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The fly olfactory system has a three-layer architecture: The fly’s
olfactory receptor neurons send odor information to the first layer
(the encoder) where this information is formatted as combinato-
rial odor code, one which is maximally informative, with the most
informative neurons firing fastest. This first layer then sends the
encoded odor information to the second layer (decoder), which
consists of about 2,000 neurons that receive the odor information
and “break” the code. For each odor, the amplitude of the synaptic
odor input to the 2,000 second-layer neurons is approximately
normally distributed across the population, which means that only
a very small fraction of neurons receive a large input. Each odor,
however, activates its own population of large-input neurons and
so a small subset of the 2,000 neurons serves as a unique tag for
the odor. Strong inhibition prevents most of the second-stage
neurons from firing spikes, and therefore spikes from only the
small population of large-input neurons is relayed to the third
stage. This selected population provides the third stage (the user)
with an odor label that can be used to direct behavior based on
what odor is present.
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Ahallmark of at least three major brain structures found in
essentially all vertebrates—cerebellum, hippocampus, and

olfactory system—is an architecture with three stages of in-
formation processing (Fig. 1). In the first stage (the encoder),
information arriving from other brain areas is assembled into a
combinatorial code and relayed, with a massive expansion of
neuron number, to the second stage. This code is “broken” by
the second stage (the decoder), and passed to the third stage,
where the desired pieces of decoded information are selected for
use in other brain regions.
The first proposal for the operation of this three-stage pro-

cessing architecture was made by Marr (1), over four decades
ago, to explain the function of the cerebellum, and I shall refer to
the first two (encoder/decoder) stages of the architecture as the
Marr motif. According to Marr, the encoder stage provides the
pattern (neuronal activity compiled in precerebellar nuclei) that
is relayed to cerebellar granule cells (the decoder stage). In granule
cells, the pattern provided by the precerebellar neurons is sepa-
rated by spreading the information over many more neurons (there
are many more granule cells than precerebellar neurons), and by
quieting most of the granule cells with strong inhibition from Golgi
inhibitory neurons. These inhibitory neurons collect the output
of many granule cells and feed it back to them. Finally, in the
third stage (Purkinje cells), some parts of the separated pattern
relayed by the granule cells are selected for labeling by concur-
rent climbing fiber activity that adjusts the strength of synapses
conveying the chosen signals to Purkinje cells. Whenever labeled
signals happened to recur, the modified synapses cause selected
Purkinje cells change their firing rates and provide an output
based on the tagged signals.
Although Marr’s proposal has been enormously influential, we

still do not understand the combinatorial code (Marr’s pattern)
generated by the precerebellar neurons, nor do we know how it is
decoded by the granule cells (Marr’s pattern separation). What
appears to be this same three-stage architecture is used by Dro-
sophila for the first three levels of its olfactory system (2), but the fly
system is much smaller, simpler, and more completely understood

than any vertebrate version. Here I exploit the simplicity and
extensive knowledge about the fly olfactory system to learn the
properties of the combinatorial odor code, and how it is decoded.
My hope is that what is learned from the fly will help us under-
stand the similar three-level architecture in vertebrates.

Results
I will consider (see Fig. 1) only the first two stages (the Marr
motif) of the fly’s three-stage architecture. The first stage is the
antennal lobe (corresponding to the encoder stage precerebellar
nuclei) and the second stage consists of Kenyon cells of the
mushroom body (corresponding to the decoder stage cerebellar
granule cells). The basic outline of the process is quite simple: the
antennal lobe collects information from olfactory receptor neu-
rons and reformats this information into a combinatorial code,
which is sent to the mushroom body. The mushroom body then
converts the combinatorially coded odor into a unique output
that can be used by the fly to identify the odor.
My discussion is divided into five sections. In the first section, I

present information about the fly’s olfactory system that is
needed in the later sections, and in the second section I describe
how olfactory information is represented in the main cell type of
the mushroom body, the Kenyon cells. The third section identifies
properties of the combinatorial code constructed in the antennal
lobe, and these properties are used in the fourth section to ex-
plain how a unique Kenyon cell output is generated for each
odor. In the last section I identify some idealizations made in the
earlier sections and explain the consequences of departures from
these idealizations.

