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Glycerides are of interest to the areas of food science and medi-
cine because they are the main component of fat. From a chemical
sensing perspective, glycerides are challenging analytes because
they are structurally similar to one another and lack diversity in
terms of functional groups. Furthermore, because animal and plant
fat consists of a number of stereo- and regioisomeric acylglycerols,
their components remain challenging analytes for chromatographic
and mass spectrometric determination, particularly the quantitation
of species in mixtures. In this study, we demonstrated the use of an
array of cross-reactive serum albumins and fluorescent indicators
with chemometric analysis to differentiate a panel of mono-, di-,
and triglycerides. Due to the difficulties in identifying the regio- and
stereochemistry of the unsaturated glycerides, a sample pretreat-
ment consisting of olefin cross-metathesis with an allyl fluorescein
species was used before array analysis. Using this simple assay,
we successfully discriminated 20 glycerides via principal component
analysis and linear discriminant analysis (PCA and LDA, respec-
tively), including stereo- and regioisomeric pairs. The resulting che-
mometric patterns were used as a training space for which the
structural characteristics of unknown glycerides were identified. In
addition, by using our array to perform a standard addition analysis
on a mixture of triglycerides and using a method introduced herein,
we demonstrated the ability to quantitate glyceride components
in a mixture.
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Glycerides are the primary component of animal fats and
vegetable oils (1). They consist of one, two, or three fatty

acids esterified on glycerol, and hence are referred to as mono-,
di-, and triglycerides, respectively. The structural diversity of glyc-
erides derives in part from their fatty acid alkyl groups, which can
differ in carbon number (i.e., chain length), the degree of unsatu-
ration, the position of olefins, and the configuration of the olefins
(i.e., cis/trans). Furthermore, these fatty acid alkyl groups can be
connected to the sn-1, -2, or -3 carbons on glycerol. Hence, a variety
of regio- and stereoisomers can exist for glycerides, posing a chal-
lenge for mass spectrometry (2). Further, because the differences in
chain length primarily result from the presence of greater or fewer
methylene groups, NMR spectroscopy can be ambiguous (3).
The analysis of glycerides is primarily important to the food

and nutrition industries for tasks such as authenticating edible
oils (4), designing foods with certain physical properties (5), and
studying how fats are digested and absorbed (6). In particular,
classifying all of the various kinds of regio- and stereoisomers of
glycerides is biologically important because lipases, enzymes that
catalyze the hydrolysis of glycerides into fatty acids and glycerol,
exhibit selectivity based on these features of the glyceride sub-
strates. As examples, the position and configuration of olefins,
the identity of fatty acid alkyl groups, as well as their position on
glycerol (i.e., sn-1,3 versus sn-2), all contribute to differing bi-
ological activity (7, 8). Studying the selectivity of these lipases
has applications in understanding diseases, including fat mal-
absorption disorders, hypercholesterolemia, atherosclerosis, and

diabetes (9, 10). Research on metabolic disorders has shown that
fatty acid accumulation can exert a toxic or a protective effect on
a tissue, depending on the specific tissue type (e.g., liver, cardiac,
or skeletal muscle) (11, 12) and health state (e.g., diabetic)
(13, 14) as well as on the fatty acids (e.g., saturated or unsaturated)
(15). Sequestration of fatty acids by esterification to glycerides is
one pathway by which these effects are regulated (16). Thus, a
deeper understanding of the distinct roles of the cellular storage of
structurally different glycerides in normal and disease states is a
desirable avenue of research (17). However, currently only limited
information is available about the composition of glycerides in ad-
ipose and nonadipose tissue.
The most common method of glyceride identification is mass

spectrometry (MS) (2, 18). However, as alluded to above, this
approach has drawbacks. Because glycerides are neutral mole-
cules, they must be ionized to be analyzed by MS. Saponification
can be used to obtain the fatty acids, which are both volatile and
charged, thereby facilitating MS analysis, but information about
the glyceride structure is lost in this process (18). Electrospray
ionization and atmospheric pressure chemical ionization are
used to ionize glycerides directly; however, the ion yields are
low compared with preionized lipids (19, 20). Furthermore, the
ability of a glyceride to be ionized using these methods often
varies. For example, ion abundance generally increases with in-
creasing number of double bonds in the fatty acid alkyl chain and
can also depend on fatty acid alkyl chain length (21). These sig-
nificant variations in ion abundance mean that ionization meth-
odologies must be developed and tailored to a specific application
to satisfactorily detect each glyceride of interest (19). Finally,

Significance

Lipid metabolism is a growing area of biochemical research be-
cause understanding these pathways could lead to treatments
for metabolic disorders such as obesity and type 2 diabetes. To
study lipid metabolism, researchers need tools to identify and
quantitate glycerides, the main component of animal fat. How-
ever, it can be difficult to tell one glyceride apart from another
subtly different glyceride using current analytical methods such
as mass spectrometry. Thus, we developed a method of dis-
criminating glycerides using an array of cross-reactive proteins in
conjunction with pattern recognition algorithms. By incorporating
an olefin metathesis pretreatment step, we were able to distin-
guish glyceride regio- and stereoisomers and to predict these
structural features. Finally, we achieved quantitation of glycerides
in mixtures.

