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Natural variation can be extremely useful in unraveling the
determinants of phenotypic trait evolution but has rarely been
analyzed with unbiased metabolic profiling to understand how its
effects are organized at the level of biochemical pathways. Native
populations of Nicotiana attenuata, a wild tobacco species, have
been shown to be highly genetically diverse for traits important
for their interactions with insects. To resolve the chemodiversity
existing in these populations, we developed a metabolomics and
computational pipeline to annotate leaf metabolic responses to
Manduca sexta herbivory. We selected seeds from 43 accessions
of different populations from the southwestern United States—
including the well-characterized Utah 30th generation inbred ac-
cession—and grew 183 plants in the glasshouse for standardized
herbivory elicitation. Metabolic profiles were generated from eli-
cited leaves of each plant using a high-throughput ultra HPLC
(UHPLC)-quadrupole TOFMS (qTOFMS) method, processed to sys-
tematically infer covariation patterns among biochemically related
metabolites, as well as unknown ones, and finally assembled to
map natural variation. Navigating this map revealed metabolic
branch-specific variations that surprisingly only partly overlapped
with jasmonate accumulation polymorphisms and deviated from
canonical jasmonate signaling. Fragmentation analysis via indis-
criminant tandem mass spectrometry (idMS/MS) was conducted
with 10 accessions that spanned a large proportion of the variance
found in the complete accession dataset, and compound spectra
were computationally assembled into spectral similarity networks.
The biological information captured by this networking approach
facilitates the mining of the mass spectral data of unknowns with
high natural variation, as demonstrated by the annotation of a
strongly herbivory-inducible phenolic derivative, and can guide
pathway analysis.
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Elucidating the structure of metabolites underlying complex
traits and the factors that maintain their variation in natural

populations are important challenges in plant ecological studies
(1). Many studies have notably shown that stress-responsive path-
ways that produce secondary metabolites are sporadically found
across different plant taxa with extensive diversification (2). This
important diversification suggests that particular metabolic systems
have been recruited through natural selection when the set of
compounds that they produce address specific ecological needs.
Interactions with insects are important selection pressures that have
sculpted plant metabolism, and many plant metabolites protect
against herbivore attack and physical damage (3–5). The timely
production of particular secondary metabolites in response to insect
attack benefits plants by decreasing the costs of constitutive
metabolite production. Trade-offs between defense metabo-
lite productions and the intrinsic growth-related functions of
central metabolic pathways likely provide important selection
pressures that maintain the extensive metabolic polymorphisms
commonly observed in natural populations.

Gene discovery strategies exploiting natural variation in quan-
titative traits, including metabolite levels, have been extensively
used in combination with genetic approaches (6–12). Analytical
approaches applied in this research field are frequently focused on
the quantification of individual or small families of compounds.
Procedures such as liquid chromatography-mass spectrometry
(LC-MS) and NMR have notably been used with both model and
crop species to identify the genetic architecture of metabolic traits
using quantitative trait locus mapping approaches (reviewed in
ref. 13). Such approaches have been very successful in addressing
genomic regions responsible for glucosinolate accumulation in
Arabidopsis and related species (10, 14–16). Compared with mod-
ern sequencing and proteomics technologies, the profiling of entire
plant metabolomes is, however, technically unfeasible with the
existing analytical platforms, and, as a consequence, the analysis of
metabolite natural variation has frequently been biased to sec-
ondary metabolite classes, for which a priori knowledge exists re-
garding their biological function, or to well-mapped parts of
primary metabolism associated with energy and growth processes
(17–19).
Another critical aspect for exploiting natural variation in metab-

olism lies in the identification of unknown metabolites that exhibit
significant associations with a phenotype of interest. Nontargeted
approaches for rapidly collecting repertoires of tandem mass
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spectrometry (MS/MS) data can be extremely powerful in cap-
turing the metabolic diversity expected to occur in natural pop-
ulations (20). Indiscriminant or shotgun MS/MS strategies with
high-resolution MS detectors offer many advantages in terms of
rapidity and scale of analysis. Pipelines have been recently estab-
lished to analyze such data (20). However, querying MS/MS data
from the analysis of secondary metabolites from public databases
is frequently unsuccessful because few standards are available for
these compounds (21). An alternative is the use of comparative
spectral analysis applied to experimental MS/MS datasets (22).
This approach, termed molecular networking, is relatively new and
aims at creating a map of mass spectral structural space in which
molecules with related MS/MS spectra cluster together. Here, we
combine the rapidly generated MS/MS data for all mass signals
detected and molecular network construction in the analysis of the
metabolic composition of natural plant populations.
We applied our MS method to the natural variation in sec-

ondary metabolic profiles observed in accessions of the coyote
tobacco,Nicotiana attenuata. This annual, native to the Great Basin
Desert in the United States, primarily occurs in large ephemeral
populations in post-fire habitats and smaller persistent populations
found in washes (23). Dormant seeds of this species germinate
from long-lived seed banks in sagebrush and pinyon-juniper eco-
systems when fires pyrolize the litter layer, removing germination
inhibitors and saturating the soils with smoke-derived germination
cues (24, 25). This particular germination behavior affects the ge-
netic structure of ephemeral monocultures produced by this spe-
cies and results in relatively high within-population variation.
N. attenuata populations represent a primary food source for in-
sects that colonize the ecosystem after fires, and a vast array of
genes and dependent metabolic pathways underlying resistance
traits to native herbivores have been functionally characterized in
this species. Among the major compound classes that contribute
to the antiherbivore defense mechanisms of this plant is nicotine, a
neurotoxin that functions synergistically with antidigestive plant
proteins (26, 27), phenolic derivatives that exhibit strong tissue-
specific responses to insect herbivory (28, 29), and 17-hydrox-
ygeranyllinalool diterpene glycosides (HGL-DTGs) (30).
Several studies have analyzed, with a high degree of spatial and

