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Abstract

Classical Hodgkin lymphoma (cHL) is a cancer in which malignant “Reed-Sternberg” cells 

comprise just a fraction of the bulk of the tumor and are characteristically binucleated. We 

recently identified a novel gene, KLHDC8B, which appears responsible for some familial cases of 

cHL. KLHDC8B encodes a midbody kelch protein expressed during cytokinesis. Deficiency of 

KLHDC8B leads to binucleated cells, implicating its involvement in Reed-Sternberg cell 

formation. Interestingly, other cancer genes, such as BRCA1 and BRCA2, also encode proteins 

locating to the midbody during cytokinesis, even though their participation in other pathways has 

received greater attention. Midbody components may be an overlooked source of tumor 

suppressor genes.
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Classical Hodgkin lymphoma

Classical Hodgkin lymphoma (cHL) is a cancer arising in B-lymphocytes of the germinal 

center of lymph nodes1. Unlike other malignancies, it demonstrates a bimodal age 

distribution with peak incidence both in early and late adult years. Along with African 

Burkitt lymphoma, nasopharyngeal carcinoma in Southeast Asia, and lymphoproliferative 

disease found among post-transplant immunosuppressed patients, cHL is associated with 

Epstein-Barr virus2. Another distinguishing feature is that the overwhelming bulk of the 

tumor is comprised of benign reactive inflammatory cells; malignant cells are few and 

consist of mononucleated “Hodgkin cells” and pathognomonic bi- or multi-nucleated “Reed-

Sternberg” cells.

The familial risk for cHL ranks amongst the highest for all types of cancer3, yet except for 

HLA associations4 and its occurrence in rare, pervasive immunodeficiency disorders5, genes 
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underlying predisposition to cHL have remained largely undefined. We recently identified a 

novel gene that is likely to be responsible for some familial cases of Hodgkin’s lymphoma 

and that may shed light on molecular mechanisms contributing to this and other forms of 

cancer.

Cloning and Characterization of KLHDC8B

In a recently published paper6, we ascertained a family where several individuals inheriting 

a constitutional, balanced translocation between chromosome 2 and 3 developed cHL. We 

molecularly cloned the breakpoints and determined that the translocation disrupts the 

previously uncharacterized gene, KLHDC8B, located on chromosome 3p21.31, by deleting 

its upstream regulatory elements and first exon and fusing a portion of its 5′-UTR to an 

intergenic region on chromosome 2q11.2, thereby abrogating its transcription. Additionally, 

we found that a rare SNP at a highly phylogenetically conserved position within the 5′-UTR 

reduced translational expression of KLHDC8B and was associated with and linked to cHL in 

three other families. Several people with this SNP also developed lung cancer instead of, or 

in addition to, cHL. Moreover, in one of three sporadically occurring cHL tumors, where 

genetic markers were informative, purified Reed-Sternberg cells demonstrated loss of 

heterozygosity (LOH) for KLHDC8B.

There is evidence that this region of chromosome 3 contributes to other forms of cancer. It is 

a site of recurrent cytogenetic abnormality and LOH in lymphoma7 as well as breast8 and 

lung and other types of cancer9, which share a genetic epidemiologic association with 

cHL10, and there are linkage data11, LOH analysis12, and chromosome transfer 

experiments13 implicating its involvement in nasopharyngeal carcinoma, another of the 

EBV-associated malignancies.

Genetics notwithstanding, it is the apparent function of KLHDC8B which may offer a 

clearer picture of early pathomolecular processes leading to cHL.

KLHDC8B is one of 71 known or predicted “kelch” family genes residing in the human 

genome14. The kelch motif comprises an approximately 50 amino acid residue repeated 

sequence15 first detected in a Drosophila protein serving as a component of “ring canals”16, 

which form intercytoplasmic bridges that connect primordial germ cells and that arise 

through a process of incomplete cytokinesis following cell division. Other kelch family 

members participate in diverse biochemical activities and consist of five, six, or seven 

repeated kelch domains. Most contain additional features, the most common being a “BTB/

POZ” domain. KLHDC8B distinguishes itself by being one of just two human genes 

containing seven kelch repeats but lacking other motifs.