Author contributions: K.L.D., M.A.I., S.R., S.M.P., G.M., and E.V.A. designed research; K.L.D.,
M.A.I., and S.R. performed research; K.L.D., M.A.I., S.R., S.M.P., G.M., and E.V.A. contributed
new reagents/analytic tools; K.L.D., M.A.I., S.R., and E.V.A. analyzed data; and K.L.D. and E.V.A.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: anslyn@austin.utexas.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1508848112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1508848112 PNAS | Published online July 14, 2015 | E3977–E3986

CH
EM

IS
TR

Y
PN

A
S
PL

U
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1508848112&domain=pdf
mailto:anslyn@austin.utexas.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508848112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508848112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1508848112


these variations render the quantification of glycerides, particu-
larly in a complex mixture, quite challenging when using MS (22).
Regio- and stereoisomers further confound the discrimination

of glycerides by MS, because isomers share the same mass. Other
techniques such as chemical derivitization of the glycerides, ion
fragmentation, and specialized HPLC must be coupled with MS
to effect differentiation of isomeric species. For example, ozo-
nolysis has been used to cleave the double bonds in unsaturated
glycerides before ionization to deduce the positions of double
bonds (23). Nonaqueous reverse-phase (NARP)-HPLC can re-
solve cis/trans isomers of triacylglycerols and double-bond posi-
tional isomers after treatment of the olefins with bromine (24).
Silver ion chromatography has been used to separate triacy-
lglycerol positional isomers under specifically developed solvent
and column temperature conditions (25). Silver cationization as
a postcolumn treatment in conjunction with NARP-HPLC and
ion fragmentation has also been used for triglyceride positional
isomer determination (26, 27) Thus, although these current ap-
proaches to glyceride isomer analysis have been successful, they
are complicated, labor intensive, time-consuming, and at times
inconsistent in their results (26).

Because glycerides are structurally very similar to one another,
we believed that a differential sensing array-based approach would
be most suitable for their classification. Our hypothesis was that
if a cross-reactive array could be created that was responsive to
the subtle structural differences inherent in glycerides, it could
be used to pattern individual glycerides, identify structural fea-
tures of unknown glycerides, and potentially quantitate glycer-
ides in a mixture. Cross-reactive arrays have been successfully
used in a number of sensing applications (28–33). Differential
sensing mimics the mammalian senses of olfaction and gustation
by detecting the pattern of response of an analyte to a collection
of semiselective receptors (34, 35). In mammals, the character-
istic pattern for a scent or taste is interpreted and stored by
the brain (36). In the laboratory, chemometric routines such
as principal component analysis (PCA) and linear discriminant
analysis (LDA) are used to extract the relevant information from
the array. Both PCA and LDA are multivariate methods that
reduce the dimensionality of a data set. PCA does so by finding
unbiased orthogonal axes that describe decreasing extents of
variance in the data derived from different samples (classes) and
repetitions of the samples (37). Any grouping of like samples

Fig. 1. Glyceride panel with structures and names.
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represents intrinsic similarities between the sample datasets
whereas separate classification represents differences in that
variable space. LDA classifies samples by calculating discriminant
functions that maximize the separation between predetermined
classes and minimizes the separation within these classes (38, 39).
Thus, LDA is a supervised method, meaning that the classes are
provided as inputs into the algorithm. For this reason, a validation
method called a leave-one-out cross-validation is used to test the
predictive value of the model. Further, LDA can be used to pre-
dict the identity of unknowns by identifying which classes in the
training set the unknowns most resemble.
Therefore, the goal of this project was to develop an array of

cross-reactive receptors that could discriminate glycerides. The
glycerides selected are shown in Fig. 1. The panel includes
commercially available mono-, di-, and triacylglycerols with fatty
acid alkyl groups that are relevant to mammalian biology (40).
Moreover, the panel consists of examples of each of the fol-
lowing stereo- and regioisomers: (i) cis/trans olefins (D1 and D2;
T2 and T3), (ii) differing position of the olefin (T3 and T4), and
(iii) differing position of the fatty acid alkyl groups on the glyc-
erol (D5 and D6). Clearly, it would be extremely challenging to
create highly selective receptors for each individual glyceride,
and thus a differential sensing method seems the only reasonable
approach to creating an optical sensing routine to identify and
classify these structures.
Because glycerides are extremely hydrophobic analytes, we

postulated that serum albumins (SAs) would be suitable cross-
reactive receptors with which to test our hypothesis. SA is a
common plasma protein that binds hydrophobic molecules to
transport them through the hydrophilic environment of blood
plasma (41). The protein binds a number of endogenous com-
pounds: long-chain fatty acids (Ka = 106–107 M−1) (42), bile acids
(Ka = 103–105 M−1) (43), and steroids (Ka = 103–105 M−1) (44–46),
as well as many drugs, toxins, and fluorophores (41). Despite being
composed of fatty acid alkyl groups, glycerides bind less tightly to
SAs and in a different location than their fatty acid counterparts
(47). The primary sequence of SAs differs between species, which
thus exhibit differences in ligand binding (41). Previously, we have
used arrays of SAs for the differentiation of other hydrophobic
analytes including fatty acids (48), terpenes (49), and plasticizers
(50). However, none of these previous studies involved differences
between the analyte structures as subtle as glycerides do, nor had
we challenged our methods to identify structural aspects of an
unknown. Furthermore, we had never implemented a quantitation
assay in a complex mixture. Because the binding of ligands to SAs
is known to depend on subtle differences in their structure (41),
we anticipated that success could be achieved but would be highly
dependent upon the signaling modality and potentially analyte
prederivitization.
Thus, herein we describe a method using SAs to fingerprint

glycerides that classifies them as mono-, di-, or triglycerides. The
glycerides were further classified based on fatty acid chain
length, ester positions on glycerol, and olefin regio- and stereo-
chemistry. For the unsaturated glycerides in the panel, differ-
entiation based on olefin position and stereochemistry was
achieved by the use of a pretreatment olefin metathesis. Using
the protocols described herein, structural features of unknown
glycerides could be identified. Furthermore, the quantitation of
trilinolein in a mixture of triglycerides was achieved by applica-
tion of the standard addition method using a net analyte signal
technique (SANAS) presented herein.