temporal resolution, some of the metabolomic reconfigurations that
are activated in plant tissues during biotic stresses (for a review, see
ref. 31), including the attack of insects (32–34); but few of these
studies have explored qualitative and quantitative variations of
these metabolic adjustments across native populations. To system-
atically explore natural diversity patterns in the metabolic response
to Manduca sexta herbivory of different N. attenuata populations,
we conducted a glasshouse-based high-throughput MS-based metab-
olomics approach on 183 plants derived from seeds collected in Utah,
Nevada, Arizona, and California. We then optimized an analytical and
computational pipeline to assemble MS/MS data collected in a
nontargeted manner and established mass spectral maps using a
bioinformatics method to visualize metabolic branch-specific natural
variation effects and annotate metabolites of interest.

Results and Discussion
N. attenuata Populations Exhibit Highly Variable Herbivory-Induced
Metabolic Profiles. To explore patterns of natural variation existing
in the herbivory-induced metabolic profile of wild populations of
N. attenuata, we used a rapid ultra HPLC (UHPLC)-electrospray
ionization (ESI)/quadrupole TOFMS (qTOFMS) method to
measure the metabolomes of methanolic leaf extracts of 183 in-
dividual plants derived from seeds from 43 accessions (SI Appendix,
Table S1). This analytical procedure allows for the profiling of a
broad range of secondary metabolites and their precursors. Seeds
used in this experiment had been collected over the last 20 y by Ian
T. Baldwin and associates from ephemeral populations growing in
postfire habitats in Utah (33 accessions), Nevada (7 accessions),
Arizona (2 accessions), and California (1 accession) (Fig. 1A).

These natural accessions have defined plants surviving as distinct
groups through environmental selection and isolation. Our large-
scale experiment also included 13 plants from a Utah (U30) ac-
cession self-fertilized for 30 generations in the glasshouse in Jena,
Germany and for which extensive knowledge exists regarding the
leaf secondary metabolite responses to insect attack. Herbivory by
larvae of the specialist lepidopteran M. sexta was simulated by
applying freshly collected oral secretions to mechanically wounded
leaves (35). This procedure, hereafter referred to as W+OS treat-
ment, elicits, in a highly reproducible manner, major changes in the
secondary metabolites of N. attenuata leaves that can be profiled
by UHPLC-ESI/qTOFMS (28, 36). After mass feature (m/z sig-
nals detected for a specific retention time) extraction, alignment,
and retention correction from the overall sample population, the
resulting concatenated data matrix (Dataset S1) consisting of 1,044
m/z features (not including isotope peak features) was analyzed
using principal component analysis (PCA) statistical modeling to
explore the variance structure of across-individual metabolic pro-
files without categorizations by accession location (SI Appendix,
Fig. S1).
Consistent with the high technical reproducibility of UHPLC-

ESI/qTOFMS measurements and of the postprocessing pipeline,
U30 samples clustered in close proximity in a central region of
the score plot generated from these two principal components
(PCs) (SI Appendix, Fig. S1). The score plot visualization
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Fig. 1. Herbivory-induced metabolic profiles of N. attenuata populations
exhibit extensive intra- and interaccession quantitative variations. (A) The
location of the 43 accession seed collection sites in Utah, Nevada, Arizona,
and California. A close-up for the collection sites in Utah is presented. Full
GPS coordinates are provided in SI Appendix, Table S1. Colors were arbi-
trarily given to accessions to highlight accessions collected within the same
large geographic region. (B) Classification of accession according to intra-
accession (x axis) and interaccession (y axis) Euclidean distances calculated for
the complete metabolic profile. As expected, metabolomes of replicated
plants from U30, a Utah accession inbred for 30 generations, show low
variations. Plants from seeds collected in California and Arizona exhibit
higher inter- than intraaccession variations. (C) Scatter plots of Euclidean
distances calculated individual sample pairs, demonstrating no clear re-
lationship between geographical distance and metabolic profile variations.
Each dot represents one sample pair, and its coordinates correspond to the
geographic distance (x axis) and Euclidean distance of the metabolic profiles
for this sample pair. Closely related individuals exhibit high quantitative
metabolic variation when grown under glasshouse conditions, and no cor-
relation is detected between the geographic and Euclidean distances.
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highlighted that there exists a large dynamic range of variation in
the relative metabolic composition of the samples analyzed. Con-
sistent with the high variation for within-population genetic
structures previously detected via amplified fragment length
polymorphism and microsatellite markers (1, 37), we observed
that within-accession metabolic samples were in some cases very
dissimilar and often did not cluster together within the PCA plot
(see PC scores in Dataset S1). We further analyzed sample vari-
ations within and among accessions by calculating the respective
intra- and interpopulation Euclidean distances (EDs). The ED
was used as a consistent estimator for the “metabolic distance”
between the complete processed metabolic profiles of a sample
pair (Fig. 1B). In agreement with the high technical reproducibility
of our analytical pipeline, replicate plants from the well-charac-
terized U30 accession exhibited relatively low intraaccession var-
iations (EDintraaccession = 29.3). EDintraaccession values for most
other accessions showed much greater variations. This trend was
particularly clear for the metabolic profiles of accessions collected
in Utah because extremely diverse intraaccession metabolic pro-
files were detected: EDintraaccession ranging from 29.3 to 58.5. The
ED scatter plot presented in Fig.1B highlights that, for most ac-
cessions, the EDintraaccession was as great as, or even exceeded,
variations detected between accessions (EDinteraccession). We ad-
ditionally compared the geographic distance between accession
sites and metabolic profile divergence calculated for all sample
pairs from the dataset (EDinterindividual). We found no clear re-
lationship between sample pairs’ geographic and metabolic dis-
tances, and important metabolic variations were observed even

within closely collected accessions, as indicated by the large dis-
persion of EDinterindividual values (Fig. 1C).

