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Abstract

Similar geographic areas often have great variations in population size. In health data management 

and analysis, it is desirable to obtain regions of comparable population by decomposing areas of 

large population (to gain more spatial variability) and merging areas of small population (to mask 

privacy of data). Based on the Peano curve algorithm and modified scale-space clustering, this 

research proposes a mixed-level regionalization (MLR) method to construct geographic areas with 

comparable population. The method accounts for spatial connectivity and compactness, attributive 

homogeneity, and exogenous criteria such as minimum (and approximately equal) population or 

disease counts. A case study using Louisiana cancer data illustrates the MLR method and its 

strengths and limitations. A major benefit of the method is that most upper level geographic 

boundaries can be preserved to increase familiarity of constructed areas. Therefore, the MLR 

method is more human-oriented and place-based than computer-oriented and space-based.
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Spatial clustering or regionalization methods are commonly used in geographic information 

systems (GIS) and public health for confirmatory or exploratory purposes (Cromley and 

McLafferty 2012b). Clustering has two different definitions and both are well accepted: 

partitioning, which assigns a unique cluster membership to any location in the study area, 

and nonpartitioning (i.e., identifying cluster centers), which does not have an inclusive 

requirement for all places (Neuberger and Lynch 1982; Hanson and Wieczorek 2002; 

Szwarcwald, Andrade, and Bastos 2002; Oliver et al. 2006; Schootman et al. 2007; 

Shishehbor et al. 2008; Moore et al. 2009; Nelson et al. 2009). This article focuses on 

regionalization, but some discussions also use the term clustering as a convention in the 
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literature. A challenge for many of these methods is not the development of algorithm, 

computation, or technical implementation but, rather, making sense of or interpreting the 

findings. Meaningful results are not just about the size and shape of clusters but the clusters’ 

alignment with existing zonings, particularly boundaries of major geographic units. A 

fundamental purpose of regionalization is to group and simplify data, not to introduce 

further complexity by adding more boundaries that are not recognizable by administrators, 

public practitioners, or the general public.

“Place is security, space is freedom” (Tuan 1977, 3). Tuan's (1974, 1977, 2012) humanist 

geography approach has influenced generations of geographers by clarifying the relationship 

between place and space. Tuan illustrated the functions of boundary as bounding place to 

space such as an Eskimo's sense (or attachment) of trading locations and hunting space 

(Carpenter, Varley, and Flaherty 1959), and identified space as place with familiar 

landmarks and paths that are often seen as boundaries. Our regionalization method is 

inspired by this conceptualization of “place + space + identity + attachment” by geographers 

(Tuan 1974, 1977; Sack 1980, 2003; Adams, Hoelscher, and Till 2001). Yiannakoulias 

(2011) advocated a “placefocused” or “place-informed” approach to incorporate locally 

relevant factors in all aspects of human activities into forming places or regions for 

meaningful public health surveillance of spatial aberrations. Space is more general and 

abstract, and place is more attached to people and the environment. Although many 

regionalization methods are space-oriented, this research is designed to develop a place-

oriented regionalization or clustering method that preserves major geopolitical boundaries as 

a key element of identity and attachment.

Boundaries are important for maintaining the familiarity and hierarchy in a map (Lloyd and 

Steinke 1986). Geographic, cartographic, and psychological research has shown that map 

readers organize and process their spatial memory hierarchically in clusters, and rely on 

familiar features to interpret and understand map contents (McNamara, Hardy, and Hirtle 

1989; Rittschof et al. 1996; Fotheringham and Curtis 1999; Jones et al. 2004) and spatial 

characteristics of the environment (Hirtle and Jonides 1985). Boundary plays an interrelated 

role in psychological and geographical compartmentalization (Sack 2003). Boundaries and 

bordering are also discussed in the context of calculable space, place, security, and territory 

(Rose-Redwood 2012). Geographic data are provided in a hierarchical way using units of 

state, county, census tract, and others, and boundaries of these units serve as an essential 

reference to familiarity. In addition to geopolitical units, it is also important to keep other 

geographic boundaries, within which underlying forces and processes under study differ. For 

example, in F. Wang, Guo, and McLafferty (2012), a regionalization method is applied to 

areas of distinctive urbanicity categories separately to preserve their boundaries.