Results and Discussion
Indicator Uptake Experiments with SA and Triglyceride. The optical
signaling approach we envisioned required that fluorophores
bind to the SAs, and signal the addition of glycerides upon binding
to the SAs. To identify appropriate fluorophores for the sensing
ensemble, several candidates were screened for their fluores-

cence modulation both in the presence of bovine serum albumin
(BSA) and triglycerides. The triglycerides were insoluble in water
but dissolved in the presence of SA, presumably due to binding in
the hydrophobic sites of the protein. Thus, indicator uptake ex-
periments were undertaken in which a SA/triglyceride solution was
titrated with a fluorescent indicator. The change in emission of the
indicator in the presence of the triglyceride was compared with the
indicator’s change in emission when it was added to SA alone.
This protocol revealed which fluorophores bind the SAs and
modulate in the presence of glycerides. The fluorophores screened
included dansyl amide (DNSA), 2-anthracenecarboxylate (2-AC),
1-anilinonapthalene sulfonic acid (ANS), and a nitrobenzoxadiazole
fatty acid (NBD-FA). The first three compounds were known
previously to bind to SA (41). We synthesized NBD-FA by a lit-
erature procedure (SI Appendix) (51).
An example of these indicator uptake experiments is shown in

Fig. 2 for NBD-FA, whereas the titrations for the other in-
dicators can be found in SI Appendix, Figs. S2–S4). When NBD-
FA was added to SA, its emission increased (“BSA” in Fig. 2);
however, when trimyristin (T6) was present with the BSA, this
increase in emission was attenuated (“BSA/T6” in Fig. 2), in-
dicating that the binding of T6 to SA was inhibiting the binding
of NBD-FA. It should be noted that the decrease in emission
at concentrations above 100 μM NBD-FA was attributed to self-
quenching as multiple NBD-FAs bind to the SA.
DNSA and NBD-FA were inhibited in their binding to SA in

the presence of triglycerides and therefore were suitable for use
in the array. The other indicators, 2-AC and ANS, did not de-
monstrate significant inhibition in binding to SA in the presence
of trimyristin. However, we chose to include ANS in the array as
it is commonly used to probe the folding of SAs because it binds
in the crevices between domains (41). We anticipated it would
respond to other glycerides even if our initial tests with trimyristin
did not reveal emission modulations.

First Iteration of the Well-Plate Array. The cross-reactive array was
constructed using 96-well plates. As a preliminary test of the ar-
ray’s ability to differentiate the glycerides, an assortment of eight
mono-, di-, and triglycerides from the total panel (Fig. 1) were
selected. These glycerides were mixed with individual combina-
tions of the three indicators (DNSA, NBD-FA, and ANS) and
bovine and human serum albumin (six combinations: BSA/DNSA,
human serum albumin (HSA)/DNSA, BSA/NBD-FA, HSA/
NBD-FA, BSA/ANS, and HSA/ANS) in a 96-well plate with 8
replicates for each glyceride, and the emission of each well was
recorded.

Fig. 2. Addition of NBD-FA (0–155 μM) to BSA (100 μM) and to BSA (100 μM)/T6
(90 μM) in 10 mM phosphate buffer, pH 7.00, 0.02% NaN3; <0.3% THF; λex =
470 nm, λem = 540 nm.
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A LDA score plot of the fluorescence data collected from
this array is shown in Fig. 3A, which has a 98% cross-validation
analysis. Whereas the eight glycerides were differentiated by
this array with high accuracy, there was significant visual overlap
along the F1 and F2 axes of three of the glycerides. D1 and D2,
which are cis/trans isomers of one another, were not well dis-
criminated, and T5 was also poorly separated. The fact that our
approach demonstrated overlap of unsaturated glycerides with
only 8 of the 20 total targets in the panel caused us to reconsider
the approach. Because differences between the unsaturated glyc-
erides were the hardest to discriminate, we anticipated even
further problems when attempting to classify the position, ste-
reochemistry, and number of double bonds.

Olefin Metathesis of Glycerides. One strategy to discriminate the
differences in the olefins would be their derivitization. We con-
templated the use of bromination and dihydroxylation, but ulti-
mately chose olefin metathesis. Metathesis reactions of glycerides
and fatty acids have been previously explored with the intent of
using these compounds to make chemical products more sus-
tainably (52, 53). Such a prior derivitization approach is similar
in principle to the use of other olefin reactions, such as halogen

addition (24) and silver cationization, which are able to resolve
stereo- and regioisomers of glycerides when combined with
NARP-HPLC–MS methods (26).
Olefin metathesis was chosen for several reasons. First, using a

metathesis reaction results in products of differing length de-
pending upon the positions of the olefins in the glycerides, thus
potentially making the products from such glycerides unique.
Second, olefin metathesis catalysts have differing reactivity toward
cis and trans stereoisomers (54), thus leading to different extents
of metathesis depending upon the stereochemistry of the starting
fatty acid chains. Third, the reaction conditions are relatively mild,
and the reaction mixture can be used directly in the SA array
without any purification. This factor allows the cross-metathesis
reactions of multiple glycerides to be performed in parallel in a
polypropylene well plate for efficient workflow. Lastly, this re-
action could be used to introduce an additional fluorophore for
optical analysis. Our strategy therefore used fluorescein conju-
gated to an olefin, resulting in mixed olefin products.
With these goals in mind, the allyl fluorescein derivative AF

