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It has been a consensus in cancer research that cancer is a disease
caused primarily by genomic alterations, especially somatic muta-
tions. However, the mechanism of mutation-induced oncogenesis is
not fully understood. Here, we used the mitochondrial apoptotic
pathway as a case study and performed a systematic analysis of
integrating pathway dynamics with protein interaction kinetics to
quantitatively investigate the causal molecular mechanism of muta-
tion-induced oncogenesis. A mathematical model of the regulatory
network was constructed to establish the functional role of dynamic
bifurcation in the apoptotic process. The oncogenic mutation enrich-
ment of each of the protein functional domains involved was found
strongly correlated with the parameter sensitivity of the bifurcation
point. We further dissected the causal mechanism underlying this
correlation by evaluating the mutational influence on protein inter-
action kinetics using molecular dynamics simulation. We analyzed 29
matched mutant–wild-type and 16 matched SNP—wild-type protein
systems. We found that the binding kinetics changes reflected by the
changes of free energy changes induced by protein interaction mu-
tations, which induce variations in the sensitive parameters of the
bifurcation point, were a major cause of apoptosis pathway dysfunc-
tion, and mutations involved in sensitive interaction domains show
high oncogenic potential. Our analysis provided a molecular basis for
connecting protein mutations, protein interaction kinetics, network
dynamics properties, and physiological function of a regulatory
network. These insights provide a framework for coupling muta-
tion genotype to tumorigenesis phenotype and help elucidate the
logic of cancer initiation.
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High-throughput whole-genome sequencing (1) and massively
parallel technologies (2) have enabled cancer researchers to

understand that cancer is a disease caused primarily by genomic
alterations, especially somatic cell mutations (3, 4). This stimu-
lated extensive research endeavors to identify the landscape of
cancer-related mutations. In the last decade, studies of different
tumor types using cancer genomic and pathology analysis in-
dicate that oncogenic mutations are concentrated primarily in a
few core regulatory pathways that govern cell phenotypic be-
haviors (5–8). These results led to the idea that “genetic aber-
rations alter normal cellular regulation and then drive tumor
development” (9, 10). Therefore, mutation-induced oncogenesis
should be explored from a network and system perspective.
A systematic interpretation of oncogenesis can be achieved in

part by analyzing interactions among mutated genes and performing
functional annotation of cancer-related proteins in functional
pathways. A more quantitative approach is network modeling using
ordinary differential equations (ODEs) and mathematical simula-
tions. This well-established method has been successfully used to
understand cellular dynamic functionalities and network regulatory
principles, including the relationship between genetic mutations and
oncogenesis (11–15). For example, Stites et al. (14) studied com-

mon oncogenic Ras mutations that affect Ras activation. They
performed ODE model simulation to investigate the steady-state
Ras concentration response to kinetic parameter changes and found
a strong correlation between oncogenic mutations and Ras activa-
tion level. Chen et al. (15) recently analyzed the p53-induced apo-
ptosis model and found that parameters significantly affecting the
system’s bifurcation points corresponded with frequently mutated
oncogenic genes. These studies demonstrate the suitability of ap-
plying systems-level analysis to understand oncogenesis. However,
the limitations of previous analyses are obvious. Only pure network-
based dynamics analyses were conducted, in which proteins were
abstracted as theoretical nodes, structural details of interactions
were ignored, functional processes of protein conformational
changes were oversimplified, only correlations between mutations
and dynamic properties were analyzed, and the causal molecular
clues for the oncogenic function of cancer-related mutations
remained unexplored.
In this study, we investigate the causal mechanisms of mutation-

induced oncogenesis by integrating network-based dynamics
modeling with structural-based mutation analysis and molecular
dynamics simulation of protein interactions. This approach enables
us to map cancer-related mutations to network dynamics changes
via protein–protein interaction kinetics. We propose that cancer-
related gene mutations may change relevant protein interaction
kinetics in the network, which directly change the network’s model
parameters. Subsequently, some of these disturbances may quali-
tatively change system dynamics behaviors, thereby disrupting
normal cellular processes, and ultimately causing cancer.
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We used the mitochondrial apoptotic pathway as a case study to
validate our hypothesis, because dysfunction of this pathway may
lead to many diseases, including cancer (16). After we constructed
a mathematical model for the regulatory network based on mass
action kinetics, we established the functional role of dynamic bi-
furcation in apoptosis and used parameter sensitivity analysis to
examine the nonuniform effect of parameter variation on the
bifurcation point using techniques developed during our previous
work (15). We also investigated oncogenic mutations involved in
the network by mapping them onto 3D protein structures and
identified mutation enrichment for each protein functional do-
main. We found that cancer-related mutations also have a non-
uniform distribution among different functional domains, and this
distribution is strongly correlated with the nonuniformity of pa-
rameter sensitivity of the bifurcation point. We further dissected
the causal mechanism underlying this correlation by evaluating
mutational influence on protein interaction kinetics using mo-
lecular dynamics simulation. We found that the mutation-induced
binding energy change is a major cause of parameter changes in
the regulatory network model, and the kinetics changes of protein
interactions that induce variations in the bifurcation point sensi-
tive parameters are a major cause of apoptosis pathway dysfunc-
tion. We identified the oncogenic role of each mutation by
combining the bifurcation point change direction due to param-
eter perturbation and the binding energy change direction due to
mutation disturbance and found that mutations involved in sen-
sitive interactions (corresponding to sensitive parameters of the
bifurcation point) are most likely oncogenic.
Our approach, which couples pathway dynamics with protein