Coexpression Network Analysis Highlights Pathway- and Metabolite-
Specific Natural Variation Effects. We next analyzed the relative
distribution of metabolite levels within the sample set. To describe
in a more systematic manner covariation patterns existing among
biochemically related metabolites, we computed a coexpression
network [Pearson correlation coefficient (PCC) of >0.75] using
the complete dataset of mass features—a mass feature being de-
fined as a deconvoluted m/z signal occurring at a given retention
time (Fig. 2A). Compound class identifiers, W+OS inducibility
(fold change W+OS/control in U30, statistic results reported in
Dataset S1), and a natural variation estimator [relative median
absolute deviation (MAD)] (Materials and Methods) were mapped
onto this network to annotate regions of the network with low and
high degrees of natural variation. Connectivities existing between
metabolite-derived signals were then interpreted in light of bio-
chemical relationships and their response to the W+OS induction.
Panels of Fig. 2A summarize the stepwise process used to pin-
pointing particular nodes for assessment of their natural variation.
The network resolved main natural variation effects within the
overall set of detectable mass signals into six main clusters. As
discussed in a previous study (38), such groups are formed due to
strong and persistent analytical correlations existing between mass
signals derived from the ionization and in-source fragmentation
of a single metabolite, but also due to the coregulation shared
by metabolites of a same metabolic branch. The case of the
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HGL-DTG compounds is particularly germane because these com-
pounds mapped to two locations of the network. This observation
may be explained by the fact that HGL-DTG malonylated forms
exhibit different temporal dynamics and mode of regulation com-
pared with upstream metabolites (30). Signals corresponding to
unknown metabolites were also found adjacent to, and sometimes
within, these main network clusters (see example presented for
[M+H]+, m/z 347.19 in Fig. 2A, Lower).
To analyze within-pathway effects in more detail, density dis-

tribution plots were generated, and MAD scores were used to
directly compare scaled distributions across metabolites within
defense metabolism pathways (Fig. 2B). As previously reported,
constitutively produced defense metabolites such as nicotine,
rutin, and chlorogenic acid exhibit comparatively low degrees of
natural variation. Not only is nicotine a direct defense compound
effective against attack by leaf herbivores but its occurrence in
the nectar also affects pollinator visits and outcrossing rates
(37, 39); as such, stronger selection pressures are expected to erode
large quantitative variations in nicotine levels. However, recent
work has shown that yet to be identified molecular mechanisms
generate high variations in nectar nicotine concentrations that
surpass variations found in vegetative tissues (37). This previous
result suggests that independent mechanisms may control the
variability of nicotine concentrations in these two compartments
of a plant. In contrast, high quantitative variations were detected
for strongly herbivore-responsive secondary metabolites, espe-
cially for metabolites of the phenolamide and HGL-DTG path-
ways (Fig. 2B) as well as O-acyl sugar metabolites (SI Appendix,
Fig. S2). This result is consistent with the fact that metabolic
variations detected in this glasshouse-based experiment likely
recapitulated plasticity effects of the W+OS treatment on ge-
netically determined metabolic variations. Variations attribut-
able to phenotypic plasticity of different genotypes in response
to the W+OS elicitation could in theory result from local ad-
aptations to variations in resources and to the presence or ab-
sence of enemies or competitors. Results from Fig. 1 do not fully
support this interpretation because W+OS-induced metabolite
levels are frequently very variable within an accession. It is note-
worthy that the smoke-synchronized germination of seed cohorts
of different ages has been shown to result into relatively important
within-population genetic diversity levels in this species (24, 25). It
is therefore likely that the complex genetic structures frequently
detected within small populations also contribute to the mainte-
nance of highly heterogeneous W+OS-induced metabolic responses
for a given accession/population.
Interestingly, natural distribution curves for biosynthetically

linked metabolites were strikingly malleable, varying from normal
distributions to skewed or even bimodal distributions. For sim-
plicity, we describe only a few representative examples. Within the
HGL-DTG pathway, variations in lyciumoside I and lyciumoside
IV, the two upstream precursors intimately connected with the
nonmevalonate primary metabolic pathway (30), were relatively
low and were distributed according to a normal distribution-like
curve. In clear contrast, gradual increases in distribution diversity
were seen for the downstream steps of the pathway. Intermediates
in the pathway, such as nicotianoside III and attenoside, distrib-
uted along skewed curves and exhibited greater MAD scores than
their direct precursors. Highest MAD values were observed for
the malonylated HGL-DTGs located most downstream in the
pathway, with natural variation patterns being best described by
bimodal density distributions. This bimodality is indicative of the
polymorphic character of herbivory-induced malonylated HGL-
DTG levels in the populations analyzed and is reminiscent of
distributions for traits under disruptive selection. The same phe-
nomenon appears when navigating through different ramifications
of the phenolic metabolic network with most herbivory-inducible
phenolamide derivatives exhibiting high natural variation MAD

values whereas rutin and chlorogenic acid (CGA) were visualized
as low MAD normal distributions.