(Fig. 4) was synthesized according to a literature procedure
(55, 56). As a model reaction, we screened several different re-
action conditions for cross-metathesis between AF and mono-
erucin (M1) to optimize the reaction conditions (SI Appendix,
Table S2). The conditions that were selected to be optimal for
our purposes are shown in Fig. 4. LC-MS analysis of the reaction
mixtures confirmed the conversion of AF to mixed glyceride and
AF-containing compounds.
Once the optimal conditions were identified, all of the un-

saturated glycerides in the panel were subjected to the cross-
metathesis reaction in parallel in the same manner in a well
plate, and the reaction mixtures were analyzed by LC-MS to
determine that AF was metathesizing with the glycerides and that
the conversion was reproducible. In these experiments, the AF-
glyceride products observed in the LC-MS analysis contained the

Fig. 3. LDA plots of data collected from 96-well plates without olefin me-
tathesis (A) and with olefin metathesis (B). (A) BSA and HSA (100 μM), glyceride
(90 μM), DNSA (60 μM), ANS (60 μM), and NBD-FA (60 μM) in phosphate buffer
with <2% (wt/vol) THF (see SI Appendix, Table S1 for read parameters) and
(B) BSA and HSA (100 μM), glyceride (90 μM), DNSA (60 μM), ANS (60 μM), and
NBD-FA (60 μM), metathesized glyceride (90 μM), AF (100 μM), and DNSA
(60 μM) in phosphate buffer with <5% (vol/vol) THF (see SI Appendix,
Table S4 for read parameters).

Fig. 4. Olefin metathesis of monoerucin (M1).
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alkyl portion of the glyceride, as in 1, and smaller amounts of
products such as 3. SI Appendix, Table S3 summarizes the per-
cent conversion of AF to the corresponding mixed product
(1 type) for each unsaturated glyceride. The chromatogram for
absorption at 280 nm was used to quantitate the conversion, and
we assumed that the extinction coefficient at that wavelength for
AF and AF-glyceride species did not differ significantly. In each
reaction, some unreacted AF remained, and some of product 2,
which results from the catalyst loading used, was also observed.
Finally, it is highly likely that olefin combinations that did not
involve AF (i.e., self-metathesis of the glyceride) are also gen-
erated in the reaction. However, these species were not observ-
able using conventional LC-MS analysis. Although the conversion
differed for each glyceride, all of the glycerides were found to
metathesize with AF.

Exploring Förster Resonance Energy Transfer with DNSA and AF.
Dansyl and fluorescein moieties have been reported to act as a
Förster resonance energy transfer (FRET) pair (57, 58), and
therefore we investigated this property with the metathesized
glycerides. FRET would be advantageous to the chemometric
patterning because it would add an additional facet of cross-
reactivity to the array. To test whether FRET occurred between
DNSA and 1 in the presence of BSA, we measured the emission
spectra of solutions of DNSA/BSA, 1/BSA, and DNSA/1/BSA
by exciting at 350 nm (Fig. 5). These data support FRET be-
cause the DNSA/1/BSA sample exhibits emission at the λmax
of 520 nm for fluorescein that was much higher in intensity
than the 1/BSA sample. We also performed a titration in which
DNSA was titrated into BSA/1 while exciting at 350 nm (for
dansyl) and observed an increase in emission of fluorescein
with a λmax at 520 nm (SI Appendix, Fig. S5), which supports
FRET between DNSA and 1 when they are both bound to BSA.
Hence, we added DNSA to the metathesized glycerides as a
simple way to generate additional cross-reactivity.

Second Iteration of the Well-Plate Array. Once we had established
that the olefin metathesis reaction was successfully mixing AF
with fragments of the unsaturated glycerides in our panel, we
were ready to incorporate this reaction into the well-plate array
with SA. To do so, we performed the metathesis reaction on
the glycerides in a well plate in chloroform. However, because
chloroform is immiscible with buffered SA solutions, after me-
tathesis the chloroform was allowed to evaporate, and the residues
were taken up in tetrahydrofuran (THF). The THF solutions of
the glyceride metathesis reactions were then exposed to BSA and
HSA, separately, in a 96-well plate. DNSA was added to one set of

BSA and HSA plates, and buffer was added to another set of BSA
and HSA plates. For the plates that contained DNSA, the emis-
sion of fluorescein, DNSA, and the FRET pair between the two
fluorophores was measured. For the plates without DNSA, only
the emission of the fluorescein was measured. We wanted to
measure the fluorescein emission both in the absence and pres-
ence of DNSA to see if there was a significant difference in this
signal and thus an additional variable in our array. The first iter-
ation of the well-plate array was also performed exactly as de-
scribed above for each glyceride. Both sets of fluorescence data
were used in the pattern recognition algorithm for a total of 14
variables (Fig. 6).
The LDA plot generated for eight glycerides is shown in Fig.

