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Abstract

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We 

performed whole-genome sequencing and copy number variation (CNV) analysis of 100 

pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene 

disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, 

SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis 

(KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) 

classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, 

locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, 

many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and 

PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with 

inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature 

of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals 

with these measures of defective DNA maintenance responded.

Pancreatic cancer (PC) has a median survival of 6 months and a 5-year survival that remains 

less than 5% despite 50 years of research and therapeutic development1. It is the fourth 
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commonest cause of cancer death in Western societies and is projected to be the second 

leading cause within a decade. As a consequence, there is an urgent need to better select 

patients for current therapies and develop novel therapeutic strategies.

Recent exome and CNV analyses of pancreatic ductal adenocarcinoma have revealed a 

complex mutational landscape2,3.Activating mutations of KRAS are near ubiquitous and 

inactivation of TP53, SMAD4 and CDKN2A occur at rates of >50%. The prevalence of 

recurrently mutated genes then drops to ~ 10% for a handful of genes involved in chromatin 

modification, DNA damage repair and other mechanisms known to be important in 

carcinogenesis; however, a long tail of infrequently mutated genes dominates, resulting in 

significant intertumoural heterogeneity. Faced with this diversity, it is not surprising that 

therapeutic development using an unselected approach to patient recruitment for clinical 

trials has been challenging2–4.

Somatic structural rearrangement of chromosomes represents a common class of mutation 

that is capable of causing gene disruption (such as deletion or rearrangement), gene 

activation (for example, copy number gain or amplification) and the formation of novel 

oncogenic gene products (gene fusions). Many of these events actively drive 

carcinogenesis5,6 and in some instances present therapeutic targets. Early karyotyping7 and 

more recent genomic sequencing of small numbers of primary tumours (n = 3) and 

metastases (n = 10) suggests that PDAC genomes contain widespread and complex patterns 

of chromosomal rearrangement8,9.

Here we performed deep whole-genome sequencing of 100 PDACs and show that structural 

variation (variation in chromosomal structure) is an important mechanism of DNA damage 

in pancreatic carcinogenesis. We classify PDAC into four subtypes based on structural 

variation profiles and implicate molecular mechanisms underlying some of these events. 

Finally, as proof of concept, we use a combination of structural variation, mutational 

signatures and gene mutations to define putative biomarkers of therapeutic responsiveness 

for platinum-based chemotherapy, which are current therapeutic options for PDAC10–14, and 

for therapeutics that target similar molecular mechanisms such as PARP inhibitors15 that are 

currently being tested in clinical trials.

Genomic landscape of pancreatic cancer

Patients were recruited and consent obtained for genomic sequencing through participating 

institutions of the Australian Pancreatic Cancer Genome Initiative (APGI; htpp://

www.pancreaticcancer.net.au) as part of the International Cancer Genome Consortium 

(ICGC; http://www.icgc.org)16 (Supplementary Table 1). Array-based CNV was analysed 

using GAP17 and tumour cellularity estimated with qPure18. Whole-genome sequencing was 

performed on 100 primary PDACs with an epithelial cellularity of ≥ 40% (n = 75), and 

complemented by cell lines derived from APGI participants (n = 25) to an average depth of 

65×, and compared to the germline (average depth 38×) (Supplementary Table 2). Mutations 

were detected using qSNP19 and GATK and indels called with Pindel and GATK.
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Point mutations and structural variation in PDAC

A total of 857,971 somatic point mutations and small insertions and deletions were detected 

in the cohort: 7,888 were non-silent mutations in 5,424 genes (Supplementary Tables 3 and 

4). Orthogonal validation of >3,000 exonic mutations estimated the accuracy of mutation 

calls at >95% (Methods). Consistent with previous estimates20, the average mutational 

burden across the cohort was 2.64 per Mb (range 0.65–28.2 per Mb). Somatic structural 

variants were identified with the qSV package, which uses multiple lines of evidence to 

define events (discordant pairs, soft clipping and split reads). Events verified using an 

orthogonal sequencing method were also included (Methods and Extended Data Fig. 1a). 

Where possible, these events were cross-referenced with CNV data (Methods). In total, 

11,868 somatic structural variants were detected at an average of 119 per individual (range 

15–558) (Supplementary Table 5 and Extended Data Fig. 1b). The majority of structural 

variants were intra-chromosomal (10,114) and were classified into 7 types: intra-

chromosomal rearrangements (5,860), deletions (1,393), duplications (128), tandem 

duplications (179), inversions (1,629), fold-back inversions (579) and amplified inversions 

(346); inter-chromosomal translocations were less prevalent (1,754) (Supplementary Table 

6). A total of 6,908 rearrangements directly disrupted gene sequences and 1,220 genes 

contained a breakpoint in 2 or more patients (Supplementary Table 7). Recurrent gene 

fusions were not detected: 1,236 structural variants led to the joining of two gene loci, 

however, only 183 of these events were fused in an orientation and frame that was capable 

of expressing a product, and none of these predicted fusion events occurred in more than one 

sample.

Genes affected by mutation and structural variation

Commonly mutated genes that characterize PDAC (KRAS, TP53, SMAD4 and CDKN2A)2,3 

were reaffirmed as significant using MutSig21 analysis (Supplementary Table 8). Combining 

structural variation events with deleterious point mutations increased the prevalence of 

inactivation events for TP53 to 74% (3 structural variants and 71mutations), 31%for SMAD4 

(9 structural variants and 22 mutations) and 35%for CDKN2A (11 structural variants and 24 

mutations). Two additional genes not previously described in human PDAC (KDM6A and 

PREX2) had recurrent pathogenic mutations and structural variants at a rate of 10% or more. 

KDM6A is a SWI/SNF interacting partner that was identified in a pancreatic sleeping-beauty 

transposon mutagenesis screen22, and is mutated in RCC and medulloblastoma. In our 

cohort, KDM6A was inactivated in 18% of patients, (4 frame shifts, 1 in-frame deletion and 

2 missense mutations, 5 structural variants and 8 homozygous deletions). In most cases (n = 

15), both alleles of KDM6A were affected. The RAC1 guanine nucleotide exchange factor 

PREX2, mutated in melanoma23 was inactivated in 10% of PDAC patients (1 frame shift, 1 

splice site and 5 missense mutations, 2 structural variants and1 homozygous deletion). In 

addition, the tumour suppressor gene RNF43, originally identified in cystic tumours of the 

pancreas, was inactivated in 10% of PDAC patients (4 frameshift and 4 nonsense mutations, 

2 structural variants). Two of these PDACs had an associated intraductal papillary mucinous 

neoplasm (IPMNs). Recent studies have suggested that loss of functional RNF43 may confer 

sensitivity to WNT inhibitors24. Figure 1 shows the prevalence of aberrations in key driver 
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genes and pathways in PDAC; implicating structural variation as an important mutational 

mechanism in pancreatic carcinogenesis.