Population size usually varies substantially across areas at the same level. In public health 

data analysis and dissemination, it is often desirable to obtain regions of comparable 

population (F. Wang, Guo, and McLafferty 2012). Areas of large population need to be 

decomposed to gain more spatial variability, and areas of small population need to be 

merged to protect geoprivacy. Would keeping upper level geographic boundaries make a 

regionalization method more place-oriented? For example, if the data are available at the 

census tract level, should county boundaries be preserved as much as possible in 
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regionalization? This research proposes a place-oriented, mixed-level regionalization (MLR) 

or spatial clustering method. Specifically, the conceptualization of “place = space + identity 

+ attachment” is addressed twofold. As boundary serves as an important identifier for 

places, our method aims to preserve the boundaries of upper level geographic units and 

minimize operations at the lower level. Attachment is accounted for by imposing a constraint 

of attributive similarity on the regionalization method. By doing so, the resulting regions 

still look familiar or recognizable.

When working with health data, geoprivacy is a common concern that leads to aggregating 

individual data to area units. The overall objective of this research is to develop a 

regionalization method for disseminating and analyzing health data accounting for not only 

commonly considered spatial compactness and attributive homogeneity but also familiarity 

and geoprivacy. This description serves as an overarching problem statement, and detailed 

settings are illustrated by a case study of health (specifically cancer) data. It can certainly 

benefit any studies that involve the small population problem, including crime analysis (F. 

Wang and O’Brien 2005).

Background on Related Methods

Spatial clustering methods in general seek to balance two factors, spatial compactness and 

attributive homogeneity, in the derived regions.

Regionalization for Geoprivacy Protection

To protect patients’ location privacy, various geographic masking methods are developed 

such as affine transformation, aggregation, and random perturbations (Kwan, Casas, and 

Schmitz 2004; Rushton et al. 2006). Affine transformation preserves collinearity so that 

points on a line will still be on a line after the transformation and ratios of distances. 

Random perturbation, often described as jittered, is the disturbance of usual and regular 

courses (or locations). Regionalization can be viewed as an aggregation technique widely 

used in analysis and presentation of health data. Many clustering methods adopt two major 

criteria: entity connectivity and hierarchical leveling. Experimental analysis has shown that 

connectivity is empirically more valid than hierarchical leveling because the former reflects 

the “chunking” pattern or behavior in data and thus intuitively matches human perceptions 

of importance, whereas the latter shows no significant results as a valid basis for clustering 

(Moody 2003). Moody's finding reduces the requirement on human judgment to identify 

“nuclei” or central, major, dominant, root, or primary entities. A recent example is the work 

of F. Wang, Guo, and McLafferty (2012), which uses an automated regionalization method 

in GIS originally developed by Guo (2008) to construct geographic areas with sufficient 

population for cancer data analysis.

Spatial clustering or regionalization is a common approach for preparing health data for 

public dissemination, and its implementation strives to balance between preserving spatial 

variation and protecting privacy. Typical concerns include homogeneous neighborhood, 

delineating boundaries for convenient policymaking and administration, and preserving 

spatial patterns and distributions of both health and population data (Heikkila 1996; Clapp 

and Wang 2006; Stafford, Duke-Williams, and Shelton 2008).
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Spatially adaptive filtering (Rushton 2003; Tiwari and Rushton 2005, 2010; Carlos et al. 

