with multiple nonzero entries in the design matrix are not too large. 

Future research is needed to extend the results to a general design matrix allowing a stronger 

correlation among the covariates Xj ’s.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The histogram of minor allele frequencies of uncommon/rare variants (MAF ≤ 5%) in the 

Dallas Heart study data.
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Fig. 2. 
Heat map of the genotype matrix X of the Dallas Heart study data after a suitable 

rearrangement of subject indices, after removing the single common variant. The nonzero 

entries of the genotype matrix that represent mutations are colored white, while the zero 

entries that represent no mutation are colored in black.
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Fig. 3. 

Detection boundary  in the sparse regime when θ corresponds to logistic 

regression. The detectable region is , and the undetectable region is 

. The curve corresponds to .

Mukherjee et al. Page 31

Ann Stat. Author manuscript; available in PMC 2015 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 

Simulation results are for p = 10,000 and . Sparsity level k is indicated 

below each plot. In each plot, the empirical risk of each method [GLRT (triangles); Higher 

Criticism (diamonds); Max Test (stars)] is plotted against t which corresponds to 

.
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Fig. 5. 

Simulation results are for p = 10,000 and . Sparsity level k is 

indicated below each plot. In each plot, the empirical risk of each method [GLRT 

(triangles); Higher Criticism (diamonds); Max Test (stars)] is plotted against t which 

corresponds to .
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