3B. The cross-validation was 100%. The clustering within repli-
cates of the same glyceride in this plot (Fig. 3B) was much tighter
than in the plot generated using only the first iteration of the
well-plate array (Fig. 3A), and the separation between different
glycerides was more marked. In particular, compared with Fig.
3A, the cis isomer D2 was discriminated from its trans isomer D1,
and T5 no longer overlaps with D1 and D2.
From the factor-loading plot (Fig. 6), we concluded that the

metathesis parameters contributed significantly to the discrimi-
nation. A factor-loading plot shows the contribution of each of
the original input variables to each factor axis in the reduced
variable space. The loading plot in Fig. 6 shows that the metathesis
variables, which are marked in red, contribute significantly to F1
and F2. This result supports our hypothesis that the metathesis
reaction would improve the differentiation of a panel of glycerides
containing unsaturated species.

Array Reproducibility. Next, we wanted to be sure that we could
replicate the results of the array. In other words, we wanted to
know if we would get essentially the same pattern for the glyc-
erides each time we performed an independent repetition of the
entire experiment, including repeating the metathesis reaction
and starting from newly prepared stock solutions of all of the
array components. Such a complete reproduction has rarely, if
ever, been discussed in papers describing differential sensing
routines. Hence, we performed an independent repetition of the
array on those same eight glycerides two more times for a total of
three data sets. The LDA plots for these repetitions can be found
in SI Appendix, Fig. S6. The relative position of all eight glycerides

Fig. 5. Fluorescence spectra for DA/BSA (250 μM/100 μM), 1/BSA (90 μM/100
μM), and DA/1/BSA (250 μM/90 μM/100 μM) in 10 mM phosphate buffer,
pH 7.00, 0.02% NaN3; λex = 350 nm.

Fig. 6. Loading plot corresponding to the LDA in Fig. 3B. DNSA1 refers to the
nonmetathesis part of the assay, whereas DNSA2 refers to the measurement of
the DNSA emission in the presence of the metathesized glycerides. AF1 refers
to the fluorescein emission in the absence of any DNSA, whereas AF2 refers to
the fluorescein emission in the presence of DNSA.
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was essentially the same for each plot, and we concluded that the
array is reproducible.
To further test the consistency of the array, we used LDA as a

predictive tool. Because LDA entails that the classes be given as
inputs, one can take two sets of data, in our case the independent
repetitions of the array on those eight glycerides, and assign one
as a training set and the other as a prediction set. The training set
teaches the algorithm which responses from the array corre-
spond to which glyceride, and then the algorithm can assign the
glyceride identity to the sets of array responses in the prediction
set. Hence, we alternately treated each of the three repetitions as
the training set or the prediction set. For 64 data points in each
set (8 replicates of 8 glycerides), the average accuracy was 87%
for the 6 combinations of the 3 independent replications (SI
Appendix, Table S5).

Analysis of the Full Glyceride Panel. Finally, we performed the full
14-variable array on all 20 glycerides in the panel. A LDA plot
was obtained with a cross-validation of 98% (Fig. 7). The only
error in classification in the cross-validation was between one re-
plicate of the saturated triglyceride T7, which was misclassified
as another saturated triglyceride T8. In general, the unsaturated
di- and triglycerides are on the right side of the plot, whereas the
saturated glycerides are on the left side. Within the unsaturated
glycerides, there is very clear separation between all of the
mono-, di-, and triglycerides. The unsaturated monoglyceride
M1 is associated more closely with the saturated glycerides on
the left side of the plot. However, this result is reasonable be-
cause M1 metathesizes poorly (SI Appendix, Table S3). The two
glycerides that consist of fatty acid alkyl groups with multiple
double bonds (T5, D4) are found near one another at the bottom
center of the plot.
Moreover, the stereo- and regioisomers of the unsaturated di-

and triglycerides are successfully distinguished by the array.
Within the unsaturated diglycerides, the cis/trans isomers D1 and
D2 are discriminated from one another. Within the unsaturated
triglycerides, the olefin positional isomers T3 (olefin between
carbons 9 and 10) and T4 (olefin between carbons 6 and 7) are
also clearly separated. Furthermore, T2 contains fatty acid alkyl
groups that are stereoisomeric (cis) to the fatty acid alkyl groups
in T3 (trans), and these species are also clearly differentiated
from one another.
All of the saturated glycerides are also well discriminated,

although the separation is less marked than between the un-
saturated glycerides. This finding is unsurprising because the
metathesis reaction does not occur with the saturated glycerides,
and hence their discrimination would not be expected to be

as significantly improved by the pretreatment step. Within the
saturated mono-, di-, and triglycerides, the difference between
the compounds is simply the number of carbons in the fatty acid
alkyl chains; however, the panel does contain one regioisomer
pair, D5 and D6. D5 is esterified at the sn-1 and sn-3 positions of
glycerol, whereas D6 is esterified at the sn-1 and sn-2 positions
of glycerol. The array is able to differentiate these regioisomers
as well.
PCA (Fig. 8) also results in good discrimination of the glyc-

erides and similar groupings of glycerides based on their struc-
tural features to the LDA plot. In PCA, the identities of the
glycerides are not given as inputs, so the analysis only takes the
variance in the variables (i.e., emission signals for each receptor)
into account without knowing what the classes (i.e., identities of
the glycerides) are supposed to be. It is apparent in the PCA that
the SA-based receptors respond to the glycerides in a differential
manner. In other words, the receptors behave differently from
one another with each analyte. When receptors in an array be-
have similarly to one another, the PCA shows low dimensionality

Fig. 7. LDA plot of data collected from 96-well plates. The array components consisted of BSA and HSA (100 μM), glyceride (90 μM), DNSA (60 μM), ANS
(60 μM), NBD-FA (60 μM), metathesized glyceride (90 μM), AF (100 μM), and DNSA (60 μM) in phosphate buffer with <5% (vol/vol) THF (see SI Appendix, Table
S4 for read parameters). Cross-validation: 98%.