interaction kinetics, provides a molecular basis for connections
among protein mutations, protein interaction kinetics, network
dynamics properties, and physiological function of a regulatory
network. This work bridges the gap between genotype (muta-
tions) and phenotype (tumorigenesis) and validates the hypoth-
esis that mutation-induced abnormal changes in biological
system dynamic properties may be a major cause of cancer ini-
tiation and development.

Results
Model Construction and Nonlinear Dynamics Analysis. Apoptosis is a
highly regulated process that is strongly dependent on mito-
chondrial function (16). We constructed a simplified apoptotic
network focused primarily on the regulation of mitochondrial
outer membrane permeabilization (MOMP), where cross-talk
between intrinsic and extrinsic pathways occurs and multiple
apoptotic signals culminate (17). MOMP is a primary cause of
cell apoptosis; it leads to irreversible cell death by releasing
proapoptotic factors such as cytochrome c and Smac from the
mitochondrial intermembrane space and subsequently facilitat-
ing caspase activation (18). MOMP is controlled primarily through
interactions among Bcl-2 protein family (19). Bcl-2 family members
can be classified into two groups: pro- and antiapoptotic factors.
The former contains the following three subtypes: the MOMP ef-
fectors Bax and Bak; Bax and Bak activators such as Bid and Bim;
and sensitizers such as Puma and Noxa. Antiapoptotic members
such as Bcl-2, Bcl-xL, and A1 can be considered as inhibitors of Bax
and Bak association (20).
We performed extensive data survey and collection and con-

structed the MOMP core regulatory network triggered by ex-
trinsic stimulus (Fig. 1). During apoptosis, initiator caspases such
as caspase8 that have been activated by the death-inducing sig-
naling complex (DISC; not shown in our network) cleave Bid
into the active form tBid (21). Then, tBid promotes a series of
conformational changes in Bax, resulting in its translocation from
the cytosol onto the mitochondrial outer membrane (MOM) (22).
Active Bax monomers incrementally form oligomers and create
pores in MOM, consequently causing MOMP (23). The anti-
apoptotic proteins A1 and Bcl-2 bind tBid and Bax in the cyto-
plasm and on the membrane to inhibit effector activation (24),
whereas the membrane-bound Bax dimer undergoes autoactiva-
tion to generate a positive feedback loop that enhances oligomer
accumulation (25). Puma binds to both A1 and Bcl-2 to neutralize
the inhibitors and release the effectors from the protein complex,
and Noxa specifically binds to A1 (26).

Fig. 1. Extrinsic signal-induced mitochondrial apoptotic pathway. Blue lines indicate binding, red lines indicate activation, and black lines indicate con-
formational transformation. Bax*, activated Bax; colon, protein complex; MOM superscript, proteins on mitochondrial outer membrane. Different functions
of Bcl2 family proteins, such as Activator, Inhibitor, Effector, and Sensitizer, are colored in red, green, yellow, and orange, respectively. Heterodimers are
colored in blue. Apoptosis is induced by activated caspase8; Bax oligomers (denoted by BaxMOM

4) create pores in the mitochondrial outer membrane, which
causes MOMP and cell death initiation. Proteins with redundant function are compressed into a representative reactant; Bax and Bak are represented by Bax,
and Bcl2, Bcl-xl, and Mcl-1 are represented by Bcl2.
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Fig. 1 is a simplified network with compressions of redundancy
(see Supporting Information for details). Compared with previous
apoptotic models (15, 27), our model distinguishes the cytoplas-
mic and membrane binding of antiapoptotic proteins and elabo-
rates the conformational changes and translocation processes of
proapoptotic proteins. These processes are essential for triggering
MOMP (28) and understanding mitochondrial apoptosis.
We used well-established methods for describing signaling