2010; Cromley and McLafferty 2012a) is one of the most popular GIS techniques for 

understanding the spatial variation in data and maintaining a minimum threshold value 

within each filter. It also balances the spatial variation and geoprivacy of data. Conceptually, 

using a threshold to determine the size of the adaptive filter is quite similar to the minimum 

cancer count and population criteria in this study. Regionalization uses a different approach 

to generate a nonoverlapping partition, however, which cannot be guaranteed in a regular 

implementation of adaptive spatial filters.

Modified Scale-Space Clustering

Modified scale-space clustering (MSSC; Mu and Wang 2008) is developed based on scale-

space theory (Witkin 1983; Koenderink 1984), an earlier algorithm (Wong 1993) and 

applications of the theory in remote sensing and GIS (Wong 1993; Leung, Zhang, and Xu 

2000; Luo et al. 2002; Ciucu et al. 2003; M. Wang, Luo, and Zhou 2005). Using analogies 

of solid melting and viewing images, scale-space theory treats “scale”—corresponding to 

temperature in solid melting or distance in viewing images—as a parameter in describing the 

processes and phenomena. With the increase of scale (as temperature in the melting 

algorithm), a piece of metal will melt into liquid but not evenly, showing a clustering 

pattern; with the increase of scale (as distance in the blurring algorithm), the same image can 

reveal different levels of generalizations and details, or different cluster centers. The 

extraction of scale as a factor in modeling and analysis is in line with some work by 

geographers (Tobler 1989; Batty and Xie 1994; Kwan and Weber 2003; Lam 2004).

Mathematically, a Gaussian function can be used to formulate a two-dimensional (2D) scale-

space (Wong 1993; Leung, Zhang, and Xu 2000). Because many GIS data are polygons with 

multiple attributes, Luo et al. (2002) and Mu and Wang (2008) modified the equations to 

capture the attributes and neighboring relationships. MSSC is an unsupervised hierarchical 

clustering method that considers both attributive homogeneity and spatial contiguity. 

Starting from small areas (e.g., census tracts), MSSC runs multiple iterations and eventually 

merges all tracts into one cluster, just like melting and blurring processes. The user can 

decide which round of clustering results to adopt. MSSC has been applied to study homicide 

patterns in Chicago (Mu and Wang 2008) and late-stage breast cancer distribution in Illinois 

(Mu and Wang 2008; Mu, Wang, and McLafferty 2010).

Peano Curve Algorithm

Peano curves are space-filling curves first introduced by Italian mathematician Giuseppe 

Peano (1890). A variation and more complicated form is called Hilbert curves because 

Hilbert (1891) visualized the spacefilling idea described in Peano curves and later referred to 

it as “topological monsters”(Bartholdi and Platzman 1988). Peano and Hilbert curves have 

been used to find all-nearest-neighbors (Chen and Chang 2011) and spatial ordering of 

geographic data (Guo and Gahegan 2006). Conceptually, Peano curves use algorithms to 

assign spatial orders to points in 2D space and map the points onto one-dimensional (1D) 

space. As shown in Figure 1, the spatial order of each point is calculated and labeled. 

Following the spatial order, a point in 2D space can be mapped onto the 1D line underneath, 

and the connected line in 2D space (on the right) is the Peano curve. Following the spatial 
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orders along the 1D line, spatial clustering can be achieved by classification with many 

methods. Figure 1 shows an example of quartile clustering.

The algorithm to calculate the spatial order has many forms. A generic space-filling 

heuristic algorithm developed by Bartholdi and Platzman (1988) has been widely used in the 

GIS community such as in older Arc/Info commands of SPATIALORDER and 

COLOCATE (F. Wang and O’Brien 2005) and a more recent public domain ArcGIS Python 

script (F. Wang and O’Brien 2005; Mandloi 2009). We adopt this algorithm for our method, 

and the key function in this algorithm is presented here in Python language:

# Calculate and return the Peano curve coordinate for

# a pair of given x, y values. x and y are standardized locations

# in the unit square that are transformed from original

# point (x, y). k is the first k binary digits of x and y.

def Peano(x, y, k):

if (k = 0 or (x = 1 and y = 1)):

return 0.5

if x ≤ 0.5:

if y ≤ 0.5:

quad = 0

else:

quad = 1

if y ≤ 0.5:

quad = 3

else:

quad = 2

subpos = Peano(2 * abs(x‒0.5), 2 * abs(y‒0.5), k‒1)

if (quad = 1 or quad = 3):

subpos = 1‒subpos

return GetFractionalPart((quad + subpos‒0.5)/4.0)

For spatial clustering, there are numerous methods to achieve spatial connectivity and 

compactness, and the space-filling curve is only one of them. Even for the space-filling 

curve approach, there are quite a few algorithms such as the previously mentioned Peano 

curve and Hilbert curve, in addition to the Sierpinski curve and several extensions or 

variations (Bartholdi and Goldsman 2001, 2004). Overall, they all perform satisfactorily in 

terms of spatial connectivity, with differences mainly in construction algorithms and 

applications. We decide to adopt the Peano curve algorithm for the following reasons: It is 

one of the earliest and most basic forms in the space-filling curve family and has been 

commonly used in geography, health, and other fields; the construction algorithm is simple 

and elegant; there are open source codes available; and it has been used in existing GIS 

tools.

The Modified Peano Curve Algorithm

Our place-oriented, MLR method is built on two previous clustering methods: modifying the 

Peano curve algorithm (Bartholdi and Platzman 1988; Mandloi 2009), termed MPC, to 
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achieve spatial compactness, and integrating it with the MSSC (Mu and Wang 2008) to 

address attributive homogeneity. Therefore, it is a hybrid method. Additionally, it also 

considers “mixed levels” of geographic units to maximize the recognizability of resulting 

regions and incorporates empirical criteria such as cancer count and population count into 

the regionalization process.

Space-filling curves have several well-known problems such as arbitrary jumps and 

predefined turns. Modifications are proposed to address these problems, and therefore the 

method is termed the modified Peano curve algorithm. Furthermore, the MPC algorithm 

needs to account for previously discussed issues related to health data dissemination and 

analysis. For convenience of illustration, we use the case study of cancer data in Louisiana 

to be specific.

Setting Clustering Boundaries on the Peano Curve with Threshold Population (e.g., Lower 
Limits of Population and Cancer Count

Clustering follows the values of spatial order along the Peano curve with breaking points 

that are defined by a threshold population size. Many classification methods can be applied 

here. Among the four general categories (exogenous, arbitrary, idiographic, and serial), ours 

uses the health data release criteria to decide class breaks and thus is considered exogenous. 

Through iterations in programming, each cluster satisfies the three criteria:

• Ascending spatial order.

• Population ≥ 20,000.

• Cancer count > 15.

A user can change the thresholds adaptable to specific applications. Here, the example of 

population ≥ 20,000 is based on the Summary of the Health Insurance Probability and 

Accountability Act (HIPAA) Privacy Rule (U.S. Department of Health and Human Services 

2003), and a minimum cancer count >15 is used by the State Cancer Profiles (National 

Cancer Institute 2013).

Combining Spatial Weight Matrix with Spatial Orders to Address the Jumping Problem— 
Disconnected Members in a Cluster

Figure 2 shows an area with forty-one units and their spatial orders are calculated and 

ranked with the Peano curve algorithm. The labels on the map are the ranks, and the 1D dot 

graph at the bottom reflects the spatial order values. Although features close in 2D space 

tend to have adjacent spatial order values on the 1D line such as units ranked 36 and 37, 

there are exceptions—for instance, there are two other spatial order values between units 11 

and 14 on the 1D line. Clustering performed by simply following spatial orders would lead 

to disconnected cluster members such as units 11 and 12. To address this problem, we bring 

in the spatial weight matrix, where 1 means that two spatial objects are adjacent and 0 

otherwise. When looking for the next member in a cluster after unit 11, the spatial order 

suggests unit 12, but the spatial weight matrix disqualifies 12 by the connectivity 

requirement (i.e., spatial weight between 11 and 12 is 0). The search goes on until unit 14, 

which is the adjacent unit with the closest spatial order.
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Forcing a Cluster Membership for Unclaimed or Loose-End Units

Figure 3 shows that units 14 and 15 are left alone at the end of iterations because the 

aggregation of the two does not satisfy the population and cancer count criteria. They are 

forced to merge with cluster 1, the first cluster satisfying the Rook neighborhood criteria.