Natural Variation in Herbivore-Induced Levels of Known and
Unknown Metabolites Partly Overlaps with Variations in Jasmonate
Accumulation. The W+OS treatment procedure recapitulates
most of the early signaling events activated during M. sexta
herbivory, including rapid increases in the levels of jasmonates.
Jasmonic acid (JA) and its bioactive form jasmonoyl-isoleucine
(JA-Ile) regulate most of the changes in metabolism that un-
derlie direct and indirect plant defenses (40–43). Previous work
from our group has shown that W+OS-induced levels of these
two jasmonates greatly vary in small N. attenuata populations
growing in the wild and translate into different levels of attrac-
tiveness and resistance to natural herbivores (44). As revealed by
the shape of the density plots (Fig. 3A), JA-Ile displayed greater
variations (concentrations ranging from 29.9 to 349.1 ng/g fresh
weight) than did JA levels. These large variations may be
maintained in natural populations by the counterbalanced effects
of JA-Ile–dependent signaling into defense and developmental
processes (45). We constructed a correlation map between each
of the mass signals and JA and JA-Ile levels for significant PCC
values of >0.3 (Fig. 3B). As expected, most of the highly in-
ducible secondary metabolites showed strong correlations with
either JA or JA-Ile: phenylalanine is highly correlated to JA-Ile
but not JA, and HGL-DTGs mainly show high correlations to JA
instead of JA-Ile whereas most phenolamides had high PCC
scores for both JA and JA-Ile. Interestingly, many unknown
metabolites that may participate in the plant defenses also
showed significant PCC values with JA or JA-Ile but not with
both, indicating that molecular mechanisms underlying their
natural variation may deviate from the canonical view of jasm-
onate signaling: for example, the metabolite with [M+H]+ at
m/z 350.20 shared a PCC of 0.5 with JA and that at m/z 347.19
correlated with JA-Ile with a PCC of 0.38. As previously shown
for N. attenuata volatile emissions (46), we concluded from this
analysis that natural variations in levels of herbivore-induced
metabolites only partly overlap with upstream variations in
jasmonate accumulation. This result underscores that complex
signaling interactions involving not only jasmonates but also
other phytohormones and signals vary across accessions (47). A
fundamental aspect of this explorative analysis is that it sheds
light on many interesting unknown m/z signals. These mass sig-
nals were part of the network clusters capturing high natural
diversity effects and covaried in JA or JA-Ile levels.

Natural Variation Analysis Meets Mass Spectrometry Fragmentation.
We designed a workflow to navigate through the N. attenuata
metabolic space of this experiment (SI Appendix, Fig. S3). The
workflow is based on shotgun MS/MS data acquisition to collect
a holistic repertoire of structural information on the metabolic
diversity detected by our analytical platform for this sample set.
Shotgun MS/MS indiscriminately considers for fragmentation
all signals within an m/z range set as large as possible. Data-
dependent MS/MS acquisition methods involving the selection of
precursor ions for collision-induced dissociation (CID) frag-
mentation are more frequently applied, but they suffered from
several limitations in capturing the metabolic diversity in a nat-
ural variation dataset. First, due to scan rate limitation, only a
relatively restricted number of precursor ions can be selected for
further CID fragmentation in each acquisition cycle, which re-
duces the comprehensiveness of the MS/MS analysis. Second,
the precursor isolation technique is often inaccurate and fre-
quently translates into “contaminated” MS/MS data, leading to
low-resolution performance. As proposed by Matsuda et al. (48),
this technical limit can be circumvented by using long repetition
series for the measurement of one sample and progressively
shifting mass ranges selected for CID fragmentation to obtain as
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many MS/MS data. However, this approach is extremely time-
consuming, and it involves massive data redundancy resulting from
iterative acquisition of MS/MS spectra of the same metabolite
(20, 49). Shotgun or indiscriminant MS/MS (idMS/MS) analysis, in
which every detectable ion is targeted for CID fragmentation, has
the main disadvantage of being uninformative about precursor-to-
fragment relationships. This method is therefore computationally
intensive. However, once these relationships can be assigned con-
fidently within the entirety of a metabolomics dataset, the idMS/MS
method is extremely powerful in revealing new structural insights
within the entire dataset (20). The concept we propose here of
using natural variation patterns for correlation analysis can be
extended to all kinds of sample analysis, resulting in sufficient
quantitative variations, even for cross-tissue metabolic variation
within a single plant. In our workflow (SI Appendix, Fig. S3), we

selected 10 samples that captured a large proportion of the
quantitative and qualitative diversity within the dataset according
to the first six components extracted by PCA. These samples were
first analyzed under MS1 profile mode and then for idMS/MS with
different collision energies. The stepwise assembly of the idMS/MS
for rutin, an abundant flavonoid in Solanaceae, is exemplified in
SI Appendix, Fig. S3. The precursor at m/z 611.16 for rutin was
correctly annotated by CAMERA (50) as [M+H]+. Briefly, all
possible precursor-to-fragment PCC pairs within the retention-
dependent compound cluster inferred by deconvolution were sep-
arately calculated against the signal at m/z 611.16 under four
collision energies. Finally, collision energy-specific idMS/MS spectra
were merged into a so-called composite idMS/MS spectrum
(SI Appendix, Fig. S3). This pipeline resulted in 360 deconvoluted
idMS/MS spectra (Dataset S2). To summarize, this approach
benefits from metabolic natural variation by improving the reso-
lution of PCC analysis and simultaneously capturing rich structural
information for metabolites with high variation.