pathways (29) and built a set of ODEs according to Fig. 1 to
simulate the MOMP apoptotic network. The model parameters
were chosen based on experimental data and reasonable esti-
mates of biochemical constraints (Table S1). We conducted
nonlinear dynamics analysis to study the system dynamics be-
havior. The model input and output was the caspase8 concen-
tration and the Bax oligomer concentration, respectively. The
analysis identified a saddle-node bifurcation of Bax oligomer
concentration as a function of caspase8 concentration (Fig. 2,
black line). There is a bistable regime in which two stable steady
states of Bax oligomer concentration coexist (Fig. 2). The low and
high branches in the bistable regime indicate that the apoptosis
pathway is in the OFF and ON states, respectively. With in-
creasing caspase8 levels, the system changes from a bistable state
to a monostable state via the saddle-node bifurcation. When the
system is in the OFF state, a sudden increase in Bax oligomer
concentration will occur if the active caspase8 concentration in-
creases beyond the bifurcation point. This kind of transition can
be regarded as a life-to-death switch of a cell under apoptotic
stimulus. Therefore, the location of the bifurcation point (i.e.,
critical concentration of caspase8) reflects the death threshold.

Parameter Sensitivities. Previous studies established that dynamic
bifurcations manifest qualitative changes in biological systems
and govern many biological functions (15, 30, 31). In our system,
the saddle-node bifurcation provides the mechanism of the life-
to-death switch. The location of the bifurcation point determines
when a cell undergoes apoptosis; therefore, it determines the
cell’s fate. Changes in certain parameters may lead to a large
change at the location of the critical point, which can render the

system dysfunctional. An example of such an effect in the MOMP
network is presented in Fig. 2. Our simulation shows that a 30%
reduction in the tBid–Bcl2 dissociation rate in the regulatory
network significantly shifts the bifurcation point to the right from
the original wild-type location, so that a much stronger caspase8
signal is required to switch on apoptosis. When this parameter is
reduced by 70% or more, high levels of Bax oligomer can never
be reached even under extremely strong apoptotic stimulus, so
cell apoptosis is completely shut off. These cellular conditions
provide a possible background for oncogenesis.
The nonuniform effect of parameter variation on dynamic

properties has been reported in many biological systems (15, 32,
33). In our model, the effect of parameter changes on the bi-
furcation point location is not evenly distributed. To identify which
parameters have a major impact on the bifurcation point location
in our model, we conducted single-parameter sensitivity analysis to
the bifurcation point by increasing or decreasing each of the 52
model parameters by 10% and recorded the percentage change of
the bifurcation point. A sensitivity spectrum of all parameters was
achieved in this way (Fig. 3A). Using the method of k-means
clustering, we separated the parameters into the following four
clusters according to their impact on the bifurcation point loca-
tion: most sensitive, sensitive, insensitive, and most insensitive.
A more systematic analysis of the model parameter sensitivity
(change each parameter by 1%, 5%, 10%, and 15%) shows that
the sensitivity patterns are approximately the same among the
spectrums obtained through different parameter perturbation
degree. Clustering analysis on each spectrum also shows the same
cluster cutoff location between different sensitivity clusters (Fig.
S1 A and B). A right shift of the bifurcation point suggests an
increasing oncogenic potential. Therefore, the direction of pa-
rameter perturbation (increasing or decreasing) that leads to a
right shift of the critical point is chosen (see the blue and orange
bars in Fig. 3A). The direction change resulting from parameters
in the most insensitive class is not discriminated, because their
influences on the bifurcation point location can be neglected.
To map cancer-related mutations to network dynamic changes

via protein interaction kinetics, we narrowed our study to the pa-
rameters of protein interactions in which the effect of genetic
variation is due primarily to mutations in the corresponding func-
tional domains. We selected a subset of the sensitivity spectrum
from the parameter sensitivity spectrum of Fig. 3A in which only
the parameters that represent specific protein interactions were
chosen (Fig. 4A, Left). The subset includes the parameters of
protein–protein binding and activation rate (Fig. 3B) and the pa-
rameters of membrane localization rate (Fig. 3C) but excludes the
parameters of protein production and degradation rates (Fig. 3D).
The latter can be affected by many mechanisms, such as mutations
in promoter regions, transcription factors, chromosome trans-
location, and proteasome; these parameters cannot be explained
simply by the kinetics of protein interactions. This selection
allowed us to evaluate mutational influence on protein interaction
kinetics using mutation domain mapping and molecular dynamics
simulation, through which the parameter sensitivity of the bi-
furcation point and cancer-related mutations can be linked on
a molecular basis.