Fig. 8. PCA plot of data collected from 96-well plates. The array compo-
nents consisted of BSA and HSA (100 μM), glyceride (90 μM), DNSA (60 μM),
ANS (60 μM), NBD-FA (60 μM), metathesized glyceride (90 μM), AF (100 μM),
and DNSA (60 μM) in phosphate buffer with <5% (vol/vol) THF (see SI Ap-
pendix, Table S4 for read parameters).
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(i.e., most of the variance is described by one or two factor axes).
For example, if the receptors all display their highest emission
values in the presence of analyte 1 and the lowest emission
values in the presence of analyte 2, the PCA would be able to
describe the bulk of the variance in the data along a single factor
axis. In our case, the first five factor axes (F1–F5) describe 90%
of the variance in the data. The high dimensionality in the data is
indicative of receptors that respond differently from one another
to the analytes in the panel. High dimensionality in the data is
indicative of a truly cross-reactive array of receptors (59).

Prediction of Glyceride Structural Features. Because glycerides that
share structural features are grouped in the LDA and PCA plots,
we postulated that our array could be used to identify these fea-
tures in unknown glycerides. As a way of testing this hypothesis, an
independent reproduction of the array was performed on all 20
glycerides (LDA plot for this repetition is shown in SI Appendix,
Fig. S7), and the predictive feature of LDA was used. The data set
from one experiment was used as the training set, and the other
data set was used as the prediction set. The analyte classes that
were put into the LDA were structural features of the glycerides:
unsaturated triglyceride, saturated triglyceride, polyunsaturated
triglyceride, unsaturated diglyceride, saturated diglyceride, poly-
unsaturated diglyceride, unsaturated monoglyceride, and saturated
monoglyceride (Fig. 9 and SI Appendix, Fig. S8).
The LDA correctly assigned the glycerides in the training set

to its structural feature class in an average of 89% of 160 cases.
Because our array is primarily designed to target differences be-
tween unsaturated glycerides through the metathesis pretreatment,
we postulated that separating the saturated and unsaturated glyc-
erides from one another first would improve the accuracy of the
predictions. The analyte classes were assigned more generally to ei-
ther saturated, unsaturated, or polyunsaturated (SI Appendix, Fig. S9).
The LDA correctly assigned the glycerides in the training set
according to these classes in an average of 96% of 160 cases. Once it
was known whether the glycerides were saturated or unsaturated,
then whether they were mono-, di-, or triglycerides could be de-
termined. The training and prediction sets were split into saturated
and unsaturated. Within the unsaturated set, the analyte classes
were triglyceride, diglyceride, monoglyceride, polyunsaturated di-

glyceride, and polyunsaturated triglyceride (SI Appendix, Fig. S10).
With the saturated set, the analyte classes were triglyceride, di-
glyceride, and monoglyceride (SI Appendix, Fig. S11). For the un-
saturated set, the glycerides were assigned correctly in an average of
95% of the 80 cases, whereas for the saturated set, the glycerides
were assigned correctly in an average of 73% of the 80 cases. The
lower accuracy of the prediction for the saturated glycerides is un-
surprising because it is apparent in the LDA plot that the saturated
glycerides are less clearly separated from one another compared
with the unsaturated glycerides. However, overall, the array shows
a good ability to predict the structural features of glycerides
using LDA.

Quantitation of Trilinolein in Triglyceride Mixtures Using Standard
Addition.
Introduction to standard addition and net analyte signal. Because quan-
titation is one of the major challenges that MS analysis faces in
regard to glyceride analysis, we sought to demonstrate the use of
our assay for quantitation of a glyceride of interest within a mix-
ture of other glycerides. Because the receptors in the array are
semiselective in nature, the presence of glycerides other than the
species of interest in the mixture will interfere with the signal
elicited from the receptor by that species. Hence, we chose to use
the “standard addition” method to minimize the influence of the
other glycerides in the mixture on the quantitation of the glyceride
of interest.
Standard addition is a classic calibration method that is used

when matrix effects are present in a sample that interfere with
the signal the compound of interest elicits, confounding accurate
quantitation of that compound (60). Ordinarily, the experimen-
talist tries to remove interference from the sample whenever
possible; however, when it is not facile to physically remove the
interfering background matrix, standard addition can be used to
minimize the matrix’s effect on the analysis. Standard addition is
carried out by measuring the response of the mixture after suc-
cessive additions of the pure analyte of interest. By plotting the
response against the amount of the pure analyte in each addi-
tion, the concentration of the analyte of interest in the sample is
obtained by a linear fit of the data. The x intercept of the line is
the analyte concentration. This data analysis procedure is used