A Biclustering Classification of the idMS/MS Landscape Highlights
Structural Features Shared by Metabolic Classes. Most specialized
metabolites are taxa-specific and even sometimes species-specific
and therefore are not frequently present in public spectral da-
tabases that largely include commercially available primary me-
tabolites that are conserved across many organisms. This limitation
was clearly verified when querying idMS/MS in Massbank (51)
because scores higher than 0.8 were retrieved for only 19% of the
idMS/MS (SI Appendix, Fig. S4). Recently, the MS/MS molecular
network concept has been developed to circumvent the limitation
of spectral databases by the analysis of within-dataset MS/MS
similarities to formulate a structural hypothesis for unknown
MS/MS (22, 52). In the MS/MS molecular network method used
for microbial metabolomics (22), network edges represent similarities
between MS/MS spectra based on common fragments calculated
using a modified normalized dot product (NDP). These previous
studies focused on structurally complex microbial specialized me-
tabolites that produced fragment-rich MS/MS spectra that are
suitable for fragment-based MS/MS similarity alignment. Here,
many of the small molecules we analyzed produced a limited
number of fragments, often less than five fragments. A first un-
successful attempt for idMS/MS classification using only NDP
scores based on fragment similarities can be seen in SI Appendix,
Fig. S5. The most prominent clusters formed in this analysis cor-
responded to the alignment of the multiple pseudo-MS3 idMS/MS
collected for single metabolites being prone to in-source frag-
mentation during ionization, such as HGL-DTGs. Several recent
studies have highlighted the importance of considering neutral
losses (NLs) for aligning spectra and constructing similarity clus-
ters overlapping with compound familial groupings. NL analysis
has been especially well-implemented in the context of MS/MS
fragmentation tree studies (53, 54). We therefore combined these
two types of information into a bidimensional clustering method.
The weighted gene coexpression analysis (WGCNA) method is

a very powerful method for module clustering based on inter-
correlations (55) and has been recently extended to the analysis of
differential coexpression with the release of the R package Diff-
CoEx (56). This approach seemed very efficient for the pro-
gressive clustering of our 2D data and for highlighting overlapping
and nonoverlapping intercorrelations calculated for either of the
two MS/MS similarity measures (Fig. 4A). The biclustering by
DiffCoEx was conducted on the 360 × 360 NDP similarity
(Dataset S2) and 360 × 52 NL similarity score matrices and
produced five clustering modules that included 170 idMS/MS
spectra. The result of this clustering enables the visualization of
relationships between spectrally identical and related metabolites
within the measured metabolic landscape (Fig. 4B). We color-
mapped known and unknown compounds in each of the modules,
as well as the intensity of the PCC value with JA and JA-Ile. We

0

1E+6

2E+6

3E+6

4E+6

5E+6

m
/z 

35
0.

20
  (

RT
16

6)
 

PCC=0.50, P=3.91E-09

0

2E+5

4E+5

6E+5

5000 10000 15000Ni
co

tia
no

si
de

 II
 

(is
o.

 1
) 

PCC=0.39, P=8.23E-06

0

1E+5

2E+5

3E+5

Ni
co

tia
no

si
de

 IV

PCC=0.61, P=6.93E-14

0

4E+6

8E+6

12E+6

16E+6

Ni
co

tia
no

si
de

 V
II 

(is
o.

 1
)

PCC=0.57, P=5.94E-12

0

4E+5

8E+5

12E+5

Ph
en

yl
al

an
in

e

PCC=0.41, P=2.48E-06

0

4E+6

8E+6

12E+6

16E+6

N-
ca

ffe
oy

lp
ut

re
sc

in
e

PCC=0.36, P=4.32E-05

0

1E+6

2E+6

3E+6

4E+6
m
/z 

53
0.

24
  (

RT
20

5)PCC=0.37, P=2.53E-05

0

2E+5

4E+5

6E+5

0 100 200 300 400 m
/z 

34
7.

19
  (

RT
24

5)
 PCC=0.38, P=1.46E-05

JA JA
-Ile

m
/z

 (|
PC

C
|>

0.
3)

JA

Area

De
ns

ity

2000 4000 6000 8000 100000e
+0

0
2e

−0
4

4e
−0

4 JA-Ile

Area
50 100 150 200 250 300 3500.

00
0

0.
00

4
0.

00
8

0.
01

2A

B

JA

*
*

*

*
***

JA-Ile
PCC

-1                   1
(Area) (Area)