Cancer-Related Mutation Enrichment. To characterize the mutation
pattern in our model and its association with the parameter sen-
sitivity spectrum, we manually collected cancer-related mutations
from the Catalogue of Somatic Mutations in Cancers (COSMIC)
database (34) and from the literature (35). We focused primarily
on missense mutations and ignored all SNPs nominated in the
dbSNP database (36) (Table S2). Our analysis is different from
previous studies that simply counted the total mutation number
for each protein (15). For a given protein interaction (corre-
sponding to the parameters in Fig. 4A, Left), we first distin-
guished functional and nonfunctional domains for involved proteins

Fig. 2. Bifurcation diagram for Bax oligomer in MOMP induction. Bi-
furcation diagram for Bax oligomers using the caspase8 concentration as the
control parameter. Solid circles indicate the stable steady state; open circles
indicate the unstable state. Reducing the parameter tBid-Bcl2 shifts the bi-
furcation point to the right, indicating an increasing MOMP threshold. Black,
without tBid-Bcl2 decrease; dark gray, tBid-Bcl2 decreased by 30%; light
gray, tBid-bcl2 decreased by 70%.
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according to their structural information and then mapped all
mutations to the functional and nonfunctional domains. Details
regarding the basis and definition of functional and nonfunctional
domains are given in Supporting Information and Table S3.
To quantify the cancer mutation distribution, we calculated the

mutation enrichment for each of the functional domains (Table
S4). Mutation enrichment for a functional domain is defined
as   Ei = ðMi=Mi + Mnon funÞ=ðLi=Li +Lnon funÞ, where Mi and Li
denote, respectively, the number of mutations and the amino acid
length in the functional domain i; Mnon fun   and Lnon fun  denote,
respectively, the number of mutations and the amino acid length
in nonfunctional domains of the corresponding proteins. This
definition of mutation enrichment tends to normalize different
functional domain mutations in different proteins.
The spectrum of the enrichment value is listed in Fig. 4A,

Right. For each protein interaction (e.g., interaction of protein A
and B), the enrichment value for a domain in protein A and a
domain in protein B is evaluated separately. We also calculated
the combined enrichment of protein A and protein B to char-
acterize the whole interaction (see the definition of the com-
bined enrichment in Supporting Information). Naturally, E = 1
can be considered as a separation of low- and high-density on-
cogenic mutations in a given protein interaction domain of a
given protein; a domain with E > 1 indicates that more onco-
genic mutations are concentrated in this protein interaction
domain than in nonfunctional domains of the given protein. This
domain mapping more accurately reflects the correspondence
between cancer mutations and model parameters.

Comparison Between Parameter Sensitivity and Mutation Enrichment.
The sensitivity spectrum of the subset parameters can be clearly
grouped into three parameter clusters: sensitive, insensitive, and

most insensitive (Fig. 4A, Left). Each cluster covers distinct fea-
tures. Most parameters in the first cluster (sensitive) correspond
to interactions of apoptotic regulators on MOM, such as Bcl2,
BaxMOM and tBidMOM, which are indispensable and dominant
processes in the network. The parameters depicting the interact-
ions, in which cytosolic reactants and some BH3 proteins with
redundant functions participate, belong to the last two clusters
(insensitive and most insensitive). Comparing Fig. 4A, Left and
Right, we found good correlation between the parameter sensi-
tivity of the bifurcation point and the mutation enrichment of
each corresponding functional domain. Specifically, most of the
sensitive parameters correspond to functional domains with high
mutation enrichment, whereas the domains corresponding to
insensitive parameters have relatively low mutation enrichment. A
clear correlation between parameter sensitivity and combined
mutation enrichment is shown in Fig. 4B. With increasing value of
parameter sensitivity, the corresponding combined mutation en-
richment generally tends to increase, which indicates that sensitive
interactions tend to carry relatively greater numbers of mutations.
This correlation pattern is in agreement with most experi-

mental results reported in the literature. For example, mito-
chondrial localization and insertion of Bax with its C-terminal
transmembrane (TM) region (168−193 aa) (the corresponding
parameter in our model is Bax*_onMOM) is a necessary step for
MOMP and apoptotic induction (37). Schinzel et al. (38) proved
that removal of Bax C-terminal or substitution of residue 168 in
HeLa cells attenuated Bax localization at the mitochondria and
apoptotic function. Gil et al. (39) reported that mutation of Bax
residue 169, which was identified as a mutation hot spot in
gastrointestinal cancer by Yamamoto et al. (35), reduced cell
death by disrupting Bax membrane location. The loss-of-function
mutations in Bax C-terminal TM region reduce the translocation