Fig. 9. LDA plot of training set of glycerides with analyte classes designated as structural features. The array components consisted of BSA and HSA (100 μM),
glyceride (90 μM), DNSA (60 μM), ANS (60 μM), NBD-FA (60 μM), metathesized glyceride (90 μM), AF (100 μM), and DNSA (60 μM) in phosphate buffer with
<5% (vol/vol) THF (see SI Appendix, Table S4 for read parameters). The fluorescence counts were expressed as a percentage of the total fluorescence for each
receptor/variable. Cross-validation: 100%.
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when dealing with univariate data (i.e., one signal, y, describes
the concentration, x, of the analyte); however, in the multivariate
case (i.e., multiple signals, y1, y2,. . .yn, describe the concentration,
x, of the analyte), the data analysis used to determine the analyte
concentration is necessarily more complicated (61).
In the literature, there are numerous examples of multivariate

standard addition procedures (62–67), usually dealing with spec-
tral or electrochemical data obtained from complex sample
mixtures. For our purposes, we chose to follow the mathe-
matical procedure developed by Hemmateenejad and You-
sefinejad, called SANAS, due to its simplicity and accuracy
(68). The net analyte signal (NAS) is defined as the portion of
the total signal that is directly related to the concentration of
the analyte (69). For some total signal elicited from a mixture,
some portion of the signal is due to the component of interest
and the rest is due to the background and other components
of the mixture. Lorber et al. have shown that the contribution
to the signal due to the component of interest, the NAS, can
be computed because it is orthogonal to the contribution to
the signal of the background and other components (70).
Linear algebra is used to determine this orthogonal part of the
signal as a vector. In this way, the influence of the matrix as
well as background noise can be removed.
In SANAS, the data are first subjected to dimensionality re-

duction, commonly by PCA or partial least-squares regression
(PLS). As described earlier in this article, these algorithms trans-
form the data into a space described by new orthogonal axes,
called factor axes, that are linear combinations of the original
variables (i.e., the signals y1, y2,. . .yn). These factor axes are chosen
by the algorithm according to different criteria depending on the
exact method used (e.g., PCA, LDA, or PLS), but in general these
criteria lead to factor axes that are more information dense. The
first factor axis (F1) contains the most relevant information about
the data, F2 the second most, and so on up to FN, where n =
number of original variables. With our data, we obtained better
results using PLS rather than PCA. PLS relates a matrix X (the
emission data from our array) to a property y (concentration of
the additions) (37). PLS uses maximum covariance as its criterion
for determining the new factor axes, unlike PCA, which uses
maximum variance. The advantage of using covariance is that it
includes both variance of X as well as correlation of X and y.
By rebuilding the data set from fewer factor axes than the total

number (for example, from F1–F3, discarding F4–F10), irrele-
vant information like noise, background, or interferences can be
removed from X. From the rebuilt data set (X′), the NAS for the
analyte of interest is calculated by using a type of singular value
decomposition method called rank annihilation (see ref. 60 for a
detailed account of this series of computations). The output is a
vector that describes the NAS. By plotting the Euclidean norm of
this vector (i.e., its magnitude) against the concentrations of the
additions, one obtains a plot that is equivalent to the one de-
scribed for the univariate case described above. The x intercept
of the linear fit has the same meaning as in the univariate case,
that is, the concentration of the analyte of interest in the mixture.
Applying SANAS to mixtures of glycerides. The first step in performing
the quantitative analysis with our array was to generate mixtures
of triglycerides with a known composition to study the accuracy

of the method. Mixtures consisting of T1, T3, T5, T6, and T7
were carefully prepared (SI Appendix, Table S6). Weight/volume
concentrations were used because the molecular weights differ
for different glycerides. The mixture solution was aliquoted into
vials and each aliquot was spiked with an increasing amount of
pure T5 at a constant total volume for seven additions. The eight
resultant solutions were then subjected to the array, and the
fluorescence data were obtained as described previously. The
final concentration of T5 from the mixture that was in the well
plates of the array is shown in Table 1. This concentration is
the one that we were measuring. The data from the array were
normalized and then subjected to PLS analysis. The data were
rebuilt from F1 only (mixtures A, B, C) or from F1 and F2
(mixture D) to obtain the closest estimates. In all cases, F1 de-
scribed 90% or more of the covariance in the data sets.
From the rebuilt data matrix, the net analyte signal (kNASk)

was calculated and plotted against the additions to give SANAS
plots (Fig. 10 and SI Appendix, Figs. S12–S14). From these plots,
the concentration of T5 in the mixture was determined by finding
the x intercept of the linear fit (Table 1). Good estimates of the
concentration of T5 in the mixtures were obtained for mixtures
B, C, and D; however, a larger overestimation of the concen-
tration of T5 in mixture A was obtained. We attribute this error
to poor linearity in the response of the sensors to the additions of
T5 that is evidenced by the lower correlation coefficient for the
linear fit in the SANAS plot for mixture A (Table 1). Some of the
nonlinearity was likely due to random experimental errors in
solution and plate preparation. However, some deviations from
linearity of the responses to the additions to all of the mixtures
are inherent to the experimental method. The fluorescence sig-
nal collected from each well of the plate is mediated by the SA,
fluorophore, and glycerides in the solution and is an indirect
measurement of the T5 content. Hence, we expect that non-
linearity in the response results from both the saturation be-
havior of ligand binding to SA as well as binding competition
from glycerides in the mixture that are not T5. Nevertheless, for
mixtures B, C, and D the array response showed a good linear
dependence on the additions of T5. The SANAS method was

Table 1. Results for T5 concentration in triglyceride mixtures from SANAS

Mixture
Total concentration of the

mixture, mg/mL
Actual T5 concentration,

mg/mL
Predicted concentration,

mg/mL R2 of SANAS plot

A 0.04 0.0113 0.0338 0.7403
B 0.04 0.0158 0.0160 0.9517
C 0.01 0.0053 0.0056 0.9519
D 0.01 0.0042 0.0047 0.9664

Fig. 10. SANAS plot generated from the standard addition of mixture D.
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able to provide quite accurate values for the T5 content without
the necessity for removing or otherwise separating out the other
triglycerides in the mixture.