Balancing Spatial Compactness and Attributive Homogeneity in Clustering

Although the preceding three steps have modified the Peano curve algorithm to meet the 

requirements of spatial connectivity and compactness with additional rations such as 

population and cancer count, attributive homogeneity has not been counted for in this 

clustering procedure. We bring in previously developed MSSC to address this issue.

Attributive homogeneity has been measured using the weighted aggregation of factor scores 

based on factor analysis (Mu and Wang 2008; F. Wang, Guo, and McLafferty 2012), and the 

weights are quantified with proportions of eigenvalues, representing the captured variances 

by factors. The closer the aggregated scores are, the more attributively similar the two 

objects. The weighted aggregation score is normalized and serves as attributive order (oai in 

Equation 1) similar to the spatial order (osi in Equation 1) concept from the Peano curve 

algorithm. Users can determine weighting factors for spatial (Peano) and attributive (MSSC) 

considerations such as

(1)

where oi is the integrated clustering order value for unit i, ws is the weighting factor of 

spatial consideration, and ws > 0, osi is the normalized spatial order from the Peano curve 

algorithm, wa is the weighting factor of attributive consideration, and oai is the normalized 

attributive order based on MSSC, and subject to ws + wa = 1.

In practice, the value of ws is set to be larger than 0, and preferably larger than 50 percent, as 

it is the entity connectivity emphasized here (Moody 2003). The MPC method is 

implemented in ArcGIS 10.1 with Python and ArcPy scripts.

The Place-Oriented, Mixed-Level Regionalization Method

The aforementioned MPC method is applied to areas of multiple levels, and therefore 

termed mixed-level regionalization (or clustering). For illustration, we use the 2006 cancer 

data in Louisiana to demonstrate the general steps, summarized in a flowchart in Figure 4.

In Step 1, the method starts with surveying the data at the upper level of area units. For 

instance, as we are going to work with data at the census tract level, we begin with one level 

up (i.e., the county level) and examine whether an entire county meets the criteria of 

population thresholds discussed in the previous section. If so, the county itself forms a 

cluster; otherwise, we decide whether to further aggregate it with other counties or 

disaggregate it to tract-level clusters. In Louisiana, a parish is equivalent to a county in other 

states. There are three scenarios—disaggregation, no action, and aggregation—color-coded 

as red, green, and blue in all subsequent tables and figures, respectively.
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1. Disaggregation: Both population and cancer count criteria overflow and the values 

are more than twice the tresholds, so there is a need to break a parish into 

subregions.

2. No action: If a parish meets both criteria with neither one twice overflown, the 

parish serves as a cancer data release (analysis) region with no action required. If 

one of the measures is more than twice the limit and the other is not, no further 

action is needed either.

3. Aggregation: If a parish has at least one unsatisfied criterion, it needs to be 

aggregated to adjacent parishes to reach the criteria. There are two types of 

aggregation.

• Minimum population aggregation: Because population already exceeds 

20,000, parishes with minimum population should be prioritized when 

merging.

• Minimum cancer-count aggregation: Because cancer count overflows, 

parishes with minimum cancer count should be first considered when 

merging to the parish to form a cluster.

Figure 5 shows the three scenarios in a total of sixty-four parishes in Louisiana: Twenty-

nine need to be divided into subregions, nineteen need no action, and sixteen parishes need 

to be aggregated.