Fig. 3. Parameter sensitivity spectrum and parameter types. (A) Percentage change of the bifurcation point in response to 10% increase or decrease of each
parameter. Color bars indicate the perturbation direction of each parameter. Horizontal coordinates indicate the corresponding interactions for each parameter.
See Table S1 for details of the correspondence between parameters and represented interactions. asterisk, association; deg, degradation rate; onMOM/offMOM,
membrane translocation and membrane separation; pro, production rate; minus, dissociation. (B) Illustration of mutation location influencing protein–protein
interactions such as binding or activating. (C) Illustration of mutation location influencing translocation rate of proteins to the membrane. TM, transmembrane
domain. (D) Illustration of mutation locations influencing protein production and degradation rates. Red stars indicate the mutation location.
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rate of activated Bax. Our sensitivity analysis showed that
Bax*_onMOM is indeed a sensitive parameter; a slight decrease

in Bax*_onMOM shifts the bifurcation point to the right. Con-
sistent with the result identifying Bax as a sensitive parameter,
relatively high mutation enrichment was identified in the Bax
C-terminal TM domain. Nevertheless, we found some exceptions.
Sensitivity analysis showed that the parameters describing Puma
membrane translocation are really insensitive, whereas the mu-
tation enrichment of the corresponding domain (Puma_onMOM:
1.7) is much greater than that for Bax (Bax homodimerization,
0.99), whose dimerization is identified as a sensitive interaction.
This might result from the complexity of Bax–Bax interactions. On
one hand, multiconformational changes during Bax functioning
may bring uncertainty and overlap into functional domains of
homodimerization and oligomerization, which made it difficult to
map mutations clearly. However, for Puma membrane trans-
location, the functional domain (C-terminal transmembrane do-
main) is more independent and clear. On the other hand, Bax has
different protein moieties that participate in many more in-
teractions than other apoptotic regulators, so the nonfunctional
domain is much shorter. This may help to understand why mu-
tation enrichments for Bax-involved interactions are approxi-
mately the same and close to 1 (Bax homodimerization, 0.99; Bax
oligomerization, 0.92).
The results presented in Fig. 4 support the previous observa-

tion (15) that the distribution of oncogenic mutations and the
parameter sensitivity are closely related. Our analysis clearly
shows that mutations observed in tumor samples tend to be lo-
cated in specific protein functional domains corresponding to the
sensitive parameters of the bifurcation point.

Molecular Dynamics Simulation and ΔΔG Calculation. To dissect the
mechanism underlying the correlation between oncogenic muta-
tion distribution and parameter sensitivity, we conducted molec-
ular dynamics simulations to compute protein–protein interaction
kinetics. We aimed to answer two questions. How do cancer
mutations cause alterations in the parameter sensitivities? How is
this effect coordinated with shifts in the bifurcation point?
The Gibbs free energy change accompanying a protein–protein

interaction can be represented by its equilibrium constant KD,
which can be linked to the kinetic parameters in the dynamic
model [based on ΔG=RTlnðKDÞ]. If a mutation causes a change in
the free energy change of a protein–protein interaction, then the
equilibrium constant KD changes accordingly. Therefore, a logic
chain connecting oncogenic mutations and parameter sensitivity can
be established by mutation-induced change of free energy change in
the protein–protein interaction. We propose that mutation-induced
changes in free energy change ðΔΔGÞ are one of the major causes
of parameter sensitivity perturbations. These perturbations may
cause a right shift of the bifurcation point in Fig. 2, which pre-
disposes the cell to a nonapoptotic state.
To obtain the value of ΔΔG between wild-type and mutant

protein systems, we built eight pairs of wild type−protein–protein
interaction models (heterodimers in Fig. 1) based on the struc-
tural information for the corresponding proteins. Using wild-type
models, we constructed single-mutation models according to the
collected cancer-related mutations in corresponding functional
domains. We also mutated each structure according to missense
SNPs involved in the corresponding functional domain as con-
trols. Therefore, we built 26 cancer-related mutations, 16 SNPs,
and 8 wild-type complexes (Supporting Information). The free
energy calculations were achieved using molecular dynamics
simulation and molecular mechanics/generalized Born surface
area (MM/GBSA) methods (see Supporting Information for de-
tails). We did not perform calculations of the entropy contribu-
tion to binding due to resource limitation; therefore, strictly
speaking, our result is the binding energy of the protein complex
rather than the Gibbs free energy change (Table S5). However,
this simplification is not a limitation because our goal is to obtain
the binding energy change between wild-type proteins and those