0

Fig. 3. Natural variation in jasmonate levels only partly accounts for poly-
morphisms in specialized metabolism and highlights unknown metabolites
associated with jasmonate signaling. (A) Density distribution plots (x axis, area
of intensities and y axis, fitted density with histogram) (123 samples) illus-
trating natural variation patterns in JA and JA-Ile levels analyzed by targeted
LC-MS/MS/MS for leaf samples collected 1 h after simulated herbivory from
glasshouse-grown accessions of N. attenuata. (B) Heatmap of pairwise Pearson
correlation coefficients (PCCs) (only PCCs of >0.3 are shown based on 123
samples) for significant coregulation patterns between deconvoluted m/z
signals and JA and JA-Ile levels. Examples are presented for known and un-
known metabolites with significant correlations with either JA or JA-Ile. Boxes
denote in-source fragmentation clusters translating from metabolite ioniza-
tion and fragmentation. An * indicates the position of metabolite-specific
precursor ions from which quantitative data used for the scatter plot repre-
sentations are derived. iso., isomer; RT, retention time in seconds.
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additionally calculated NL overrepresentation for each module by
using a chi-square score and depicted NL distribution using a bi-
nary heatmap (SI Appendix, Fig. S6). Consistently, high NDP and
NL scores—overrepresentation of glucose-derived (P = 1.38 × 10−10),
rhamnose-derived (P = 1.07 × 10−33), and malonic acid-derived (P =
4.10 × 10−22) NLs—favored the clustering of HGL-DTGs into one
module with high PCC for both JA and JA-Ile. Small clusters in this
module corresponded to the different idMS/MS or pseudo-MS3 de-
rived from one single ion, which demonstrates that our clustering
method allows for the rapid mining of redundancy in MS/MS spectra
data collection (SI Appendix, Fig. S7). Module 4 that was supported
by high NL scores grouped phenolamide, chlorogenic acid, rutin,
and nicotine, as well as a large set of unknown metabolites. In the
case of phenolamides, NLs were essentially derived from putrescine,
spermidine losses (SI Appendix, Figs. S5 and S7). Modules 2 and
3 grouped O-acyl sugars defined according to different NL com-
positions. Module 2 shared significant enrichments with module
3 for hexose and methyl pentanoic NLs (SI Appendix, Fig. S6).
These two modules discriminated type III (module 2) and type II
and IV (module 3) of O-acyl sugars, which differ by the presence
of an acetylated group on the fructose leading to an m/z of 204.65
NL, which consequently was detected only in module 2. The first

module contained only unknown metabolites that showed great
similarities, with both high NDP and NL similarity scores (SI
Appendix, Fig. S8).

Navigating the idMS/MS Molecular Network Facilitates Structural
Predictions for Previously Unassigned Herbivory-Regulated Metabolites.
We finally illustrate how this clustering can be mined to formulate
hypotheses on metabolites with interesting natural variation pat-
terns. Clusters within the biclustering classification heatmap can be
selected by making use of the aforementioned mapping of natural
variation and jasmonate correlation information and then addi-
tionally explored for MS/MS pairwise similarities. This reductionist
approach avoids dealing with complex MS/MS molecular networks
produced from the overall dataset that are too complex to interpret.
Here, module 4 was particularly noteworthy because it was enriched
in defensive phenolamides but also included, among others, the
unknown compound at m/z 347, for which we previously detected
an interesting association with jasmonate signaling (Fig. 3B)
(28, 57). An additional illustration of the mining of module 1 is
presented in SI Appendix, Fig. S5. From module 4, we constructed a
molecular network to formulate hypotheses about this unknown
metabolite (Fig. 5A) based on the similarity of its idMS/MS with
that of known metabolites. For this purpose, we selected all possible
NDP and NL similarity-based pairs with a score above 0.6 as net-
work edges and assigned different colors to edges to distinguish
NDP and NL connectivities. A subnetwork that contained the
idMS/MS for precursor at m/z 347.196 ([M+H]+, C19H27N2O4

+)
could then be delimited. The idMS/MS for m/z 347 is part of the
immediate neighborhood of that of N-caffeoylputrescine and of an
unknown with [M+H]+ at m/z 568.30. This clustering translated
from shared NL motifs, such as NLs corresponding to putrescine
(m/z 88.100) and NH3 (m/z 17.027) and from the presence of a high
intensity common fragment corresponding to the cleavage of a
caffeic acid moiety from a core molecule (m/z 163.039, C9H7O3

+,
NDP score of 0.32) (Fig. 5 A and B and SI Appendix, Fig. S9). The
NL score between these two metabolites was 0.53. Importantly, an
idMS/MS corresponding to the CID-induced cleavage of the frag-
ment atm/z 259.094 (C15H15O4

+) had also been assembled. idMS/MS
for m/z 259.094 showed that m/z 169.039 and m/z 96.055 (C6H8O)
resulted from the cleavage of this fragment at m/z 259.094. This
pattern of fragmentation implies that the aromatic ring of the
caffeoyl moiety was modified by complexation or acylation with a
yet-to-be-determined C6H8O residue.
This molecular network-informed analysis is obviously not