Structure and Function of the Fly Olfactory System. Information
about the fly’s odor environment is delivered to the first stage of
the three-stage olfactory system architecture, the antennal lobe,
by axons of olfactory receptor neurons (ORNs) (3). Each of
these ORNs expresses just one of the adult fly’s ∼50 odorant
receptors (the actual best current estimate is 54; ref. 4), and all
ORNs expressing that receptor converge on a structure in the
antennal lobe called a glomerulus. Each of the about 50 glomeruli
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is a spherical neuropil structure with three main components:
(i) ORN axon terminals, (ii) dendrites of several projection
neurons that send modified odor information from ORN ter-
minals to Kenyon cells in the mushroom body, and (iii) circuitry
for modifying the ORN input to give the odor code the right
properties. These modifications include lateral inhibition from
other glomeruli onto ORN axon terminals to adjust the firing
rate of projection neurons so they are mostly independent of
odor concentration (a gain control mechanism; refs. 5–7, 9, 10),
and other mechanisms to spread information about the odor
environment more evenly over all of the glomeruli (3, 6, 7, 9,
10). Projection neurons have a background firing rate of about
5 Hz. The projection neurons from a glomerulus do not in-
crease their rate much for most odors, but a lot (>300 Hz) for
some odors (8). Generally, different odors produce the highest
projection neuron firing rates for different glomeruli but, of
course, the same odor always produces the same average re-
sponse in the same glomeruli. Projection neurons in the an-
tennal lobe send their output to two major brain regions, the
lateral horn (11, 12) (where evolution has designed circuits to
deal with specific odors) and the mushroom body (where the fly
can learn to recognize arbitrary odors). In the following, I will
not consider the lateral horn, but will focus on the mushroom
body, which contains the second stage of the Marr motif.
The mushroom body (13, 14) is a large (for the fly brain) struc-

ture with a neuropil calyx that contains the dendrites of many in-
trinsic neurons, the Kenyon cells (the Kenyon cell bodies are
grouped just next to the calyx), and with two elongated lobes, one
vertical and one horizontal, to which Kenyon cell axons project. The
Kenyon cells and their associated circuitry constitute the second
stage of the Marr motif (corresponding to the cerebellar granule
cells), and the lobes contain the third stage (corresponding to the
cerebellar Purkinje cells) of the three-stage architecture. This third
stage will not be considered in most of the following discussion.
All axon terminals of antennal lobe projection neurons are

found in special structures, called microglomeruli (15), in the
mushroom body calyx. Each microglomerulus contains three main
components: (i) a single large axon terminal from an antennal
lobe projection neuron, (ii) dendritic structures, called claws, from
about 10 Kenyon cells, each of which is postsynaptic to the single
projection neuron terminal, and (iii) GABAergic terminals from a
single anterior paired lateral (APL) neuron that also form syn-
apses on Kenyon cell claws. Each Kenyon cell has about six claws
(16), so one Kenyon cell collects information from only about 6 of

the 50 glomeruli. The single APL neuron (only one on each side of
the brain) sends its dendrites into the mushroom body lobes to
collect the output from all of the Kenyon cell axons, and this APL
neuron inhibits all Kenyon cells by sending its axons to the calycal
microglomeruli to terminate on Kenyon cell dendrites (18–20).
Three experimental observations will be important in the fol-

lowing discussion. First, the 50 glomeruli send odor information to
about 2,000 Kenyon cells, so there is a 40-fold expansion from
antennal lobe to mushroom body. Second, each Kenyon cell col-
lects odor information from only about 10% of the glomeruli, and
it takes this sample randomly (16, 17). Third, most odors do not
produce synaptic currents in most Kenyon cells, but even when
Kenyon cells do receive synaptic input on presentation of an odor,
only about 5% of those Kenyon cells fire spikes reliably (21); this
sparsity of firing is the result of the winner-take-all circuit formed
by the inhibitory APL neuron (18).