Fig. 4. Comparison between subset parameter sensitivities and mutation
enrichment for each functional domain. (A) Comparison between subset pa-
rameter sensitivities and mutation enrichment. Different sensitivity groups are
separated by yellow, blue, and gray stripes, with the same criteria as those of
Fig. 3A. Bar colors indicate perturbation direction for each parameter. Cor-
responding interactions for each parameter are labeled. Cancer-related mu-
tation enrichment for each corresponding functional domain is aligned to the
corresponding parameters. Protein A, first protein in the interaction; Protein
B, second protein in the interaction; Combined, combined mutation enrich-
ment for corresponding interation. Enrichments for interactions only involving
one protein are marked by a dash in the Protein B panel. Dark purple, E ≥ 1;
light purple, E < 1; ivory, inconsistent sensitivity between the membrane
translocation parameter and the membrane separation parameter. (B) Two-
dimensional scatter plot of subset parameter sensitivity and combined mu-
tation enrichment. Dot colors indicate different sensitivity groups.
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with single point mutations, which are very similar in structure. In
most cases, the entropy difference can be ignored.
The ΔΔG calculation results for matched mutant/SNP–wild

type are displayed in Fig. 5A, Right. In view of the parameter
sensitivity of the bifurcation point (Fig. 5A, Left), the eight in-
teractions were classified into three groups: sensitive, insensitive,
and most insensitive (see different color regions in the Fig. 5A,
Right). Mutations and SNPs involved in the same interaction are
aligned in the same line.
To identify the oncogenic role of each mutation, we classified

all mutations and SNPs into three categories designated as
Right, Wrong, and Ordinary according to the mutational effect
on the consistency between binding energy change and param-

eter perturbation direction, which are colored green, red, and
blue, respectively (Fig. 5A, Right). The Right mutation is a
mutation that produces a significant binding energy change,
perturbs (increase or decrease) a parameter, and subsequently
induces a right shift in the bifurcation point. We designate
these mutations as Right because the mutation shows an on-
cogenic function by shifting the bifurcation point to a higher
death threshold, consistent with our theoretical prediction. The
Wrong mutation also produces a significant binding energy
change and perturbs a parameter, but it induces a left shift in
the bifurcation point. The Ordinary mutation does not produce
a significant binding energy change and has no effect on the
bifurcation point.

Fig. 5. Analysis of matched mutant/SNP and wild-type protein systems with respect to parameter sensitivity. (A) ΔΔG calculation result for matched mutant/SNP
and wild-type protein systems with respect to parameter sensitivity. Mutations and SNPs involved in the same interaction are aligned in the same line. (Left) the
percentage change of bifurcation point to the higher MOMP threshold in response to 10% KD change. KD, the equilibrium constant, is represented by the
dissociation constant koff for a certain interaction reaction (Supporting Information), whose value is directly extracted from the parameter sensitivity analysis (Fig.
3A). Colors of rectangles indicate the consistencies between parameter sensitivity analysis and calculation. (B) Comparison of Right, Wrong, and Ordinary dis-
tributions between sensitive and insensitive clusters. **P < 0.01. P values were calculated using Fisher’s test for odds ratios. See Supporting Information for
counting rules and odds ratio calculation. (C) Comparison of Right, Wrong, and Ordinary distributions between sensitive group and SNP, and between insensitive
group and SNP. *P < 0.05. (D) Average relative change for nonordinary mutations in three sensitivity groups. The relative change refers to the percentage change
for a matched mutant−wild type to the corresponding wild type. Insen., insensitive; Most Insen., most insensitive; Sen., sensitive. Error bars indicate ± SEM.
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Parameter sensitivity analysis of the bifurcation point iden-
tifies two types of parameter perturbation that can in-
duce a right shift of the bifurcation point: those that increase KD
(KChanged

D =KWT
D > 1, orange bar in Fig. 5A, Left), and those that

decrease KD (KChanged
D =KWT

D < 1, blue bar in Fig. 5A, Left).
Therefore, based on ΔG=RTlnðKDÞ, in cases of increase KD, a
Right mutation should satisfyΔGWT

bind −ΔGMUT
bind < 0; otherwise it is

a “Wrong” mutation. In cases of decrease KD, a Right mutation
should satisfy ΔGWT

bind −ΔGMUT
bind > 0, otherwise it is a Wrong mu-

tation. For mutations involved in the most insensitive group, we
only calculated the absolute value of ΔΔG owing to the un-
definable sensitivity direction (Table S6).
Fig. 5A shows that the Right, Wrong, and Ordinary mutations/