The kelch domain is recognized for its ability to bind actin and participate in protein-protein 

interactions. Kelch proteins adopt a beta-propeller structure. The crystal structure17 for only 

one seven-repeat kelch-only protein (a fungal galactose oxidase) has been resolved; we have 

used it as the basis for modeling18 the predicted structure of KLHDC8B (Fig. 1). Note that 

the seventh kelch domain is split between amino and carboxyl termini, whereas for those 

containing fewer numbers of repeats, each kelch domain is contiguously coded within the 

gene.
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Although KLHDC8B is widely expressed, per gene expression atlases, germinal center B 

lymphocytes, the malignant cell of origin in cHL, do so most abundantly19, further 

implicating its involvement in lymphomagenesis. In order to decipher the function of 

KLHDC8B, we generated antibodies and performed indirect immunofluorescent staining6 of 

HeLa cells, which, although not necessarily relevant to lymphoma, are flat and have an 

abundance of cytoplasm, affording easy visualization (Fig. 2). KLHDC8B is expressed only 

in mitotic cells, where it locates to the midbody—a small intracellular structure that serves 

as the last point of contact between dividing cells before they undergo separation through 

the process of cytokinesis20. Moreover, quantitative RT-PCR and western blots performed 

on synchronized cell populations indicate that KLHDC8B is transcribed during S-phase and 

confirms that the protein is predominantly present, and therefore presumably translated, 

during cytokinesis, followed by its rapid degradation6. Based on its timing and location of 

expression, KLHDC8B appears to participate in cytokinesis.

KLHDC8B’s mitotic expression also suggests why the 5′-UTR SNP that we observed to be 

associated with and linked to cHL in additional families may so profoundly disrupt 

translation. The SNP, a C to T base substitution, is located in a polycytidine tract in a run of 

several adjacent polycytidine repeats. Clustered polycytidine repeats can function as an 

internal ribosome entry site (IRES)21. It turns out that mitotically expressed genes rely on 

CAP-independent translation of mRNA and therefore require an IRES, even for polypeptide 

synthesis commencing from an ATG located at the 5′ end of the transcript21, 22. Thus, the 

SNP likely disrupts an IRES required for translation of KLHDC8B specifically during 

mitosis.

We employed RNAi to knockdown expression of KLHDC8B in HeLa cells and found that 

reduction of KLHDC8B increased the proportion of binucleated cells6. We corroborated this 

observation by manufacturing a dominant negative form of KLHDC8B (M. Krem, 

unpublished results) that also creates binucleated cells, by interrupting the proper sequence 

of cytokinesis (Fig. 3). This observation is significant with respect to cHL, because the 

tumor’s signature binucleated Reed-Sternberg cell forms as a consequence of defective 

cytokinesis, rather than through cell fusion23–26. Therefore, haploinsufficiency of 

KLHDC8B may promote Reed-Sternberg cell formation.

How a binucleated cell, whose further division may be sluggish at best, may contribute to 

malignancy is uncertain. One possibility is that it is indicative of an underlying cytokinesis 

defect that may also result in aneuploidy in mononuclear cells. Not surprisingly, some of the 

most conspicuous mutations in cHL are chromosomal aberrations, and chromosomal 

instability is strongly implicated in Reed-Sternberg cell formation and cHL pathogenesis. 