Step 2 deals with the first scenario, disaggregation. Demonstrated with the same example as 

earlier, each of the twenty-nine parishes is divided into subregions using MPC. They are 

parishes with major urban centers such as New Orleans, Baton Rouge, Shreveport, Metairie, 

and Lafayette. Before dividing a parish into subregions, the maximum number of subregions 

is calculated for each parish such as

(2)

where i is the the parish of interest, maxNi is the maximum number of subregions in parish i, 

Pi is the population of parish i, P is the population threshold (set as 20,000 in method 

demonstration), Ci is the cancer count in parish i, C is the cancer count threshold (set as 15 

in method demonstration), Ti is the number of tracts in parish i, int is the function to round 

down a number to the nearest integer, and min is the minimum function.

The hybrid method of MPC with a tailored Equation 1 (e.g., ws = 90% and wa = 10%) is 

applied to group tracts to meet the criteria of spatial connectivity, attributive homogeneity, 

and population and cancer count. All clusters derived from this step are subparish clusters 

made of census tracts within a parish. As discussed earlier, normalized attributive order is 

measured with attributive homogeneity, which is approximated with weighted aggregation 

of factor scores. A total of eleven socioeconomic variables are chosen to capture the 

sociodemographic structure of area units (tracts or counties; F. Wang, Guo, and McLafferty 

2012) with a factor structure shown in Table 1.
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Step 3 is for the second scenario, no action. No additional actions are needed, and thus each 

of these nineteen parishes forms a single-parish cluster (Figure 5).

Step 4 is for the group parishes in the third scenario, aggregation. The tailored MPC used in 

step 2 is applied again but at the level of parish instead of census tract. There are sixteen 

rural parishes in this category (Figure 5), each of which has a small number of census tracts 

ranging from two to five. All clusters in this step are multiparish ones.

Step 5, the third procedure in the section on the MPC method (forcing cluster membership), 

is followed to tackle isolated clusters or loose ends at different levels. Isolated tracts are 

merged to a nearby subparish cluster composed of tracts, and isolated parishes are merged to 

a nearby cluster of single-parish (from step 3) or multiparish (from step 4).

Figure 6 and Table 2 illustrate and summarize the final results. There are sixty-four parishes 

or 1,106 census tracts in Louisiana, and the MLR has yielded a total of 165 clusters. The 

underneath parish boundary map and boundary change map are provided for reference. It is 

observed that the MLR preserves upper level geographic units, parishes in this case, to a 

great degree. In terms of area or number of parishes, one third of the state has its final 

derived regions identical to the parishes. In terms of boundary length, only 4 percent of the 

parish boundaries are removed to form multiparish clusters, and 26 percent of the cluster 

boundaries are added for tract-level clusters. With 96 percent of parish boundaries still 

visible on the final clusters, the MLR generates regions of a high degree of familiarity. As 

shown in Figure 6 and Table 2:

• 140 tract-level clusters (within parish) are derived from twenty-nine disaggregation 

parishes, which have 926 tracts.

• Among the nineteen no-action parishes, sixteen remain single-parish clusters, and 

the other three are lost to step 5 for addressing loose-end parishes and become part 

of the multiparish clusters.

• Nine multiparish clusters are constructed from sixteen aggregation parishes along 

with the three “no-action” parishes.

Discussion

Temporal Variations and Selection of Threshold Values

Figures 7A and 7B show overall cancer incidences in Louisiana from 2002 to 2006 at census 

tract and parish levels, respectively. No major temporal changes are observed at either level. 

We use the five-year data to test the stability of the MLR method, and experiment with the 

threshold: population ≥ 20,000 and cancer count > 15 (Figure 8).