Subtyping using structural rearrangements

The distribution of events was used to classify tumours into the following four subtypes 

(Fig. 2 and Extended Data Fig. 2 and Methods).

Stable subtype

Subtype 1 was classified as ‘stable’ (20% of all samples). These tumour genomes contained 

≤ 50 structural variation events and often exhibited widespread aneuploidy suggesting 

defects in cell cycle/mitosis (Extended Data Fig. 3). Point mutation rates for KRAS and 

SMAD4 were similar to the rest of the cohort, and the prevalence of TP53 mutations was 

only slightly less (61% versus a mean of 70%across all samples). In addition, telomere 

length was no different in comparison to other subgroups.

Locally rearranged subtype

Subtype 2 was classified as ‘locally rearranged’ (30% of all samples). This subtype 

exhibited a significant focal event on one or two chromosomes. The group could be further 

divided into those with focal regions of gain/amplification and those that contained complex 

genomic rearrangements (Extended Data Fig. 4). Approximately one-third of locally 

rearranged genomes contained regions of copy number gain that harboured known 

oncogenes (Supplementary Table 9). These included common focal amplifications in KRAS, 

SOX9 and GATA6 and often included therapeutic targets such as ERBB2, MET, CDK6, 

PIK3CA and PIK3R3, but at low individual prevalence (1–2% of patients) (Supplementary 

Table 9). The remaining local rearrangements involved complex genomic events such as 

breakage–fusion–bridge (BFB, n = 9) or chromothripsis5,25 (n = 15), which resulted in a ring 

chromosome in at least one case (ICGC_0059) (Extended Data Figs 5 and 6). 

Chromothripsis is linked to TP53 mutations in medullobastoma and acute myeloid 

leukaemia and here, 10/13 chromothriptic tumours had a TP53 mutation, 5 of which were 

bi-allelic (Fig. 1). Five of these chromothriptic events occurred after chromosomal 

duplication suggesting that they are less likely to be driving carcinogenesis (Methods).

Scattered subtype

Subtype 3 was classified as ‘scattered’ (36% of all samples). Tumours in this class exhibited 

a moderate range of non-random chromosomal damage and less than 200 structural variation 

events (Extended Data Fig. 7).

Unstable subtype

Subtype 4 was classified as ‘unstable’ (14%of all samples). The tumours exhibited a large 

number of structural variation events (>200; maximum of 558) (Extended Data Fig. 8). This 

scale of genomic instability suggested defects in DNA maintenance26, which potentially 

defines sensitivity to DNA-damaging agents (Fig. 3a; Methods).
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Genomic markers of defective DNA maintenance

We mapped the relationship between the unstable subtype, mutations in BRCA pathway 

genes and a recently described mutational signature associated with deleterious mutations in 

BRCA1 or BRCA2 in breast, ovarian and pancreatic cancer20. The majority of unstable 

tumours (10 of 14) fell within the top quintile of the BRCA signature when ranked by 

prevalence per Mb (Fig. 2b). In addition, the top quintile of the BRCA signature was 

associated with deleterious mutations of BRCA1 (n = 2), BRCA2 (n = 7), and PALB2 (n = 2) 

(Fig. 2b) (Supplementary Table 10). Four of the BRCA2 mutations were germline in origin 

(3 frameshift and 1 nonsense), and in each case, the wild-type allele was inactivated in the 

tumour. A further 2 patients had somatic mutations in BRCA1 (both with splice site 

mutations), and another 3 had somatic BRCA2 mutations (1 indel and 2 splice site 

mutations). All deleterious BRCA1 and BRCA2 mutations had inactivation of the second 

allele. Three patients had pathogenic germline PALB2 mutations that were associated with 

the BRCA mutational signature. One of these was a TGTT deletion, which is known to 

occur in pancreatic cancer27 (this tumour also had a somatic BRCA2 mutation), and the 

mutations of PALB2 in both the other 2 cases are associated with an inherited predisposition 

to breast cancer28. Germline PALB2 mutation carriers did not have evidence of somatic loss 

of the second allele; however, heterozygous germline mutation of PALB2 appears sufficient 

to cause DNA replication and damage response defects29. In contrast, tumours containing a 

somatic heterozygous silent mutation of BRCA2, a heterozygous intronic structural variation 

and 2 unclassified heterozygous missense mutations in BRCA1 (predicted to be benign or 

only possibly damaging by Polyphen2) were not associated with a high-ranking BRCA 

mutational signature (<1 BRCA signature mutation per Mb) or an unstable genome 

(Supplementary Table 10). Overlapping deleterious mutations in BRCA1, BRCA2 and 

PALB2 with unstable genomes and the BRCA mutational signature showed that mutations in 

these genes were associated with the top quintile of the BRCA mutational signature, and the 

majority (9 of 11) also exhibited unstable genomes (Fig. 3a).

Defective DNA repair without BRCA pathway mutations

Mutations in BRCA pathway genes accounted for approximately half of patients with a high 

BRCA mutational signature and/or an unstable genome (Fig. 3a). Hyper-methylation is 

known to play a role in silencing BRCA1, BRCA2 and PALB2 in some breast and ovarian 

cancers; however, high-density methylome array profiling of this cohort30 allowed us to 

exclude this as a contributing mechanism. Single instances of biallelic, inactivating, somatic 

mutation was observed for two genes known to induce genomic instability and 

chemosensitivity when inactivated: RPA1 (ref. 31) (splice site and loss of heterozygosity 

(LOH)), and the DNA polymerase zeta catalytic unit/REV3L32 (nonsense and LOH). We 

also detected mutations in other genes involved in DNA maintenance such as ATM, 

FANCM, XRCC4 and XRCC6 in tumours with an unstable genome or the BRCA mutational 

signature; however, they are yet to be causally linked to these genomic events or sensitivity 

to DNA-damaging agents.
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Putative genotypes of platinum responsiveness

As the APGI was a prospective observational cohort study with extensive clinical follow-up, 

it was possible to track therapeutic responsiveness of participants that received 

chemotherapy when their disease recurred. At the time of analysis, 53 patients had 

documented recurrences and 25 received a variety of chemotherapeutic agents 

(Supplementary Table 11). This analysis was complemented through therapeutic testing of 

patient-derived xenografts (PDXs) generated from APGI participants. Overall, 8 patients 

received a platinum-based therapy and 7 PDXs were treated with gemcitabine and cisplatin 

(Fig. 3b). Of 5 patients with unstable genomes and/or a high BRCA mutational signature 

burden (designated as ‘on-genotype’) 2 had exceptional responses (defined as complete 

radiological resolution of disease and normalization of CA19.9 levels33), and 2 had robust 

partial responses based on RECIST1.1 criteria34 (Fig. 4a), while 3 patients who did not have 

any of these characteristics (‘off-genotype’) did not respond. These observations were 

supported by PDX studies where 2 of 3 on-genotype PDXs responded to cisplatin (one 

BRCA2 mutant responded and one carrying bi-allelic inactivation of RPA1, which notably 

retained RAD51 foci (Extended Data Fig. 9) also responded. Another, with a mutational 

signature but not an unstable genome, and without a mutation in a BRCA pathway gene, did 

not respond. This compares to no responses in the 4 PDXs in the off-genotype group (Figs 3 

and 4b). Combining patient and PDX response data, on-genotype tumours were associated 

with response to platinum-based therapy (P = 0.0070, Fisher’s exact test, Fig. 3b) 

(Supplementary Table 11).