directly applicable to de novo unknown compound identification,
a task that is traditionally achieved after compound purification
and de novo identification by NMR. Additionally, this procedure
is inherently limited to subsets of the small molecule metabolome
because no single analytical procedure can detect the complete
metabolome set of a given sample. Nevertheless, such an approach
based on molecular networking has been shown to facilitate the
process of formulating structural hypotheses by the combined in-
terpretation of phenotypic information and mass spectrometric
signatures (22). The “biological contextualization” of these mass
spectrometric signatures allows for hypothesis testing using reverse
genetics approaches when sufficient knowledge exists about the
genes controlling the biosynthesis of a given group of metabolites
(Fig. 5C). In the context of this study, we first used three transgenic
lines produced in the U30 background and in which phenolamide
metabolism is affected. When stably silencing MYB8 (irMYB8), a
transcription factor that controls total phenolamide production
(28, 29), both N-caffeoylputrescine and unknown at m/z 347 dis-
appeared from the extract ion current chromatograms (Fig. 5D).
However, of the two N-acyltransferases (AT1 and DH29) targeted
by MYB8, only the silencing by virus-induced gene silencing
(VIGs) of AT1, which specifically targets phenolic-to-putrescine
conjugation, disrupted the production of N-caffeoylputrescine
and the unknown at m/z 347 (SI Appendix, Table S3). These
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data, in addition to the strong temporal coregulation upon W+OS
treatment of the unknown atm/z 347 and N-caffeoylputrescine (SI
Appendix, Fig. S10), provided additional support that this un-
known was related to putrescine-based phenolamide metabo-
lism. N-caffeoylputrescine is a prominent defense compound in
N. attenuata (29), and understanding the modulations of its me-
tabolism has important physiological implications for the resistance
strategies used by wild populations of this plant. As mentioned
above, the fragment atm/z 96.055 retrieved in the idMS/MS form/z
347 corresponded to the mass shift and likely the biochemical
transformation between N-caffeoylputrescine and the unknown at
m/z 347.196. Because m/z 96.055 was predicted as a C6H8O resi-
due, we hypothesized that this residue was derived from the fatty
acid oxylipin cascade, which converts C18 polyunsaturated fatty
acids released from biological membranes during stresses into re-
active C6 derivatives. The best-characterized products of this
pathway are the green leaf volatiles (GLVs). In N. attenuata, stably
silencing LIPOXYGENASE2 (irLOX2), which controls the first
committed step in this pathway, fully abolishes C6 aldehydes pro-
duction and thereby total GLV emissions (58) (SI Appendix, Fig.
S10). Accumulation of the unknown at m/z 347, but not that of
N-caffeoylputrescine, was almost completely impaired in W+OS-
treated irLOX2 plants, indicating that LOX2-based fatty acid me-
tabolism was specifically involved in providing the C6H8O residue
required for the formation of the unknown at m/z 347. The exact
biochemical reaction involved for the formation of this metabolite
is not yet elucidated. Our current hypothesis is that 4-hydroxyhexenal

(SI Appendix, Fig. S10), one of the most reactive alde-
hydes produced by this pathway and therefore a pivotal actor
in lipid peroxidation-mediated oxidative stress, reacts with
N-caffeoylputrescine to form the unknown at m/z 347. It is
unknown yet whether this interaction between C6 metabolism
and N-caffeoylputrescine benefits the plant by scavenging an
excess of highly reactive aldehydes or has homeostatic function
over N-caffeoylputrescine levels, and/or whether it increases the
toxicity of this latter metabolite for herbivores. Additional work,
using the panoply of reverse genetic and natural variation re-
sources reported in this study, is needed to investigate chemical
and physiological aspects of this intriguing reaction in the con-
text of the plant defense response to highly specialized insect
herbivores.

Conclusion
Although heterogeneity in the levels of certain plant metabolites has
been analyzed in the context of quantitative genetics approaches to
elucidate gene function, little is known about how these variations
are organized at the chemical level. There is, therefore, a clear need
for workflows that combine biological information and MS data.
Ideally, such workflows should comprehensively capture quantitative
and structural information on as many detectable metabolites as
possible (“metabolic space”) and generate data-rich visual outputs
to facilitate hypothesis formulation. Here, we implement a work-
flow fulfilling these requirements and demonstrate that N. attenuata
populations exhibit large quantitative polymorphisms affecting
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similarity network constructed for module 4 resulting from the biclustering analysis. Module 4 is enriched in previously characterized and structurally elu-
cidated phenolamides, most of which are strongly responsive to simulated herbivory treatments, but also includes unknown metabolites with JA signaling
associated natural variation such as m/z 347.19 at retention time 245 s. The composite idMS/MS for m/z 347.19 is the one of the first network neighbors of
N-caffeoylputrescine (CP) with idMS/MS m/z 251.13 due to neutral loss and fragment-based similarities. (B) idMS/MS m/z 251.13 and m/z 347.19 share neutral
loss corresponding to the loss of putrescine. The intense fragment peak at m/z 163.04 shared by both idMS/MS corresponds to the caffeoyl moiety cleavage
from the putrescine. Interestingly, in the case of idMS/MS m/z 347.19, only this fragment derives from an additional neutral loss of C6H8O as part of pseudo-
MS3 reaction supported by the alignment of idMS/MS m/z 259.13. (C) Working model for MYB8-regulated N-acyltransferase–mediated production of phe-
nolamides. AT1 catalyzes the formation of putrescine-based phenolamides whereas DH29 acts as a first committed step in spermidine conjugate production.
(D) Extracted ion traces for m/z 347.19 supporting its classification as an MYB8-dependent, putrescine-based phenolamide dependent on the catalytic
activity of AT1 (SI Appendix, Table S3). Additional results obtained from molecular studies of the metabolic conversion from CP to the phenolamide-related
m/z 347.19 are presented in SI Appendix, Fig. S10. EV, empty-vector VIGs control; irMYB8, stably silenced MYB8 transformant; VIGs, virus-induced gene
transient silencing.
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secondary metabolism on a single compound but also on a path-
way basis. Certain of these variations overlap with variations
detected in herbivory-induced levels of JA and JA-Ile.
The coordinated set of information organized by our approach

facilitates the mining of known and unknown metabolites, and
virtually any kind of biological information (in the present study,
natural variation) can be mapped onto MS/MS molecular net-
works. In this respect, our study complements previous work on
molecular networks (22) and exemplifies how these networks can
be efficiently mined to formulate structural hypotheses on previously
noncharacterized compounds associated with a given phenotype. By
combining this structural approach with gene manipulation studies,
we notably pinpoint on a biochemical interaction between so-called
“direct” (phenolamide metabolism) and “indirect” (C6 metabolism
being known to serve for natural enemies’ recruitment) metabolism-
based defense strategies. The physiological implications of such
metabolic cross-talk for a plant’s defense response have not yet been
explored. To summarize, we predict that the workflow described
here will provide some of the essential requirements for a more
efficient exploration of the abundant (but not exhaustive) structural
information that lies unexplored from most conventional metab-
olomics screening efforts.