A Distributed Representation of Olfactory Information in the Mushroom
Body. In this section I will argue that the mushroom body uses a
distributed representation of odor information rather than the
more familiar localized representation. I make the distinction be-
tween these two ways information is represented by comparing the
mammalian visual cortex (V1) with the mushroom body. V1 has a
retinotopic map of the visual world but, on a finer scale, this visual
area has a pinwheel organization where neurons with the same
orientation preference are found along the spokes of the pinwheel,
and neurons with the same receptive field size (spatial frequency) are
arranged in concentric rings around the pinwheel center (note that
V1 neurons are jointly selective for orientation and spatial fre-
quency) (22). This means that all of the information about one tiny
patch of the visual world can be found in the neurons making up one
pinwheel. I have just described a localized representation: a specific
group of cells can give you a specific part of all information available.
In contrast, I will argue that, for the mushroom body, one can

get all of the information available about the fly’s odor environ-
ment from a specific number of any Kenyon cells, no matter which
ones are chosen. In this sense, the information is distributed be-
cause the number of neurons, not their identity, is what matters.
I pointed out above that each Kenyon cell receives input from

six glomeruli selected at random (16). To see why this gives a
distributed representation of the odor information provided by the
50 glomeruli, I need to formalize this statement to make a con-
nection with a new field of mathematics and computer science
called compressed sensing (23).
We start with an empty list s with places for 50 numbers. Call

this list s the signal, and fill it with the 50 projection neuron firing
rates generated, at some particular time, by all of the glomeruli.
Now create an empty table ðcall  it  RÞ that has 2,000 rows (one
for each Kenyon cell) and 50 columns (one for each glomerulus).
For the first Kenyon cell, fill the first row of the table with 1s and
0s, and place a 1 wherever the first Kenyon cell receives synaptic
input from the corresponding glomerulus and the number 0 if it
does not. The first row will, then, contain all zeros except at six
random locations where 1s are present (because the Kenyon cells
receive olfactory information collected randomly by six claws).
Repeat the same procedure for all 2,000 Kenyon cells so that the
table R has six randomly placed ones on each row (a row for each
Kenyon cell) with the rest of the entries = 0. This table R is a
random matrix (its entries are selected at random) and R is
called the sensing matrix or connection matrix.
Now multiply the signal s by the sensing matrix R, and call the

result r. This r is a 2,000-long list of olfactory inputs (measured
as spikes per second) received by each Kenyon cell:

r=Rs.

The matrix multiplication is carried out by multiplying each entry
in the first row by the corresponding entry in the signal s (first by

Fig. 1. Schematic representation of the Marr motif. Four sensory neurons at
the left (circles represent their cell bodies) send their axons to two regions of
neuropil (dotted circles) in the first (encoder) stage of the three-stage circuit.
Additional circuitry (not illustrated) produces interactions between the two
neuropil regions. Dendrites of the two stage 1 projection neurons (cell
bodies of precerebellar neurons are the circles) collect and format the sen-
sory information as a combinatorial code. This coded information is then
sent over the precerebellar neuron axons to stage 2 (decoder). Synaptic
connections (dark dots) are made on the dendrites of four stage 2 neurons
(granule cell bodies represented by four circles), and the output, the broken
code, is sent at the right of the diagram to stage 3 (not represented). Ad-
ditional circuitry responsible for breaking the combinatorial code in the
second stage is not shown.
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first, second by second, etc.) and then adding up all of the prod-
ucts and putting the sum in the first entry of r. Repeat for all
rows (all Kenyon cells), and the list r will contain the total num-
ber of spikes per second that each Kenyon cells is receiving from
the antennal lobe glomeruli.
What I just described is called a random projection, and if one

looks at any 50 of the 2,000 entries in the Kenyon cell synaptic
input list r, one can always get back the original signal s. That is,
all of the information the fly has about its odor environment is
available to any 50/2,000 Kenyon cells.
To actually get back olfactory information in s (the projection

neuron firing rate produced in each glomerulus) from r (the total
olfactory input into each Kenyon cell), pick any 50 Kenyon cells
(50 rows of R) and extract their inputs from the list r and their
corresponding 50 rows from the large matrix R. This procedure
gives a new shorter 50-long list ~r and a new 50 × 50 square matrix
~R. This matrix ~R has an inverse ~R