Discussion

This study provides the most comprehensive description, to date, of the genomic events that 

characterize pancreatic cancer and demonstrates that structural variation is a prominent 

mechanism of genomic damage in this disease. It reinforces the importance of KRAS, TP53, 

SMAD4, CDKN2A and ARID1A gene mutations, in addition to numerous genes mutated at 

low prevalence. Recurrent mutations identified in KDM6A further highlights the role of 

chromatin modification and a broader role for aberrant WNT signalling is implicated 

through the relatively frequent inactivation of suppressor genes such as ROBO1, ROBO2, 

SLIT2 and RNF43.

Structural variant analysis classifies PDAC into four subtypes with potential clinical 

relevance. A significant proportion of tumours contain amplifications and copy-number 

gains of known oncogenes, but most occur at low individual prevalence, suggesting 

significant diversity of mechanisms involved in PDAC progression. Several of these 

constitute known therapeutic targets with available inhibitors (ERBB2, MET, FGFR1). 

Others include: GATA6, which is known to be amplified in PDAC and correlates with poor 

survival in other cancer types35; PIK3CA, which is amplified in ovarian36 and lung 

squamous cell carcinomas37; PIK3R3 amplified in ovarian cancer; and CDK6, amplified in 

oesophageal cancer. These may present opportunities for therapeutic intervention, either 

alone or in combination with other agents.
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Multiple studies of platinum-based therapies in PDAC have shown borderline signals, and 

some meta-analyses show a benefit11,12, suggesting that individual studies were 

underpowered, and that these signals could be driven by subgroups of responders. More 

recently, addition of oxaliplatin has shown efficacy in second line therapy14, and 

FOLFIRINOX, a platinum-containing combination therapy is emerging as a treatment 

option for advanced PDAC. Most patients do not receive this therapy due to its toxicity, or it 

is substantially modified38. There are, however, significant responses in subgroups that are 

not well-defined39,40, and improved survival reported in patients with germline BRCA1 and 

BRCA2 mutations who receive platinum-based therapies41. Defining biomarkers of platinum 

responsiveness would significantly alter current treatment approaches to PDAC and improve 

overall outcomes. Current patient recruitment strategies for clinical trials of PARP 

inhibitors, thought to target similar mechanisms, are mostly based on germline deleterious 

mutations of BRCA1 and BRCA2. If we take into account mutations in BRCA pathway 

components, both germline and somatic, as well as putative surrogate measures of 

deficiencies in DNA maintenance, that is, unstable genomes and the BRCA mutational 

signature, germline mutations in BRCA1 and BRCA2 only account for as few as 4 of a 

potential 24 (17%), and only4%of all patients. Genomic instability and BRCA mutational 

signature status based on whole-genome sequencing also provide independent evidence of 

putative deficiencies in DNA damage repair. It remains to be seen whether these surrogate 

measures are predictive of therapeutic response in the absence of BRCA or PALB2 

mutations. However, the presence of mutations in non-BRCA pathway genes that are 

associated with both genomic instability and chemosensitivity in 2/14 unstable tumours 

suggests that diagnostic whole-genome sequencing to detect surrogate measures of defects 

in DNA maintenance may ultimately be a better method of identifying potential responders 

to platinum and PARP inhibitor therapy.

The proof of concept data presented here suggest that mutations in BRCA pathway 

component genes and surrogate measures of defects in DNA maintenance (genomic 

instability and the BRCA mutational signature) have potential implications for therapeutic 

selection for pancreatic cancer. These data define a putative biomarker hypothesis that needs 

testing in a clinical trial, as these results are from a small number of patients selected based 

on high tumour cellularity; patients often received combination therapies, and the primary 

tumour was sequenced rather than the recurrence. As only selected gene sets can be tested in 

the clinic at this time, surrogate measures of molecular mechanisms identified using whole-

genome sequencing can be used to inform individual gene selection for clinical use. As 

diagnostic genomic approaches continue to evolve and become more affordable, whole-

genome sequencing may provide new opportunities in the clinic. However, there are 

significant hurdles still to overcome. These include the technical challenge of whole-genome 

sequencing using small diagnostic samples that are preserved in fixatives such as formalin, 

analytical demands and the return of results within a clinically relevant timeframe. Major 

initiatives are emerging that aim to address these challenges (such as Genomics England and 

the Scottish Genomes Partnership) to ultimately advance and assess these approaches for 

their potential to improve human health for many diseases including cancer.
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METHODS

Human research ethical approvals

Australian Pancreatic Cancer Genome Initiative: Sydney South West Area Health Service 

Human Research Ethics Committee, western zone (protocol number 2006/54); Sydney Local 

Health District Human Research Ethics Committee (X11-0220); Northern Sydney Central 

Coast Health Harbour Human Research Ethics Committee (0612-251M); Royal Adelaide 

Hospital Human Research Ethics Committee (091107a); Metro South Human Research 

Ethics Committee (09/QPAH/220); South Metropolitan Area Health Service Human 

Research Ethics Committee (09/324); Southern Adelaide Health Service/Flinders University 

Human Research Ethics Committee (167/10); Sydney West Area Health Service Human 

Research Ethics Committee (Westmead campus) (HREC2002/3/4.19); The University of 

Queensland Medical Research Ethics Committee (2009000745); Greenslopes Private 

Hospital Ethics Committee (09/34);North Shore Private Hospital Ethics Committee. Johns 

Hopkins Medical Institutions: Johns Hopkins Medicine Institutional Review Board 

(NA00026689). ARC-NET, University of Verona: approval number 1885 from the 

Integrated University Hospital Trust (AOUI) Ethics Committee (Comitato Etico Azienda 

Ospedaliera Universitaria Integrata) approved in their meeting of 17 November 2010 and 

documented by the ethics committee 52070/CE on 22 November 2010 and formalized by the 

Health Director of the AOUI on the order of the General Manager with protocol 52438 on 

23 November 2010. Ethikkommission an der Technischen Universität Dresden (Approval 

numbers EK30412207 and EK357112012).

Animal experiment approvals

Mouse experiments were carried out in compliance with Australian laws on animal welfare. 