Conclusions
In this work, we report an array of cross-reactive SAs and fluo-
rescent indicators to discriminate a panel of structurally similar
glycerides. An olefin cross-metathesis reaction with an AF spe-
cies was used to pretreat the samples before array analysis to
distinguish unsaturated glycerides. Using this assay, we success-
fully discriminated 20 mono-, di-, and triglycerides, including ste-
reo- and regioisomeric pairs. These isomer types included cis/trans
stereoisomers, double-bond positional regioisomers, and positional
regioisomers on the glycerol core. Using LDA, we were able to
predict structural characteristics of the glycerides. Finally, we de-
monstrated the use of multivariate standard addition with a cross-
reactive array of chemosensors. We used our array to perform a
standard addition of trilinolein to a mixture of triglycerides. By ap-
plying the established SANAS method, we were able to quantitate
the trilinolein in the mixture.

Materials and Methods
General. The arrays were prepared in Costar 96-well plates (#3915). The plates
were analyzed using a Biotek Synergy 2 Multimode Microplate Reader or
a Biotek Cytation 3 Microplate Reader. LDA, PCA, and data normalization
were done using XLSTAT 2011. The SANAS code was run on MATLAB 2014.

Glyceride Array (Part 1). Concentrated stock solutions of each glyceride were
prepared in THF (concentrations on the order of millimolar). Stock solutions
of human and BSA were prepared in 10 mM phosphate buffer (pH 7.0, 0.02%
NaN3) at a concentration of 500–700 μM. SA–glyceride solutions were pre-
pared from these stocks at concentrations of 150 μM SA and 135 μM glyc-
eride [3% (vol/vol) THF, 97% (vol/vol) 10 mM phosphate buffer, pH 7.0,
0.02% NaN3]. Concentrated stock solutions of DNSA and NBD-FA were
prepared in DMSO. A concentrated stock solution of ANS was prepared in 10
mM NaOH (aq). Then, solutions of each of the three indicators at a con-
centration of 180 μM in 10 mM phosphate buffer, pH 7.0, 0.02% NaN3

were prepared.
The plates were made by placing 200 μL of each SA–glyceride solution and

100 μL of the 180 μM indicator solution in each well [final concentrations:
100 μM SA, 90 μM glyceride, 60 μM indicator, 2% (vol/vol) THF]. Each plate
contained a column of indicator alone and a column of indicator and SA as
controls. Eight replicates were performed for each glyceride/SA/indicator
combination and for the controls.

The parameters for the reading of the well plates can be found in SI
Appendix, Table S1. The fluorescence data were normalized by first sub-
tracting the emission of the control (indicator alone) from each data point,
and then the data set was rescaled from 0 to 100.

Well-Plate Metathesis Reaction. Concentrated stock solutions of each glyc-
eride were prepared in chloroform (concentrations were on the order of
millimolar). Solutions of AF and Grubbs SecondGeneration Catalyst (G2) were
also prepared in chloroform. These solutions were applied to a deep-well
polypropylene plate such that each well contained 2 mM glyceride, 2.2 mM
AF, and 0.4mMG2 in a total volume of 1mL of chloroform. Two controls were
also included that contained only AF and G2. The plate was placed in an oven
and heated at 50 °C for 2 h. Then the plate was removed and left in the fume
hood to finish evaporating the chloroform overnight at ambient tempera-
ture and pressure. The next day, the dry material that remained in each well
was taken up in 1 mL of THF with thorough mixing via a glass pipette to
completely dissolve all of the material in the THF.

Glyceride Array with Metathesized Glycerides (Part 2). The solutions from the
metathesis reaction in 1mL of THFwere used directly. Solutions of human and
BSA were prepared in 10 mM phosphate buffer (pH 7.0, 0.02% NaN3) at a
concentration of 550 μM. SA–glyceride solutions were prepared from these
stocks at concentrations of 150 μM SA, 135 μM glyceride, 149 μM AF, and
27 μM G2 [6.8% (vol/vol) THF, 93.2% (vol/vol) 10 mM phosphate buffer,
pH 7.0, 0.02% NaN3]. A concentrated stock solution of DNSA was prepared
in DMSO. Then a solution of DNSA at a concentration of 180 μM in 10 mM
phosphate buffer, pH 7.0, 0.02% NaN3 was prepared.

The plates were made by placing 200 μL of each SA–glyceride solution and
100 μL of buffer or of the 180 μM dansyl solution in each well [final con-
centrations: 100 μM SA, 90 μM glyceride, 99 μM AF, 60 μM DNSA, 4.5%
(vol/vol) THF]. Each plate contained a column of indicator alone and a col-
umn of indicator and SA as controls. Eight replicates were performed for
each glyceride–SA combination with either DNSA/AF or only AF and for
the controls.

The parameters for the reading of the well plates can be found in SI
Appendix, Table S3. The fluorescence data were normalized by first
subtracting the emission of the control (indicator alone) from each data
point, and then the data set was rescaled from 0 to 100.
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