−1
because ~R is a random

matrix, and such matrices are known to (almost) always have an
inverse. All of the olfactory information in any 50/2,000 entries in
~r, then, can be recovered with

s= ~R
−1
~r,

because there are 50 simultaneous linear equations (from ~R and
~r) and 50 unknowns (in the list s). This means that the synaptic
input to of any 50 Kenyon cells always contains all of the avail-
able odor information in the antennal lobe.
Actually, things are somewhat better than I just described. The

main result from the new field of compressed sensing is that,
depending on how much redundancy there is in the signal s, all of
the information about the odor represented by r is, in fact,
present in fewer, generally many fewer, than 50 entries in r (24).
Based on experience from many types of signals, one would ex-
pect that any one or two dozen entries of the 2,000-long list r of
Kenyon cell inputs would show everything the fly can know about
the odor present.
The reason for using the random projection to give a 40-fold

expansion (from 50 glomeruli to 2,000 Kenyon cells) is to pro-
vide many different representations of the odor for the Kenyon
cells to pick between to find an output that best characterizes the
odor and is very likely to be different from the Kenyon cell
output for almost any other odor. If only 20 of the 2,000 numbers
in r are needed to define the odor, the expansion is 100-fold
rather than 40-fold, and the Kenyon cells are given more rep-
resentations, and thus more chances to find the representation
that best characterizes the odor. The collection of Kenyon cells
that reliably fire in response to a particular odor constitutes the
neural ‘tag’ associated with that odor. How the Kenyon cells
choose an odor’s tag is the subject of the following two sections.
We know that the odor information in the antennal lobe is in-

deed mapped to the Kenyon cells by a random projection (16), but
is it true, as just predicted, that the antennal lobe response to an
odor can be recovered from any small sample of Kenyon cell ac-
tivity? Campbell et al. (25) showed that behavioral performance to
odor presentations could be predicted from 25 randomly selected
Kenyon cells out of a larger population of neurons whose activity in
response to odors had been measured using calcium imaging. Thus,
as predicted, the odor information is distributed over a large
number of neurons, and this information can be recovered from a
randomly selected small subset of the entire population.

Properties of the Combinatorial Odor Code. We know that the
Kenyon cells decode the combinatorial odor code—that is, they
provide the tag associated with any odor—because flies have
been shown to use the output of Kenyon cells to learn odors that
have been paired with reward or punishment (26). The previous
section demonstrated that odors are represented in a distributed

way over the population of Kenyon cells, but to see how these
cells provide a (close to) unique output for each odor, we need to
know properties of the combinatorial code produced by the
antennal lobe. That is the task undertaken in this section.
The purpose of the odor code generated by the antennal lobe

is to let the fly identify as many odors as possible. The combi-
natorial odor code, then, that best accomplishes this should pro-
vide the greatest survival value for the fly. In other words, the code
should be the most informative one. According to information
theory (27), the best combinatorial odor code should be the one
with maximum entropy. Entropy is precisely defined and roughly
has to do with how many distinct odors can be coded for by the
antennal lobe. Maximum entropy codes are known to have two
properties used in the following paragraphs.
A single glomerulus and its projection neurons constitute an

information channel, and I now focus on such a channel. We know
that, if an odor is selected at random, our glomerulus usually will
not respond much, but for some odors it will respond well, and
sometimes, for odors that bind best to its odorant receptor pro-
tein, the odor response for that glomerulus will be maximal. For
the kth glomerulus, then, the probability density pkðrÞ that spec-
ifies the firing rate r should be in a class of well-known functions
that are maximum entropy (first property of a maximum entropy
code; ref. 27). We know that the gain control mechanism in the
antennal lobe sets the average firing rate across all glomeruli (6,
7, 9). A likely probability density function, then, would be an
exponential pkðrÞ= αe−αr because this function, according to in-
formation theory, maximizes the entropy if the mean firing rate
averaged over many different odors (here 1=α) is constrained to
have some particular value (27). We do not know in advance,
however, if there are other constraints on pkðrÞ. For example, if the
variance as well as the mean were constrained, the probability
density function with maximum entropy would be Gaussian.
The total entropy of the combinatorial code is the sum of the

contributions from each of the 50 glomeruli (entropy is additive)
and, according to information theory, this total entropy is max-
imized if all of the channels have the same probability density
function (second property of a maximum entropy code; ref. 27). I
therefore drop the subscript k that identifies the glomerulus, and
call the common maximum entropy density function pðrÞ.
Notice that the fact that all glomeruli have odor responses that

obey the same probability density function does not mean that all
glomeruli have the same rate r for a randomly selected odor. On
the contrary, each glomerulus usually responds differently for every
odor and always the same way for the same odor. The function pðrÞ
just says what fraction of the odors cause what rate, and nothing
about what that rate is for any given glomerulus and odor.
The density function pðrÞ does not depend explicitly on either