Mouse protocols were approved by the Garvan Institute/St Vincent’s Hospital Animal Ethics 

Committee (ARA 09/19, 11/23 and 12/21 protocols). Female NOD/SCID/interleukin 2 

receptor [IL2R] gamma (null) (NSG) mice and athymic Balb-c-nude mice were housed with 

a 12 h light, 12 h dark cycle, receiving food ad libitum.

Sample acquisition

Samples used were prospectively acquired and restricted to primary operable, non-pretreated 

pancreatic ductal adenocarcinoma. After ethical approval was granted, individual patients 

were recruited preoperatively and consented using an ICGC approved process. Immediately 

following surgical extirpation, a specialist pathologist analysed specimens macroscopically 

and samples of the tumour, normal pancreas and duodenal mucosa were snap frozen in 

liquid nitrogen (for full protocol see APGI website: http://www.pancreaticcancer.net.au/). 

The remaining resected specimen underwent routine histopathologic processing and 

examination. Once the diagnosis of pancreatic ductal adenocarcinoma was made, 

representative sections were reviewed independently by at least one other pathologist with 

specific expertise in pancreatic diseases (authors: A.G., D.M., R.H.H. and A.C.), and only 

those where there was no doubt as to the histopathological diagnosis were entered into the 

study. Co-existent intraductal papillary mucinous neoplasms in the residual specimen were 

not excluded provided the bulk of the tumour was invasive carcinoma, and the invasive 

carcinoma samples were used for sequencing. All samples were stored at −80 °C. Duodenal 
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mucosa or circulating lymphocytes were used for generation of germline DNA. A 

representative sample of duodenal mucosa was excised and processed in formalin to confirm 

non-neoplastic histology before processing. All participant information and biospecimens 

were logged and tracked using a purpose-built data and biospecimen information 

management system (Cansto Pancreas). Median survival was estimated using the Kaplan–

Meier method and the difference was tested using the log-rank test. P values of less than 

0.05 were considered statistically significant. Statistical analysis was performed using 

StatView 5.0 Software (Abacus Systems, Berkeley, CA, USA). Disease-specific survival 

was used as the primary endpoint.

Sample extraction

Samples were retrieved, and either had full face sectioning performed in OCT or the ends 

excised and processed in formalin to verify the presence of carcinoma in the sample to be 

sequenced and to estimate the percentage of malignant epithelial nuclei in the sample 

relative to stromal nuclei. Macrodissection was performed if required to excise areas of non-

malignant tissue. Nucleic acids were then extracted using the Qiagen Allprep Kit in 

accordance with the manufacturer’s instructions with purification of DNA and RNA from 

the same sample. DNA was quantified using Qubit HS DNA Assay (Invitrogen). 

Throughout the process, all samples were tracked using unique identifiers.

Patient material

One hundred matched normal and tumour derived samples were obtained from patients with 

PDAC. DNA was extracted from the samples using the QiagenAllprep DNA/RNA mini kit 

method. Tumour cellularity was determined from SNP array data using qpure18. Clinical and 

sample data are summarized in (Supplementary Table 2). Patients were recruited and 

consent obtained for genomic sequencing through the Australian Pancreatic Cancer Genome 

Initiative (APGI) as part of the International Cancer Genome Consortium (ICGC)16.

Patient-derived cell line(PDCL) generation

The PDX-derived primary cell lines, named The Kinghorn Cancer Centre (TKCC) lines, 

were generated in the laboratory. All cell lines were profiled by short tandem repeat (STR) 

DNA profiling as unique (http://www.cellbankaustralia.com). Briefly, patient-derived 

tumours established in immunocompromised mice were mechanically and enzymatically 

dissociated using collagenase (Stem Cell Technologies, USA) and plated onto flasks coated 

with 0.2mg ml−1 rat tail collagen (BD Biosciences, USA). Subsequently, epithelial cultures 

were enriched and purified using a FACS Aria III Cell sorter (BD Biosciences, USA), using 

a biotinylated anti-mouse MHCI antibody (1:200 dilution; eBiosciences, USA) coupled with 

Streptavidin AlexaFluor 647 secondary step (1:1,000; Invitrogen, USA) and anti-mouse 

CD140a-PE antibody (1:300; BD Biosciences, USA) to remove mouse stroma. Dead cells 

were removed using propidium iodide (Sigma-Aldrich, Australia). Following establishment, 

all patient-derived (TKCC) cell lines were profiled by short tandem repeat (STR) DNA 

profiling as unique (http://www.cellbankaustralia.com).
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Sequencing

DNA (1 µg) was diluted to 52.5 µl in DNase-/RNase-free molecular biology grade water 

before fragmentation to approximately 300 bp using the Covaris S2 sonicator with the 

following settings Duty Cycle 10%, intensity 5, cycles per burst 200, time 50 s or 45 s for 

PCR-Free libraries. Following fragmentation libraries for sequencing were prepared using 

the standard Illumina library preparation technique of end-repair, adenylate 3′ ends, indexed 

adaptor ligation, size selection and finally PCR enrichment for adaptor ligated library 

molecules following the manufacturer’s recommendations (Part no. 15026486 Rev. C July 

2012). A subset of libraries was generated omitting the final PCR enrichment step to 

generate PCR-Free libraries as per the manufacturer’s recommendations (Part no. 15036187 

Rev. A Jan 2013). For standard libraries commercially available TruSeq DNALT Sample 

Prep Kit v2 (Catalogue no. FC-121-2001) were used for all steps with the following 

exceptions. Size selections of the Adaptor Ligated fragments were completed using two 

rounds of SPRI bead purifications (AxyPrepMag PCR Clean-upCatalog no. MAG-PCR-

CL-250) using a final bead to DNA volume ratio of 0.60:1 followed by 0.70:1, selecting for 

molecules with an average size of 500 bp. Size-selected libraries were then amplified for a 

total of 8 cycles of PCR to enrich for DNA fragments both compatible with sequencing and 

containing the ligated indexed adaptor. For PCR-Free libraries commercially available 

TruSeq PCR-Free DNA LT Sample Preparation Kit (Catalog no.FC-121-3001 and 

FC-121-3002) was used following the 350 bp library LT protocol for all steps with no 

modifications. The final whole-genome libraries were qualified (amplified and PCR-Free 

libraries) and quantified (amplified libraries only) via the Agilent BioAnalsyser 2100 

(Catalog ID:G2940CA) instrument using the DNA High Sensitivity kit (Catalog ID:

5067-4626). Quantification of PCR-Free libraries was performed using the KAPA Library 

Quantification Kits For Illumina sequencing platforms (Kit code KK4824) in combination 

with Life Technologies Viia 7 real time PCR instrument.

Whole genome libraries were prepared for cluster generation by cBot (catalogue no. 