SNPs are not evenly distributed in different sensitivity groups.
Statistical analyses of the Right, Wrong, and Ordinary mutation
distributions of the first two sensitivity groups are shown in Fig. 5
B and C. Of 20 total mutations in the sensitive interactions, we
found that 90% were Right mutations (Fig. 5B), which was sig-
nificantly higher than that in insensitive interactions (37.5%)
(P < 0.01, Fisher’s test). Fig. 5C, Left shows that the Right mu-
tations in sensitive interactions (90%) were greater than those in
SNPs (40%) (P < 0.05, Fisher’s test). This tendency was not
observed in the insensitive group (Fig. 5C, Right). These results
suggest that mutations in sensitive domains have high enrich-
ment values and strong oncogenic function, whereas mutations
in insensitive domains behave more like harmless SNPs.
To explore the mutational influence on wild-type binding en-

ergy in different sensitivity groups, we calculated the average
relative change of binding energy ðΔΔGÞ for each nonordinary
mutation in three sensitivity groups (Fig. 5D). The results
showed a clearly increasing tendency of binding energy change
from sensitive to most insensitive class. This suggests a distinct
selection threshold for mutations in domains with different
sensitivity. Sensitive parameters provide key regulatory positions
in the regulatory network; a slight perturbation caused by a
mutation will lead to qualitative changes in network behavior.
Therefore, if we assume that each gene in the cell mutates more
or less randomly (40), mutations occurring in sensitive domains
tend to be selected out and reserved more easily than those in
nonsensitive domains during the process of tumor evolution.
It is consistent with the experimental results that most of the

involved mutations in sensitive interaction domains have high on-
cogenic potential. Some mutation sites in sensitive domains, in-
cluding Bax, D68, and Bcl2 R107, are highly conserved and directly
engaged in interactions with other Bcl2 family proteins (41). This
suggests that severe disorders may arise in pathway function owing
to variations in these sites. For example, Bax lacking the IGDE
sequence (66−69 aa, including D68) failed to promote apoptosis in
mammalian cells (42). Other work showed that Bax D68R could
not dimerize with wild-type Bax in vitro, which is consistent with a
previous computational simulation and our calculation for Bax
D68V (43). These experimental results support our observation that
mutations show their oncogenic function by affecting important
protein interactions and thereby disrupting biological processes.
To show the mechanism of mutation-induced alterations in the

binding energy, we used wild-type and mutant type D68V Bax
dimer as an example for structural analysis. Previous research
suggested that D68 and R109 tightly associate in the Bax dimer,
and experiments demonstrated that the dimer cannot form with a
mutation in either residue (43). Our computational analysis con-
firmed this result. In wild-type Bax dimer, D68 interacted with
R109 by hydrogen bonding with strong electrostatic attraction,
whereas this interaction disappeared when the negative charged
amino acid aspartic acid was mutated to a hydrophobic amino acid
valine (Fig. 6). As a result, the binding energy of Bax D68V dimer
increased from wild-type −191 kcal/mol to −154 kcal/mol according
to our calculation. The mutation Bax D68V dramatically altered
the binding energy of Bax dimer toward the oncogenetic direction.

Other structures of protein complexes with mutations highlighted
were shown in Fig. S2.
Our calculation of the binding energy change between wild-

type and mutant protein interactions provides some insight into
the two questions we asked at the beginning of this section. The
molecular mechanism responsible for the oncogenic effect of
mutations lies in the changed binding kinetics of protein in-
teractions (reflected by ΔΔG), and a consequent right shift of
the bifurcation location. By exploring the underlying molecular
mechanism, these results further support our hypothesis that
interactions corresponding to the sensitive parameters have a
crucial role in tumorigenesis, and mutations involved in sensitive
interactions are most likely oncogenic.

Discussion
We successfully investigated the causal mechanism underlying the
correlation between cancer mutation pattern of protein functional
domains and parameter sensitivities of the system bifurcation by
performing nonlinear dynamics and molecular-level analyses. We
first conducted bifurcation analysis and parameter sensitivity
analysis of the mitochondrial apoptotic pathway using a previously
established method (15). Then, we separated functional and
nonfunctional protein domains and mapped oncogenic muta-
tions to the corresponding domains using structure information
and established a correlation between parameter sensitivity of
the bifurcation point and oncogenic mutation enrichment of
functional domains. We further systematically studied the mo-
lecular mechanism underlying this correlation by evaluating the
mutational effect on protein interaction kinetics using molecular
dynamic simulation. We found that the binding energy changes
induced by mutations are major determinants of parameter
changes in the regulatory network model; combining the bi-
furcation point change direction due to parameter perturbation
and the binding energy change direction due to mutation dis-
turbance, we identified the oncogenic role of each mutation and
found that mutations involved in sensitive interactions (corre-
sponding to sensitive parameters of the bifurcation point) are
most likely oncogenic. Finally, a clear vision of mutation-induced
oncogenesis emerged after these analyses. The location of the