the odor or the glomerulus identity, so a histogram of firing rates
across all glomeruli and for a large number of odors should be an
exponential (or some other maximum entropy function, depending
on what is constrained). Measuring the firing rates associated with
all glomeruli for a large number of odors would be prohibitively
difficult, but Bhandawat et al. (8) have approximated this ideal
experiment by recording the projection neuron firing rates in re-
sponse to 18 odors for seven glomeruli. The histogram of the peak
firing rates for this dataset [from figure S2 of Bhandawat et al. (8)]
is presented here in Fig. 2 where the observed fraction of neurons
with a firing rate greater than or equal to the rate on the abscissa
is displayed, and an exponential distribution function is super-
imposed. Because the sample size of projection neurons is small
(only 126), the sample does not include any of the fastest firing
(and therefore lowest probability) neurons. This means that a
single free parameter (the average firing rate across the entire
projection neuron population) must be estimated; the value found
was 1=α= 162 spikes per second. I conclude that the combinatorial
odor code is well approximated by a maximum entropy code with
an exponential distribution function for the firing rates.
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Decoding the Maximum Entropy Code by Kenyon Cells. With the
properties of the combinatorial odor code just described, I can
calculate what fraction of theKenyon cell population is depolarized
by how much in response to an odor chosen at random. My de-
scription is, however, only a probabilistic one, so I have no idea
which glomeruli are responding to the odor and which Kenyon cells
are depolarized by what amount. This calculation will be the first
step in understanding how a (close to) unique response to an odor
is generated.
My final result of this calculation is summarized here: The

probability that a Kenyon cell has a particular depolarization v is
approximately Gaussian, and this means that Kenyon cells with
the largest depolarizations are rare. The second step in under-
standing the “trick” Kenyon cells use to tag odors is to recognize
that an inhibitory feedback from the Kenyon cells onto them-
selves permits only the rare, most depolarized Kenyon cells to
fire spikes in response to an odor. Two different, randomly se-
lected odors, then, are unlikely to cause the same Kenyon cells to
fire spikes, so the tags for two different odors rarely overlap.
Experiments have shown that the average Kenyon cell de-

polarization, produced by activation at a single claw, is v= ar,
where v is the Kenyon cell depolarization (mV), r is the projection
neuron firing rate (hertz) and a= 5.4× 10−3 mV/Hz [figure S6 in
Gruntman and Turner (28)]. This relation between v and r can be
used to eliminate r in favor of v in the probability density pðrÞ to
show that, for a single claw, a random odor will produce a Kenyon
cell depolarization v with a probability

w1ðvÞ= λe−λv.

Here, w1ðvÞ is the probability density function for depolarization
by synaptic activity at a single claw, and λ= 1=162a= 0.87 mV−1

(remember that the mean firing rate of olfactory projection neu-
rons is α= 162 Hz). For two claws, because the claws sample
glomeruli at random, the probability density w2ðvÞ is the convo-
lution w1ðvÞ p w1ðvÞ, which is

w2ðvÞ= λ2
Zv

0

due−λue−λðv−uÞ

= λ2ve−λv.

This equation says that if a single claw gives a depolarization u,
and the second claw gives a depolarization ðv− uÞ the probability
density that a pair of claws gives a depolarization v is e−λue−λðv−uÞ;
to find the total probability, add this joint probability density up

over all possible values of u. The function w2ðvÞ is known as a γ
density function with shape parameter 2. Because Kenyon cells
have six claws, a random odor will depolarize a Kenyon cell by v
mV with a probability density w6ðvÞ that is a sixfold convolution
of w1ðvÞ. The result of this convolution is a γ density function
with shape parameter 6:

w6ðvÞ= λ6

5!
v5e−λv.