SY-301-2002) and sequencing as per the manufacturer’s guidelines. Individual libraries 

were clustered on a single lane of a HiSeq v3 flowcell using the TruSeq PE Cluster Kit v3-

cBot-HS kit (Catalogue no. PE-401-3001). Illumina supplied control library PhiX (10pM) 

was spiked into each lane at a concentration of 0.3% to provide real time analysis metrics. 

Final library concentrations of 8 pM (amplified) and 14 pM (PCR-free) were used for cluster 

generation. Clustered flow cells were sequenced on the Illumina HiSeq 2000 instrument 

(HiSeq control software v1.5/Real Time Analysis 1.13) using TruSeq SBS Kit v3-HS (200 

cycles, Catalog no. FC-401-3001). Paired reads each of 101 bp were generated for all 

libraries and in total approximately 220-million paired reads were generated per lane, in line 

with the manufacturer’s specification. Real time analysis of the control library PhiX showed 

cluster density, error rates, quality scores, mapping rates and phasing rates were also in line 

with published specifications.

Sequence alignment and data management

Sequence data was mapped to a genome based on the Genome Reference Consortium 

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/) GRCh37 assembly 

using BWA42.Multiple BAM files from the same sequence library were merged and within 
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library duplicates were marked. Resulting final BAMs were used as input into variant 

calling. All BAM files have been deposited in the EGA (Accession number: EGAS 

00001000154).

Copy number analysis

Matched tumour and normal patient DNA was assayed using Illumina SNP BeadChips as 

per manufacturer’s instructions (Illumina, San Diego CA) (HumanOmni1-Quad or 

HumanOmni2.5–8 BeadChips). SNP arrays were scanned and data was processed using the 

Genotyping module (v1.8.4) in Genomestudio v2010.3 (Illumina, San Diego CA) to 

calculate B-allele frequencies (BAF) and logR values. GenoCN43 and GAP17 were used to 

call somatic regions of copy number change – gain, loss or copy neutral LOH. Recurrent 

regions of copy number change were determined and genes within these regions were 

extracted using ENSEMBL v70 annotations.

Identification of structural variations

Somatic structural variants were identified using the qSV tool (manuscript in preparation). 

qSV uses independent lines of evidence to call structural variants including discordant reads, 

soft clipping and split read. Breakpoints are also identified using both de novo assembly of 

abnormally mapping reads and split contig alignment to enhance break point resolution. 

Depending on the level of evidence qSV bins calls into different categories and calls were 

considered high confidence if: (i) they were category 1 and therefore contain multiple lines 

of evidence (discordant pairs, soft clipping on both sides and split reads); (ii) they were 

category 2 and therefore there was 2 lines of evidence: discordant pairs (both breakpoints) 

and soft clipping; or discordant pairs (both breakpoints) and split read; or soft clipping 

(double sided) and split read; (iii) they were category 3 with 10 or more supporting events 

(discordant read pairs or soft clipping at both ends). Only high confidence calls were used in 

further downstream analysis. Copy number variation was estimated using SNP arrays and 

the GAP tool17. Depending on the read pair types supporting an aberration or the associated 

of copy number events each structural variant was classified as: deletion, duplication, 

tandem duplication, foldback inversion, amplified inversion, inversion, intrachromosomal or 

translocation. Essentially, the type of rearrangement is initially inferred from the orientation 

information of discordant read pairs, soft clipping clusters and assembled contigs which 

span the breakpoints. This allows identification of 4 groups of events: duplications/intra-

chromosomal rearrangements, deletions/intra-chromosomal rearrangements, inversions and 

inter-chromosomal translocations. Boundaries of segments of copy number that occur in 

close proximity to each breakpoint were then used to aid further classification of the events. 

Structural variants with breakpoints that flanked a copy number segment of loss were 

annotated as deletions. Duplications and inversions associated with increases in copy 

number enabled the characterization of tandem duplications and amplified or foldback 

inversions. Events within the same chromosome which linked the ends of copy number 

segments of similar copy number levels were often identified and were called intra-

chromosomal rearrangements.
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Events were then annotated if they were within 100 kb of a centromere or telomere and 

genes which were affected by breakpoints were annotated using ENSEMBL v70. Structural 

variants and copy number data were visualized using circos44.

The landscape of structural rearrangements in pancreatic ductal adenocarcinoma

In total 11,868 structural variants were detected within the 100 PDAC cohort with an 

average of 119 events per patient (range 15–558). Each event was classified into one of 8 

categories: deletion, duplication, tandem duplication, foldback inversion, amplified 

inversion, inversion, intra chromosomal and translocation. Within the cohort there was inter 

patient heterogeneity in terms of total number of events (range of events per patient 15–558) 

and proportion of event type (Extended Data Fig. 1).

Classification of subtypes based on the pattern or structural rearrangements

Each tumour was classified into one of four subtypes based on the volume of events, the 

predominance of specific types of structural rearrangement events and the distribution of 

events across the genome in each patient. In addition to counting structural variation events, 

two analyses were carried out to detect localized events. Non-random chromosomal 

clustering of structural variants was detected using an approach originally described by 

Korbel and Campbell25. Significant clustering of structural variation events was determined 

by a goodness-of-fit test against the expected exponential distribution of (with a significance 

threshold of <0.0001). Highly focal events were detected using an adaptation of a method45 

where chromosomes with a high structural variant mutation rate per Mb exceeded 5 times 

the length of the interquartile range from the 75th percentile of the chromosome counts for 

each patient. The rules used to determine these subtypes are as follows:

Stable—These tumours contain few structural rearrangements (<50) which are located 

randomly through the genome.

Locally rearranged—The intra-chromosomal rearrangements in these tumours are not 

randomly positioned through the genome, instead they are clustered on one or few 

chromosomes. To correct for the different chromosome lengths, the number of events per 

Mb was calculated for each chromosome within each tumour. Tumours were considered 

locally rearranged if they harboured at least 50 somatic events within the genome and 

contained a locally rearranged chromosome. Chromosomes were considered locally 

rearranged if the number of intrachromosomal events exceeded 5 times the length of the 

interquartile range from the 75th percentile of the chromosome counts per Mb for that 

patient. The events in the locally rearranged tumours are broadly comprised of either: (1) 

focal amplifications—the majority of events are gain (tandem duplication, duplication, 

foldback inversion or amplified inversion) or (2) complex rearrangements—the events are 

part of a complex event such as chromothripsis or breakage–fusion–bridge.

Scattered—These tumours contain 50–200 structural rearrangements which are scattered 

throughout the genome.
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Unstable—These tumours are massively rearranged as they contain >200 structural 

rearrangements which are generally scattered throughout the genome.

Classification of complex localized events

Evidence of clustering of breakpoints was estimated as proposed by Korbel and Campbell25. 

Chromosomes with clustering of structural variants were reviewed for evidence of 

chromothripsis (oscillation of copy number, random joins and retention of heterozygosity) 

and breakage–fusion–bridge (BFB for loss of telomeric region with neighbouring highly 

amplified region with inversions).