Fig. 6. Comparison of wild-type and mutant Bax dimer. The structures of
wild-type and mutant Bax dimer were adopted by the structures with min-
imal binding energies in the duration of the molecular dynamic simulations,
respectively. Dashed lines in the wild-type dimer structure indicate two hy-
drogen bonds with strong electrostatic attraction. There is no such in-
teraction in the mutant dimer structure.
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saddle-node bifurcation point represents a MOMP threshold; if
this threshold is exceeded, the system switches on apoptosis.
Oncogenic mutations may increase this threshold by introducing
significant changes in binding kinetics between key regulators.
Consequently, the death switch is averted and cells can evade
apoptosis. These conditions may enable oncogenesis.
The correlation between domain mutation enrichment spectrum

and parameter sensitivity spectrum of the bifurcation point sug-
gests that bifurcation point perturbation is a good measure to
predict causal genes and mutations in cancer. Stites et al. (14)
proposed a protein-level, perturbation-based analysis of unregu-
lated Ras activation associated with cancer and successfully ex-
plained the correlation between Ras mutation properties and the
known pathological mechanisms of Ras signaling activation. In our
opinion, the selection of different dynamic features should not be
considered as an inconsistency; the specific biological function to
be embodied should be taken into account. For apoptosis, G1/S
transition or any other checkpoint-like processes, such as epithelial-
to-mesenchymal transition, induce bifurcation behaviors reflecting
the qualitative change of a system. This is a good measure for
describing the switch-like cell fate decision from a dynamic point of
view. The steady-state level of certain protein species (reflecting
protein concentration) is more precise for evaluating signal trans-
duction pathways that require proper concentrations of active ki-
nases for activation (44). Considering these aspects, our analysis
also can be applied to any apoptotic response pathways that share
similar interaction topology and key regulators, with a bifurcation
behavior as the pathway functional property.
The parameters in network analysis include binding/unbind-

ing kinetic rates. Therefore, binding energy, a reflection of the
equilibrium constant KD, is not a direct indicator of network
parameters. In this work, we assumed that the mutation effect on
KD is due primarily to the change of koff (Fig. 5A, Left), con-
sidering that kon is described based on diffusion rules and long-
range force, which will not be significantly influenced by single
mutation, whereas koff is determined primarily by short-range
interactions (ionic interactions, hydrogen bonds, and hydropho-
bic interaction) and is more likely to change due to amino acid
variation (45). Our parameter sensitivity analysis also shows that
even if the mutation has a significant effect on kon under certain
conditions it also would not bring discordance to the original
results (Supporting Information). It will be more precise if we can
specify the mechanisms of kinetic parameter change. Tiwary
et al. (46) recently developed a method to calculate koff of the
interaction between a protein and its small molecule ligand. This
method is based on metadynamics, which samples as many
configurations as possible to rebuild the different binding phases

at a large timescale. However, this method is not applicable for
protein complex simulations with large sample space, and the
accuracy is limited. Therefore, the method of calculating kinetic
rates of protein–protein interactions by molecular dynamics
simulation is at a very early stage. We hope this method will be
fully developed in the future to further facilitate investigations
such as the present study.
Our study selected a subset of parameters that represent spe-

cific protein interactions, including binding and membrane trans-
location, for analysis. The structural information of those selected
protein interactions has been reported; therefore, we accurately
mapped mutations to interaction domains and established the
correspondence between mutations and model parameters. Fur-
ther calculations also depended on structural information for the
protein interactions. Some important factors were excluded from
this analysis because sufficient information on the molecular
mechanisms and interaction structures was not currently available.
Nonexon mutations (47), transcription factor mutations (48), and
proteasome mutations (49), which often affect protein expression
levels and protein degradation processes and play important roles
in cancer development, were out of the scope of our study,
whereas we find some consistency between sensitivity of these kind
of parameters and corresponding oncogenetic aberrations (Sup-
porting Information). An analysis including those factors could
provide a more complete picture of oncogenesis.

Materials and Methods
Equations for the Mitochondrial Apoptotic Network. We compiled a set of
ODEs (Supporting Information) to model the mitochondrial apoptotic net-
work induced by extrinsic death signals.

Cancer Mutation, SNP, and Protein Structure Database. All mutations in our
analysis were obtained from COSMIC and literature. The missense SNPs were
obtained from dbSNP. Some initial structure of wild-type protein complexes
were obtained from Protein Data Bank (www.rcsb.org/pdb/home/home.do),
and some were obtained by molecular replacement (Supporting Information).

Molecular Dynamics Simulation and MM/GBSA Method. All molecular dynamics
simulations were performed using Amber software (version 11). Single tra-
jectories were used to calculate the binding energy and residue energy
decomposition using the MM/GBSA algorithm in AmberTools12 (Supporting
Information).
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