Although the temporal variations are negligible, the number and configurations of clusters 

vary in response to different threshold values of population and cancer count. To provide a 

general guideline to determine those values, we test multiple scenarios based on the 2006 

data. The combinations of four population sizes (5,000, 10,000, 20,000, and 30,000) and six 

cancer counts (15, 100, 200, 300, 400, and 500) yield twenty-four scenarios. The MLR 

results of cluster types and numbers are shown in Table 3 and Figure 9.
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Based on Figure 9A and 9B, the correlation between population and cancer count is high at 

both census tract and parish levels, characterized with a simple cancer/population ratio of 5 

percent (i.e., about the average five-year cancer rate in the study area). Figure 9C, coupled 

with data in Table 3, demonstrates that the 5 percent equilibrium line divides the results into 

two zones. Below the line is termed the population dominant zone, showing little or no 

change in the total number of clusters and types as long as the population threshold stays the 

same. For example, when population threshold = 20,000, the corresponding cancer count = 

100 on the equilibrium line, and any scenarios with cancer count < 100 will show quite 

similar results along the population = 20,000 vertical direction. Above the equilibrium line 

is termed the cancer count dominant zone, and resulting clusters will be the same or quite 

similar, with the same cancer count with different population thresholds. For instance, when 

cancer count is set to 200, the clusters stay the same for population values of 5,000, 10,000, 

20,000, and 30,000. In other words, population and cancer count thresholds need to set along 

the equilibrium line representing the cancer rate in a study area. The rate understandably 

drops in a study focusing in a single year on a specific cancer type or demographic group.

Effect on Mapping

Figure 10 shows crude cancer rate maps in 2006 before (Figure 10A) and after (Figure 10B) 

applying the MLR method. When feasible, it is strongly advised to map age- and gender-

adjusted cancer rates. Without access to cancer data by gender and age groups, the crude 

rates are used here for illustrating the effects of MLR method. The constraints are population 

≥ 20,000 and cancer count > 15. The tract-level rate map shows a high variability of cancer 

rates, subject to the risk of the small population problem. The mixed-level rate map shows a 

much smoother pattern, yet with noticeable high-rate and low-rate clusters. Constructed 

regions by MLR have similar population sizes and cancer counts in clusters and are thus 

comparable. Population and cancer counts are also sufficiently large in the new regions and 

lead to more reliable cancer rate estimates, which permit meaningful mapping and 

subsequent exploratory spatial analysis (F. Wang, Guo, and McLafferty 2012).

Comparison Between MLR and Other Spatial Clustering Methods

Among various spatial clustering methods, k-mean (MacQueen 1967) and iterative self-

organizing data analysis technique (ISODATA; Ball and Hall 1965) are widely used in GIS 

and remote sensing. Both can perform regionalization and be implemented easily in popular 

GIS or remote sensing software. K-mean clustering starts with defining k initial cluster 

centers, then assigns all objects to the closest centers and recalculates center locations. The 

process is iterated until center locations become unchanged. ISODATA is very similar to k-

mean but does not require a predefined number of clusters at the beginning and thus is more 

flexible in cluster forming by splitting and merging (Jensen 1996). We take one of the MLR 

results (2006 data, with constraints of population > 20,000 and cancer count >15, 90 percent 

spatial + 10 percent attributive weighting) to compare with k-mean clustering, implemented 

by Grouping Analysis in ArcMap. ISODATA is mainly used for analysis of raster data in 

GIS and remote sensing software and therefore is not applicable to our case based on the 

vector data. The comparison to ISODATA is only conceptual.
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Table 4 compares functionalities and outcomes of the three methods. MLR differs most in 

providing mixed-level results and weighing attributes and also without predefining cluster 

numbers and locations. Figure 11 shows the 165 clusters using either MLR or k-mean. 

Parish boundaries are provided at the bottom as a reference. The MLR best preserves the 

parish shapes and generates smoother clusters of more similar sizes than k-mean.

Conclusion

This research proposes the place-oriented MLR method based on two earlier methods: the 

MSSC derived from scale-space theory and the MPC based on the space-filling algorithm. 