Verification of structural variations

We used two methods of verification for structural variants: (1) an in silico approach, which 

considers events with multiple lines of evidence (qSV category 1: discordant pairs, soft 

clipping on both sides and split read evidence) as verified, as well as events which were 

associated with a copy number change (gain or loss) and (2) orthogonal sequencing methods 

including SOLiD long mate pair and capillary sequencing.

Long mate pair sequencing and verification of structural rearrangements

Long mate-paired libraries were made according to Applied Biosystems Mate-Paired 

Library Preparation 5500 Series SOLiD systems protocol using 5 µg of DNA which was 

sheared using the CovarisS220 System. Long mate pair libraries were sequenced using the 

SOliD v4 (Applied Biosystems). Sequence data was mapped to a genome based on the 

Genome Reference Consortium (http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/). GRCh37 assembly using bioscope v1.2.1 (Applied Biosystems). 

Each sample was sequenced to an average non-redundant physical coverage of 180× (64–

333) in the tumour and 187× (52–503) in the control sample. Structural rearrangements were 

determined by analysing clusters of discordant read pairs using the qSV tool. Events 

identified by Hiseq sequencing were considered verified if the right and left breakpoint of 

these events were within 500 bases of the right and left breakpoint of an event identified by 

SOLiD sequencing.

PCR and capillary sequencing for verification of structural rearrangements

For PCR and capillary sequencing PCR primers were designed with primer BLAST (NCBI) 

to span the predicted breakpoint, primers were designed with primer BLAST (NCBI). PCR 

was carried out in the tumour and matched normal genomic DNA using, respectively, a 25 

or 50 µl reaction volume composed of 22 or 44 µl of Platinum Taq DNA polymerase 

(Invitrogen, Carlsbad, Ca), 2 or 4 µl of 10 µM primer (Integrated DNA Technology) and 1 or 

2 µl of genomic DNA as template (1 ng µl−1). The following parameters was used for the 

PCR. Initial denaturation at 94 °C for 2 min, followed by 35 cycles of denaturation at 94 °C 

for 30 s, annealing at 60 °C for 30 s and extension at 68 °C for 1 min; followed by final 

extension at 68 °C for 15 min. PCR products were visualized by gel electrophoresis and 

classified into one of four categories: (1) validated—strong and specific PCR band of the 

expected size was observed only in the tumour and not in the normal sample, this indicates a 

somatic rearrangement; (2) germline—clear PCR band of the expected size both in the 
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tumour and normal; (3) not validated—PCR yields smears or multiple bands, this potentially 

indicates non-specific primer pair; (4) not tested—no PCR band was observed in tumour and 

normal.

Verification of structural variations—results

In total 7,105 events were verified in silico. Of these 5,666 events contained multiple lines 

of evidence (qSV category 1), 2,904 events were associated with a copy number change 

(events classified as deletion, duplication, tandem duplication, amplified inversion and 

foldback inversion) and 1,871 contained multiple lines of evidence and were associated with 

a copy number change.

We also verified structural variant events using long mate pair resequencing (SOLiD paired 

50 bp) or sequencing of a different sample from the same patient of 33 tumours. Using this 

approach 1,924 events were confirmed and the verification status of structural variant events 

was recorded in Supplementary Table 5 in the “validation_status_id” column where 0 = 

untested and 1 = verified. In total 7,228 of the 11,868 events identified (61%) were verified 

(Supplementary Table 5 and Extended Data Fig. 1) the remaining events remain untested.

Identification of substitutions and small insertion/deletions

Substitutions are called using 2 variant callers: qSNP19 an in-house heuristics-driven 

somatic/germline caller; and GATK46 which is a Bayesian caller. The two callers were 

chosen because they use very different calling strategies and while each maybe subject to 

artefacts (as are all variant callers), they will be subject to different artefacts. Each compared 

variant falls into one of three categories: seen only by qSNP, seen only by GATK, and seen 

by both qSNP and GATK. Mutations identified by both callers or those that were unique to a 

caller and verified by an orthogonal sequencing approach were considered high confidence 

and used in all subsequent analyses (Supplementary Table 3). Small indels (<200 bp)were 

identified using Pindel47; each indel was visually inspected in the Integrative Genome 

Browser (IGV)48. Once somatic mutations were called, their effects on any alternative 

transcripts were annotated using a local install of the Ensembl database (v70) and the 

Ensembl Perl API.

Verification of substitutions and small insertion/deletions

In total 3,304 of the 10,335 events identified were verified (Supplementary Tables 3 and 12) 

the remaining events remain untested. Substitutions and indels were verified using 

orthogonal sequence data which included data produced on different sequencing platforms 

(Hiseq or SOLiD exome or long mate pair SOLiD sequencing) or data from related 

nucleotide samples (RNA-seq). For example, if orthogonal tumour sequence data was 

available (DNA from a cell line, RNA from the primary sample etc.) and a somatic variant 

was also observed in the second tumour sample then that would add support for the variant. 

It should be noted that tumour samples can only be used to support an existing somatic 

variant and the absence of a called variant in a second tumour sample does not discredit the 

original call. Conversely, a second normal sample will only discredit somatic variants and 

the absence of the called variant in the second normal does not support the original call. This 

approach is designed to be conservative. In order to be considered for verification, an 
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additional BAM should have a minimum of 10 reads at the variant position, and at least two 

reads must show the variant. If multiple additional BAMs are available, each BAM votes 

independently and the concordance of the votes is used to classify the verification of the 

variant. Each variant examined by qVerify is assigned to one of four categories:

1. Verified—one or more additional tumour BAMs showed evidence of the variant 

and no additional normal BAMs showed the variant.

2. False Positive—one or more additional normal BAMs showed evidence of the 

variant indication that it is likely to be a germline variant.

3. Mixed—across multiple additional BAMs, there was conflicting evidence – one or 

more additional tumour BAMs showed the variant as did one or more additional 

normal BAMs. This could also be evidence of a germline variant incorrectly called 

somatic.

4. Untested—there were no additional BAMs or there were additional BAMs but none 

passed the minimum coverage threshold or there were additional BAMs that did 

not show the variant and so did not provide evidence for or against it.

Telomere length analysis

Reads containing the telomeric repeat (TTAGGG) × 3 or (CCCTAA) × 3 were counted and 

normalized to the average genomic coverage (the average base coverage of each genome). 

The normalized telomere count was obtained separately for each tumour and its matching 

normal. A ratio was calculated by tumour normalized counts/normal normalized counts.

Determination of the BRCA signature

High confidence somatic mutations that were called by both qSNP and GATK across the 

genome were used to determine the proportion of the BRCA signature in each sample using 

a published computational framework20,49. In this way, the 96 substitution classification (as 

determined by substitution class and sequence context) was determined for each sample and 

compared to the validated BRCA signature20 and the proportion of the BRCA signature in a 

given sample was ascertained.