For a γ density with a shape parameter j, the mean of v is j=λ and
the variance if j=λ2. As the shape parameter j increases, the γ
density approaches a Gaussian, and w6ðvÞ is not too far off from
a Gaussian. Thus, we can say that the probability density of a
Kenyon cell depolarization caused by a randomly selected odor
would be approximately normally distributed, a very simple result.
The expected fraction of the Kenyon cells with each possible

depolarization v for a random odor is described by w6ðvÞ, and the
winner-take-all circuit provided by the APL neuron (18) permits
only a small fraction—about 5%—of the Kenyon cells (those
most depolarized) to fire spikes (21, 29). Thus, the most depo-
larized Kenyon cells provide the spiking output, and constitute the
odor’s tag. Because the antennal lobe projection neurons with the
highest firing rates are rare, it is very unlikely that two randomly
chosen odors will cause the same Kenyon cells to fire (the prob-
ability that a pair of odors happen to strongly depolarize the same
Kenyon cell is the square of two small numbers, which is very
small indeed). Statistically, then, a pair of odors will probably
have nonoverlapping tags.
Often, one will be able to find a pair of odors that bind to

odorant receptor proteins in very similar ways. This particular
odor pair would activate very similar patterns of Kenyon cell
firing and it would be difficult, or perhaps impossible, for the fly
to discriminate between the two odors. If that particular odor
pair needed to be discriminated, presumably evolution would
have selected odorant receptors that would cause activation of
different Kenyon cell pairs. Because the theory presented here is
a statistical one, this sort of question cannot be addressed.

Consequences of Variability in Kenyon Cell Properties. In the earlier
sections, I assumed three things: (i) all Kenyon cells have six claws,
(ii) all Kenyon cells are interchangeable and sample all glomeruli
with the same probability, and (iii) all synapses made by projection
neurons onto Kenyon cells have the same strength. In fact, the
number of Kenyon cell claws ranges from around 1 to 11 (16), three
classes of Kenyon cells with different properties and different tar-
gets for their axons are known (14, 30), and the synaptic strength
varies considerably from one synapse to the next (28), whereas I
used the mean value. Relaxing these simplifying assumptions
changes my results quantitatively, but does not alter the main
conclusions. Some consequences of the first two of these simplifi-
cations are described here and, in the Supporting Information, I
discuss nonuniform sampling of glomeruli by different Kenyon cells
classes, and address the assumption that all projection neurons
make synapses with the same strength on Kenyon cells.
I noted earlier that streams of parallel Kenyon cell axons run

vertically and horizontally to define the two lobes of the mush-
room body. The vertical lobe is divided into two sublobes called
α and α′, and the horizontal lobe is divided into three sublobes
termed β, β′, and γ. Furthermore, three distinct classes of Ken-
yon cells are recognized (13) based on the destination of their
axons. These three classes are called α=β, α′=β′, and γ because
those sublobes are their targets.
Caron et al. (16) published counts of the number of claws for

all three Kenyon cell types. The average number of claws, 5.75
(range = 2–8), was not different between the α=β and α′=β′ types
(hereafter called the non-γ Kenyon cells), whereas the γ Kenyon
cell type has an average of 7.8 claws (range = 5–11). The cumulative
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Fig. 2. Observed probability distribution for fraction of neurons (ordinate) with
projection neuron firing rates greater than or equal to the value given on the
abscissa (spikes per second). Data from ref. 8. An exponential probability distri-
bution with an average rate of 162 spikes per second is superimposed on the
observed distribution.
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probability distributions for the Caron et al. (16) claw data (from
their supplementary table 1) are plotted here in Fig. 3A where they
are fitted to binomial distributions. Both distributions have a
probability of 0.715 for adding a claw, and the non-γ Kenyon
cells have at most 8 claws, whereas the γ Kenyon cells have a
maximum of 11.
In the preceding section, I used the observed exponential

distribution of antennal lobe projection neuron firing rates to
calculate the probability density function for the depolarization
of Kenyon cells. In this earlier calculation, however, I assumed
that all Kenyon cells have six claws, a value close to the one
observed for the non-γ class. In that section, I found that, for a
Kenyon cell with c claws, the density function is

wcðvÞ= λc

ðc− 1Þ! v
ðc−1Þe−λv,

where wcðvÞ is the probability density for depolarization v of a
Kenyon cell with c claws, and λ = 0.87 mV−1. When the number
of claws c follows a binomial distribution Bðp,NÞ ðp= .715 is the
probability of a claw and maximum claw number isN = 8 for non-γ
Kenyon cells andN = 11 for γ Kenyon cells) the probability density
wðN, vÞ is

wðN, vÞ=
XN
c=1

Bðp,NÞwcðvÞ

for a depolarization v. The corresponding cumulative probability
distribution is W ðN, vÞ= R v