Materials and Methods
Seed Sources. Seeds from N. attenuata Torrey ex Watson were collected over
the last 20 y by Ian T. Baldwin and his collaborators in the Southwestern
United States (SI Appendix, Table S1) and were germinated as described in
ref. 59. The well-characterized inbred line “UT,” which we used as a control
comparison, was collected from southwestern Utah in 1996 (population U in
ref. 60) and has been self-fertilized for 30 generations in glasshouse condi-
tions in Jena, Germany.

Plant Treatment and Sample Preparation. Metabolic changes induced during
M. sexta feeding were elicited in a highly synchronized fashion by producing,
with a fabric pattern wheel, three rows of punctures onto each side of the
midvein of five fully expanded leaves per plant at rosette stage and immedi-
ately applying 1:1 diluted M. sexta oral secretions (OSs) to the puncture
wounds. Four treated leaves were harvested, pooled, and flash-frozen 72 h
after elicitation, and metabolites were extracted (SI Appendix, Materials and
Methods). One treated leaf per plant was harvested 1 h after treatment and
analyzed for jasmonates as described in ref. 61.

UHPLC-ESI/TOF-MS Profile Mode Analysis. Two microliters of the 40% meth-
anol leaf extracts were separated using a Dionex rapid separation liquid
chromatography system (Dionex) as previously described in ref. 36 (SI Ap-
pendix, Materials and Methods).

UHPLC-ESI/qTOF-MS Conditions for Indiscriminant MS/MS Data Acquisition.
Indiscriminant MS/MS fragmentation analysis (hereafter referred to as idMS/MS)
was conducted to gain structural information on the overall metabolic profile
detected by UHPLC-TOFMS (SI Appendix, Materials and Methods). To increase
the chromatographic resolution compared with the conditions previously used
for the initial high-throughput analysis of the overall population in the profile
mode, we used the following UHPLC binary gradient conditions: 0–1 min, iso-
cratic 90% (vol/vol) A (de-ionized water, 0.1% acetonitrile, and 0.05% formic
acid), 10% B (acetonitrile and 0.05% formic acid); 1–22 min, gradient phase to
reach 20% A, 80% B; 22–25 min, isocratic 20% A, 80% B. The indiscriminant MS/
MS dataset has been deposited in the open metabolomics database Metabo-
lights (www.ebi.ac.uk/metabolights) under accession no. MTBLS203.

Assembly of Compound-Specific idMS/MS. We used the precursor-to-product
assignment pipeline developed by ref. 20 and implemented additional rules

to improve the accuracy of precursor and product mass signal definition. To
reduce the computational and analytical demand, we selected 10 samples
from the dataset that capture a great proportion of the variance in the
sample population based on manual inspection of chromatograms and on
their scores on the six first PCs from the PCA analysis. idMS/MS assembly was
achieved via correlational analysis between MS1 and idMS/MS mass signals
for low and high collision energy (20) and involved well newly implemented
rules (SI Appendix, Materials and Methods).

Coexpression Network Construction and Statistical Analysis of Natural Variation
Effects. The intradistance for each location was calculated by the average of
Euclidean distance crosswise samples within each location, and interdistance for
each location was calculated by first computing the average of samples in each
location and then computing the average Euclidean distance of all of the other
locations calculated with this location in Fig. 1C. Euclidean distance in Fig. 1Dwas
calculated for each sample pair. The geographic distance was inferred from the
Global Positioning System (GPS) coordinates of samples using the great-circle
distance algorithm. The degree of variation of each mass feature of the dataset
was estimated using the relative median absolute distance calculated as follows:

relative MAD=
median  ðjXi−medianðXÞjÞ

median  ðXÞ  

with Xi being ith value across the population for the m/z signal denoted as X.
Coexpression calculations for network construction were computed using

the Cytoscape plugin MetaNetter (v2.1) (62, 63).

Pairwise idMS/MS Alignment Based on Fragment Similarity. A standard nor-
malized dot product (NDP), also referred to as cosine correlation method for
spectral comparison, was applied using the following equation:

NDP =  

�PS1&S2
i WS1,iWS2,i

�2

P
iW

2
S1,i

P
iW

2
S2,i

where S1 and S2 correspond, respectively, to spectrum 1 and spectrum 2 and
WS1,i and WS2,i indicate peak intensity-based weights given to ith common
peaks differing by less than 0.01 Da between the two spectra. Weights were
calculated as follows:

W = ½Peak  intensity�m½Mass�n

with m = 0.5 and n = 2, as suggested by MassBank.

Pairwise idMS/MS Alignment Based on Common Neutral Losses. The NL-based
similarity between individual idMS/MS was implemented as described in
SI Appendix, Materials and Methods. We used a list of 52 neutral losses (NLs)
commonly encountered during tandem MS fragmentation (SI Appendix,
Table S2), as well as more specific ones that had been previously annotated
for MS/MS spectra of N. attenuata secondary metabolite classes.

idMS/MS Molecular Networking by Biclustering. A comparative correlation heat
map of 360 idMS/MS spectrawas constructed usingDiffCoEx (56). The parameters of
“cutreeDynamic”were set to cutHeight = 0.999, deepSplit = 1, minClusterSize = 10.
The R source code of DiffCoEx was downloaded from additional file 1 in ref.
56, and the required R WGCNA package can be found at labs.genetics.ucla.
edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/.
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