Patient derived xenograft (PDX) mouse model generation

Six female eight-week-old NOD/SCID/interleukin 2 receptor [IL2R] gamma(null) (NOG) 

mice and athymic Balb-c-nude mice were used for the establishment of the patient derived 

xenograft (PDX) model. All mice were bred at the Australian Bioresources (ABR) under 

research protocols approved by the Garvan Animal Ethics Committee (09/19, 11/23, 11/09).

The PDXs were generated according to methodology published elsewhere with 

modifications50. Briefly, surgical non-diagnostic specimens of patients operated at APGI 

clinical sites were implanted subcutaneously (s.c.) into three NOG and three Balb-c-nude 

mice for each patient, with two small pieces per mouse (left and right flank; engraftment 

stage). Once established, tumours were grown to a size of 1,500mm3, at which point they 

were harvested, divided, and re-transplanted into further mice to bank sufficient tissues for 

experimentation (first passage and second passage). After expansion, passaged tumours 
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were excised and propagated to cohorts of 40 female Balb-c-nude mice or greater at an 

average of 8 weeks old, which constituted the treatment cohort (third passage). Utilization of 

the NOG mouse model, which is characterized by high immune deficiency in this study has 

enabled establishment of a significant cohort of PDXs (80) xenografts, with a high rate of 

successful engraftment and propagation (76%, data not shown).

In vivo therapeutic testing

Tumour-bearing mice with a palpable tumour (volume (V) = 150mm3; V = 0.5 × length × 

width2) were treated with various agents at maximum tolerable dose (MTD) or vehicle 

treatment based on previously established schedules50,51, where gemcitabine (140 mg per 

kg) was administered intraperitoneally on day 1 and day 4 for 4weeks and cisplatin (6mg per 

kg) intravenously on day 1 and day 14. The investigators were not blinded to the group 

allocation. To avoid accumulating toxicity of repeated injections, an additional treatment 

was given after the recovery time of two weeks only when no tumour regression was 

observed, otherwise treatment was continued once the tumour relapsed to its original size 

(100%). Measurement of chemotherapy response was based on published methodology51, 

where primary xenografts were treated with the specified monotherapy and their growth 

characteristics mapped from the time resistance developed (characterized by progressive 

tumour growth in the presence of drug), until euthanasia. Mice were euthanized and tissues 

collected for further analyses when tumour size reached 400% (600–700mm3).

RAD51 foci formation assay

Antibodies used included RAD51 (Clone 14B4, GeneTex), γH2AX (phospho-histone H2AX 

Ser129 clone 20E3, Cell signaling), and geminin (10802-1-AP, ProteinTech Group, 

Chicago, IL). Primary culture of PDX from patient ICGC_0016 was established by plating 

and growing cells from an enzymatically digested xenograft on a collagen matrix for 

approximately 1 week before irradiation and immunofluorescence staining. For this 

experiment, xenograft was established in a NSG-eGFP mouse. This mouse model allowed 

us to efficiently visualize eGFP positive mouse stromal cells and eGFP negative tumour 

cells under the microscope. Briefly, the eGFP expressing NSG mouse was generated in our 

laboratory by crossing previously established heterozygous eGFPNOD.CB17-Prkdcscid 

mice52 with the the NOD/SCID/interleukin 2 receptor (IL2R) gamma (null) (NOG) strain in 

our laboratory. eGFP expressing offspring was backcrossed five times onto the parental line 

to ensure homozygosity for IL2Rgamma deletion and confirmed by genotyping 

(Transnetyx).

Cell lines of interest were grown on coverslips overnight and irradiated with 10 Gy or left 

untreated. Subsequently coverslips were fixed with 4% paraformaldehyde (in PBS) 6 h post-

irradiation and stained with RAD51, γH2AX and geminin antibodies as previously 

described53.DAPI was used as a nuclear stain. RAD51 focus assay scoring was performed as 

previously established53.
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Extended Data

Extended Data Figure 1. Summary of structural rearrangements
a, Histogram showing the number of events verified in silico or by orthogonal sequencing 

methods (Methods). In total 7,228 of the 11,868 events identified (61%) were verified, the 

others remain untested. These included 5,666 events which contained multiple lines of 

evidence (qSV category 1: discordant pairs, soft clipping on both sides and split read 

evidence, Methods) thus were considered verified. Of these events 2,463 events were also 

verified by orthogonal sequencing methods (SOLiD long mate pair or PCR amplicon 

sequencing) or the event was associated with a copy number change which was determined 

using SNP arrays. The remaining 1,562 events were verified using orthogonal sequencing 

methods or the event was associated with a copy number change (qSV category 2 and 3, 

Methods). b, Histogram showing the number of structural rearrangements in each pancreatic 

cancer. 100 PDACs were sequenced using HiSeq paired-end whole-genome sequencing. 

Structural rearrangements were identified and classified into 8 categories (deletions, 

duplications, tandem duplications, foldback inversions, amplified inversions, inversions, 

intra-chromosomal and inter-chromosomal translocations, Methods). The number and type 

of event for each patient is shown. PDAC shows a high degree of heterogeneity in both the 

number and types of events per patient. The structural rearrangements were used to classify 

the tumours into four categories (stable, locally rearranged, scattered and unstable, 

Methods).
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Extended Data Figure 2. Distribution of structural variant breakpoints within each patient
The 100 patients are plotted along the x axis. The upper plot shows the number of structural 

rearrangements (y axis) in each tumour. The lower plot shows which chromosomes (y axis) 

harbour clusters of breakpoints. The distribution of breakpoints (events per Mb) within each 

chromosome for each sample was evaluated using two methods to identify clusters of 

rearrangements or chromosomes which contain a large number of events. Method 1: 

chromosomes with a significant cluster of events were determined by a goodness-of-fit test 

against the expected exponential distribution (with a significance threshold of <0.0001). 

Chromosomes which pass these criteria are coloured blue. Method 2: chromosomes were 

identified which contain significantly more events per Mb than other chromosomes for that 

patient. Chromosomes were deemed to harbour a high number of events if they had a 

mutation rate per Mb which exceeds 1.5 times the length of the interquartile range from the 

75th percentile of the chromosome counts for each patient. Chromosomes which pass these 

criteria are coloured orange. Chromosomes which pass both tests they are coloured red. 