Case series show strong evidence of chromosomal instability and chromosomal aberrations 

in most cases of HD27, 28; there is a particularly heavy frequency of tetraploidy or near-

tetraploidy29, 30. It has been speculated that Reed-Sternberg cells or their immediate 

precursors are derived from a karyotypically aberrant lineage1. The uniquely high 

frequencies of tetraploidy and near-tetraploidy correlate closely with multinucleation; the 

accumulation of extra chromosome sets would be simply explained by a defective 

cytokinesis model.
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Of note, an affected woman in the translocation family gave birth at an early age to a child 

with trisomy 21 Down syndrome6. One speculative interpretation is that KLHDC8B, as with 

Drosophila Kelch, is active during gametogenesis. If so, another speculative hypothesis—

based on an observation of an abundance of twins in the translocation family and an 

association between twinning and cHL in general31—is that loss of KLHDC8B may lead to 

twinning through persistent cytoplasmic bridges between oocytes derived from common 

progenitors. In a separate paper32, we have explored that possibility, by genetically 

determining if one twin from a pair in this family might be derived from a polar body.

Kelch and Other Proteins Involved with Cytokinesis

Several other kelch proteins are involved in cytokinesis. Tea1p, containing kelch repeats 

along with coiled-coil domains, interacts with microtubules to correctly position the cell 

division plane in fission yeast33. Similarly, Kel1p and Kel2p, also containing kelch repeats 

and coiled-coil domains, act in concert with the actin cytoskeleton to help localize the neck 

separating mother and daughter cells in budding yeast34. Nd1, which contains kelch repeats 

and a BTB/POZ domain, colocalizes with actin, and its over-expression retards cytokinesis 

by interfering with reorganization of the cytoskeleton as mitosis progresses35. Another BTB/

POZ-kelch protein, Keap1, has additionally been isolated as a component of the midbody36. 

Two more BTB/POZ-kelch proteins, KLHL9 and KLHL13, are found in the midbody37, 

where they bind to the Aurora B kinase spindle checkpoint regulator and act as adapter 

proteins that, analogously to Keap1’s interaction with Nrf2, direct ubiquitination of Aurora 

B by cullin 3-based E3 ligase37. Thus, participation in cytokinesis appears to be a major 

function of the kelch family of proteins.

When abscission fails, cytokinesis remains incomplete, and the cleavage furrow regresses, 

thus leading to the formation of binucleated cells38. Disruption of the expression of a 

diversity of proteins localizing to the midbody has been consistently shown to interrupt 

cytokinesis and increase binucleated cell formation, as demonstrated by RNA interference-

mediated knockdown of kelch proteins Keap136, KLH937, and KLH1337; the kinesin motor 

proteins MKLP139 and CHO140; the endocytic adapter protein ARH41; the filament protein 

Tektin242; the product of the tumor suppressor gene BRCA243; over-expression of the 

vesicle membrane associated proteins syntaxin and endobrevin44; genetic deletion of the 

inner centromere protein Incenp45; injection of antibodies against the septin Nedd546; and 

expression of dominant-negative forms of Aurora B47 and the large multifunctional protein 

BRUCE48. In fact, a proteomic analysis of microdissected mammalian midbodies identified 

scores of proteins, the majority of which, when knocked down by RNA interference in C. 

elegans, gave rise to multinucleated cells36.

Cancer Genes Encoding Midbody Proteins

It is interesting that some proteins (Keap1, BRCA1, BRCA2, and BARD1) involved with 

cancer and that are now known to locate to the midbody are thought to contribute to cancer 

through mechanisms completely distinct from their possible functions during cytokinesis. 

Could something (i.e. their function at the midbody during cytokinesis) have been 

overlooked, with respect to mechanisms of oncogenesis?
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Keap1, a kelch protein family member containing a BTB-POZ domain, is most well studied 

in its capacity for sensing cellular stress. Keap1 binds the transcription factor NRF2, a 

master regulator of response to oxidative stress, in the cytoplasm, where, through the BTB-

POZ domain, it recruits cullin E3 ubiquitin ligase to target NRF2 for ultimate proteasomal 

destruction49. However, under oxidative conditions, Keap1’s ability to bind NRF2 becomes 

impaired, thereby both releasing it as a substrate for ubiquitination and allowing it to 

translocate to the nucleus, where it transcriptionally activates the stress response 

pathway49, 50. Somatic mutations in KEAP1 have recently been described as frequent events 

in a number of tumors49, 51. At first glance, it is difficult to imagine how loss of a 

component needed to activate stress-induced, cytoprotective pathways could be oncogenic. 