0 duwðN, uÞ.
Of the ∼2,000 Kenyon cells, 1/3 are of the γ type and 2/3 are of

the non-γ ðα=β+ α′=β′Þ type. If I assume that synaptic strength of

projection neurons onto Kenyon cells is the same for all types,
the cumulative probability distribution PðvÞ for the depolariza-
tion v caused by any odor is PðvÞ= 2

3W ð8, vÞ+ 1
3W ð11, vÞ. PðvÞ is

plotted in Fig. 3B (solid line), where it can be seen to be close to
a normal distribution (the light dotted curve superimposed) for
depolarizations greater than about 5 mV. This distribution de-
scribes the depolarization of all Kenyon cells for any odor, and
the winner-take-all circuit restricts the actual firing to those
Kenyon cells that happen to have depolarizations greater than
about 10 mV. These particular Kenyon cells would then provide
the neural tag for the odor.
Because the non-γ and γ types of Kenyon cells have different

numbers of claws, I have also included the probability distribu-
tions for the depolarization for both types separately in Fig. 3B.
The dark dotted curve on the left of Fig. 3B is the distribution for
the non-γ class ½W ð8, vÞ� and the dark dotted curve on the right
for the γ class ½W ð11, vÞ�.
Discussion
The final picture of the fly olfactory system is quite simple. The
antennal lobe formulates the most informative odor code pos-
sible (technically a maximum entropy code), based on information
from ORNs and from constraints (like gain control) provided by
the antennal lobe circuitry. Because of the structure of this code,
most projection neurons fire slowly, but a very few projection
neurons respond with high firing rates in a small fraction of the
glomeruli. Each Kenyon cell in the mushroom body combines
information from about six glomeruli, selected at random, and
those cells that best (in a statistical sense) characterize the odor
are ones with largest depolarizations. The output of the mush-
room body, then, is based on a winner-take-all circuit that per-
mits firing only of the most depolarized Kenyon cells. Thus, the
Kenyon cells that are permitted to fire spikes provide tags for a
pair of randomly selected odors that are unlikely to overlap.
My motivation for this work was to learn how one example of

the Marr motif works and, to identify the Marr motif in the fly, I
relied on what appeared to be analogous architectures across
vertebrate and insect brain regions. I am not, however, the first to
notice these same parallels between insect and vertebrate brains;
indeed, similarities between the mushroom bodies and vertebrate
olfactory system, hippocampus, and cerebellum have long been
discussed (31–33). To be explicit about the parallels I identify, I
include Table 1.
To apply the conclusions I have reached to other systems

(cerebellum, vertebrate olfaction, and the hippocampus), two
steps are required. First, it must be verified that the combinatorial
code generated by the various brain regions is maximum entropy,
and that the decoding step uses distributed information and a
winner-take-all circuit to establish statistically nonoverlapping tags
for distinct inputs. This task will likely be difficult, and will pre-
sumably require many small steps. Second, even if it turned out
that the identified Marr motif structures generally work the same
way, the actual brain structures that appear to use this motif all have
quite different functions, and we must discover what specializations
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Fig. 3. Probability distributions for Kenyon cell claw number and its effect on the
depolarization of Kenyon cells by projection neurons. (A) Graphs for cumulative
probability of claw number (non-γ Kenyon cell Left, γ type Right). The smooth
curves are binomial distributions. (B) Calculated probability distribution for de-
polarization of Kenyon cells by antennal lobe input (solid curve), a normal prob-
ability distribution (light dotted). The heavy dotted curves to the left of the solid
curve is the distribution for non-γ Kenyon cells (Left), and for γ Kenyon cells (Right).

Table 1. Marr motif correspondences for fly and vertebrates

Brain region Stage 1: encoder Stage 2: decoder

Fly olfactory
system

antennal lobe mushroom body
(Kenyon cells)

Vertebrate
olfactory system

olfactory bulb piriform cortex
(layer ii)

Cerebellum precerebellar
nuclei

cerebellar
granule cells

Hippocampus entorhinal
cortex

dentate
granule cells
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and embellishments are used on top of a generic architecture to
account for what makes, for example, the cerebellum different from
the hippocampus, or the olfactory bulb different from the antennal
lobe. Whatever is finally established about structures that seem to
use the Marr motif, I hope that the framework I presented here will
be useful for studying them.
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