These criteria show that the unstable tumours which contain many events often have 

significant clusters of events. In contrast locally rearranged tumours are associated with both 

clusters of events and a high number of events within that chromosome when compared to 

other chromosomes.
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Extended Data Figure 3. The stable subtype in pancreatic ductal adenocarcinoma
The 20 stable tumours are shown using circos. The coloured outer ring represents the 

chromosomes, the next ring depicts copy number (red represents gain and green represents 

loss), the next is the B allele frequency. The inner lines represent chromosome structural 

rearrangements detected by whole genome paired sequencing and the legend indicates the 

type of rearrangement. Stable tumours contained less than 50 structural rearrangements in 

each tumour.
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Extended Data Figure 4. The locally rearranged subtype in pancreatic ductal adenocarcinoma
The 30 locally rearranged tumours are shown using circos. The coloured outer rings 

represent the chromosomes, the next ring depicts copy number (red represents gain and 

green represents loss), the next is the B allele frequency. The inner lines represent 

chromosome structural rearrangements detected by whole-genome paired sequencing and 

the legend indicates the type of rearrangement. In the locally rearranged subtype over 25% 

of the structural rearrangements are clustered on one of few chromosomes.
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Extended Data Figure 5. Example of evidence for chromothripsis in a pancreatic ductal 
adenocarcinoma (ICGC_0109)
Upper plot is a density plot showing a concentration of break-points on chromosome 5. Next 

panel shows the structural rearrangements which are coloured as presented in the legend. 

The lower panels show copy number, logR ratio and B allele frequency derived from SNP 

arrays. This chromosome showed a complex localization of events similar to chromothripsis. 

Copy number profile and structural rearrangements suggest a shattering of chromosome 5 

with a high concentration of structural rearrangements, switches in copy number state and 

retention of heterozygosity, which are characteristics of a chromothriptic event.
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Extended Data Figure 6. Example of evidence for breakage-fusion-bridge (BFB) in a pancreatic 
ductal adenocarcinoma (ICGC_0042)
Upper plot is a density plot showing a concentration of break-points on chromosome 5. Next 

panel shows the structural rearrangements which are coloured as presented in the legend. 

The lower panels show copy number, logR ratio and B allele frequency derived from SNP 

arrays. This chromosome showed a complex localization of events similar to BFB. Copy 

number profile suggests loss of telomeric q arm and a high concentration of structural 

rearrangements suggesting a series of BFB cycles, with multiple inversions mapped to the 

amplified regions.
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Extended Data Figure 7. The scattered subtype in pancreatic ductal adenocarcinoma
The 36 tumours classified as scattered are shown using circos. The coloured outer rings 

represent the chromosomes, the next ring depicts copy number (red represents gain and 

green represents loss), the next shows the B allele frequency. The inner lines represent 

chromosome structural rearrangements detected by whole genome paired end sequencing. 

The legend indicates the type of rearrangement. The scattered tumours contained 50–200 

structural rearrangements in each tumour.
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Extended Data Figure 8. The unstable subtype in pancreatic ductal adenocarcinoma
The 14 unstable tumours are shown using circos. The coloured outer rings are chromosomes, 

the next ring depicts copy number (red represents gain and green represents loss), the next is 

the B allele frequency. The inner lines represent chromosome structural rearrangements 

detected by whole genome paired sequencing and the legend indicates the type of 

rearrangement. The unstable tumours contained a large degree of genomic instability and 

harboured over 200 structural rearrangements in each tumour which were predominantly 

intra-chromosomal rearrangements evenly distributed through the genome.
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Extended Data Figure 9. RAD51 foci formation in a primary culture of genomically unstable 
PDAC
a, RAD51 and geminin fluorescence in untreated cells derived from an unstable pancreatic 

tumour with a somatic mutation in the RPA1 gene (ICGC_0016). Primary culture of 

ICGC_0016 consists of eGFP+ mouse stromal and eGFP− tumour cells. b, Upper panel: 

irradiated unstable pancreatic cancer cells (ICGC_0016), middle panel: HR competent 

(TKCC-07) and lower panel: HR-deficient (Capan-1) pancreatic tumour cells. Cells were 

irradiated in vitro with 10Gy, and 6 h post-irradiation examined by immunofluorescence 
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microscopy. eGFP negative tumour cells from ICGC_0016 readily form RAD51 foci 

following induction of DNA damage. TKCC-07 is a pancreas cancer cell line generated 

from a homologous recombination (HR) pathway competent patient-derived xenograft and 

served as a positive control for staining and RAD51 foci formation after DNA damage. 

Capan-1 cells which are HR-deficient do not form RAD51 foci. c, RAD51 score (percentage 

of geminin positive cells that have RAD51 foci) in examined pancreatic tumour cells.
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Figure 1. Mutations in key genes and pathways in pancreatic cancer
The upper panel shows non-silent single nucleotide variants and small insertions or 

deletions. The central matrix shows: non-silent mutations (blue), copy number changes 

(amplification (>5 copies) represented in red and loss represented in green) and genes 

affected by structural variants (SV, yellow). Pathogenic germline variants are highlighted 

with asterisk (*) symbols. The histogram on the left shows the number of each alteration in 

each gene.
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Figure 2. Subtypes of pancreatic cancer
a, Subgroups of PDAC based on the frequency and distribution of structural rearrangements. 

Representative tumours of each group are shown. The coloured outer rings are 

chromosomes, the next ring depicts copy number (red represents gain and green represents 

loss), the next is the B allele frequency (proportion of the B allele to the total quantity of 

both alleles). The inner lines depict chromosome structural rearrangements. b, The 

contribution of the BRCA mutational signature within each tumour ranked by prevalence 

(red bars). Unstable tumours are associated with a high BRCA mutation signature and 

deleterious mutations in BRCA pathway genes. The dagger (†) symbol indicates predicted 

only as possibly damaging by Polyphen2.
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Figure 3. Putative biomarkers of platinum and PARP inhibitor responsiveness
a, A Venn diagram showing the overlap of surrogate measures of defects in DNA 

maintenance (unstable genomes and BRCA mutational signature), with mutations in BRCA 

pathway genes. Of a total of 24 patients (24%), 10 have both unstable genomes and the 

BRCA mutational signature. The majority of patients with mutations in BRCA pathway 

genes (9) are within this intersect, however 2 have the mutational signature, but are 

classified either as scattered (n = 1) or locally rearranged (n = 1). GL, germline; S, somatic. 

b, Individual tumours are ranked based on their BRCA mutational signature burden, with the 
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diameter of each circle representing the number of structural variants in each. Those 

encircled by a solid line have mutations in BRCA pathway genes. Responders and non-

responders to platinum-based therapy are indicated with solid lines for patients and broken 

lines for patient-derived xenografts (PDX).
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Figure 4. Responses to platinum therapy
a, ICGC_0006: one of two patients who had an exceptional response to platinum-based 

therapy. Treatment of the recurrence with FOLFOX resulted in an exceptional response with 

recanalization of the portal vein which was previously obliterated by tumour and resolution 

of the mass with complete normalization of CA19.9 levels. b, Platinum responsiveness in 

patient-derived xenografts. Curves represent relative tumour volume (0.5 × length × width2, 

y axis) over time (days, x axis). Arrows indicate drug treatment. Responses remain stable for 

>210 days. Error bars indicate standard error of the mean.
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