One possibility is that constitutive activation of protective genes promotes growth and 

chemotherapeutic resistance at somewhat later stages of tumor development49, 50. We 

suggest than an alternative interpretation is that loss of Keap1, at least in the early stages of 

tumor formation, disrupts cytokinesis, in which case, binucleated cell formation, as observed 

when it is experimentally knocked down36, could be a byproduct of a phenomenon also 

generating chromosomal instability. Further study of Keap1’s role at the midbody in 

cytokinesis may be warranted.

Germline mutations of BRCA1 and BRCA2 cause hereditary breast and ovarian cancer and 

also increase risks for other types of cancer52. To a much lesser extent, constitutional 

mutations of the gene, BARD1, encoding BRCA1-associated RING domain-1 protein, are 

associated with hereditary breast cancer53. All three proteins have overlapping and complex, 

yet distinct, roles in DNA repair54. BRCA1 is thought to primarily function in signaling 

DNA damage and cell cycle regulation, whereas BRCA2 more directly participates in DNA 

repair55. Much less attention, however, has focused on the fact that BRCA156, BRCA243, 

and BARD157 all locate to the midbody during cytokinesis. Cells deficient in BRCA2 

additionally undergo a delay in cytokinesis58. The precedent for such a phenomenon is the 

rare mosaic variegated aneuploidy syndrome where heritable deficiency of the mitotic-

spindle checkpoint due to loss of BUB1B, encoding the BubR1 kinase, generates frequent 

somatic aneuploidy and thereby predisposes to various types of cancer59, 60.

Midbody Proteins, Defective Cytokinesis, and the Reed-Sternberg Cell

The mechanisms by which alterations in midbody proteins such as KLHDC8B lead to 

defective cytokinesis are gradually becoming elaborated. A leading hypothesis is that altered 

expression of spindle checkpoint genes causes centrosomal amplification, demonstrated in 

both mitosis61 and oocyte meiosis62. Amplification of the number of centrosomes is 

implicated in polyploidy in both cHL cell lines and patient cases63. Centrosomal 

amplification has recently been strongly linked to chromosomal instability, as extra 

centrosomes promote chromosomal missegregation during cell division64. One might 

speculate that decreased expression of KLHDC8B triggers centrosomal amplification and/or 

aberrant spindle assembly, thus leading to defective cytokinesis and the pathognomonic 

Reed-Sternberg cell.
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Conclusion

Whole-genome sequencing by Vogelstein and colleagues has led to the identification of 

twelve major pathways susceptible to tumor-inducing mutations; notably, the list did not 

include mitotic/spindle checkpoint proteins65. It is possible then that somatic or heritable 

mutations in genes encoding the cytokinetic machinery and that therefore contribute to 

faithful segregation of chromosomes may represent a significant and heretofore 

underappreciated category of tumor suppressors. If so, then other genes encoding 

components of the midbody are excellent candidate tumor suppressor genes.
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Figure 1. 
Predicted structure of KLHDC8B, revealing a seven-bladed propeller structure.
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Figure 2. 
Localization of KLHDC8B (green) during mitosis (right cell) and, in particular, at the 

midbody during cytokinesis (arrow, left cell). Counterstaining of mitotic spindle with α-

tubulin (red) and nuclei using DAPI (blue). Shown is a 3D reconstruction of z-stack of 

confocal imaging of indirect immunofluorescence of HeLa cells.
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Figure 3. 
Binculeated cell formation in HeLa cell expressing dominant negative KLHDC8B, time-

lapse photography. Cytokinesis cannot be completed and cleavage furrow regresses.
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