The uniqueness of the MLR method lies in its ability to assign mixed-level cluster 

memberships. The method begins with a diagnosis of areas at the upper level (say, county) 

and classifies into (1) areas of large population that need to be decomposed 

(“disaggregation”) to gain more spatial variability, (2) areas of about the right size that 

require no further action, and (3) areas of small population that need to be merged 

(“aggregation”) to mask privacy of data. When the clustering is applied to those flagged as a 

disaggregation status, areas at the lower level are grouped within each upper level area (say, 

census tracts within each county). When the clustering is applied to those flagged as an 

aggregation status, areas at the upper level are grouped. It eliminates unnecessary boundary 

breaking in clustering and the amount of clustering operation is minimized. More important, 

upper level geographic unit boundaries are maximally preserved. The newly constructed 

regions have comparable base population, an important property in health data management 

and analysis. A cognitive and geo-psychological benefit of the method is that the resulting 

regions still look familiar or are recognizable. Therefore, the method is more place-oriented 

than space-oriented, as boundaries are essential for people's sense of places. It also addresses 

the small population problem with additional practical criteria (in this case, the minimum 

and approximately equal population) and generates maps of more reliable disease rates.

Some limitations of the method are inherited from its linkage to the space-filling curves with 

several widely known issues. Some of these are mitigated by bringing in a spatial weight 

matrix to remove the topological jumps and loose ends and integrating with the MSSC to 

account for both spatial and attributive aspects in the process. By incorporating additional 

criteria such as threshold population and cancer count into the clustering process, the MLR 

method delivers a promising result in constructing health data release regions that preserve 

major administrative boundaries. The concept employed here, making the best sense out of a 

rather arduous analytical task, echoes the thinking of human, social, and cultural 

geographers. The form of regions reflects the process and connection among people, space, 

and place. The emphasis of keeping upper unit boundaries to increase familiarity makes the 

clustering method more human oriented than computer oriented.
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Figure 1. 
Spatial order by Peano curve.
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Figure 2. 
Jumping problem in Peano curve algorithm.
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Figure 3. 
Unclaimed units after the first round of clustering.
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Figure 4. 
Flowchart of the mixed-level regionalization (MLR) method.
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Figure 5. 
Three scenarios for parishes in Louisiana by mixed-level regionalization (MLR).
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Figure 6. 
Constructed regions for cancer data release by mixed-level regionalization (MLR).
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Figure 7. 
Yearly variation in cancer count, 2002–2006.
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Figure 8. 
Mixed-level regionalization results with population ≥ 20,000 and cancer count > 15, 

2002-2006.
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Figure 9. 
Cluster types and numbers with various thresholds of population and cancer counts.
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Figure 10. 
Crude cancer rates: (A) Before the clustering (tract level), and (B) After the clustering 

(mixed-level).
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Figure 11. 
Comparison between mixed-level regionalization (MLR) and k-mean clustering.
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Table 1
Factor structure of attributive variables

Variable

Socioeconomic disadvantages factor High health 
care needs 

factor

Language barrier factor

Nonwhite population (%) 0.8466 0.0251 –0.0328

Female-headed households (%) 0.8527 0.0529 –0.0665

Population without high school diploma (%) 0.7467 0.3441 0.2061

Median income ($) –0.8079 0.0055 0.0639

Population in poverty (%) 0.9339 0.0074 –0.0091

Homeownership (%) –0.6711 0.5167 0.0174

Households with > 1 person per room (%) 0.8136 0.1626 0.1516

Households without vehicles (%) 0.8776 –0.1223 –0.0576

Housing units lack of basic amenities (%) 0.4926 0.3056 0.0487

Demographic groups with high health care needs (%) 0.2153 –0.7579 –0.3578

Households with linguistic isolation (%) –0.0196 –0.4449 0.8847

Eigenvalues 5.6979 1.2961 0.9918

Proportion of variance explained 0.5180 0.1178 0.0902

Note: Values shown in bold indicate the highest loading of a variable on a factor among all factors.
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