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Abstract

Many calcium oxalate (CaOx) kidney stones develop attached to renal papillary subepithelial 

deposits of calcium phosphate (CaP), called Randall’s plaque (RP). Pathogenesis of the plaques is 

not fully understood. We hypothesize that abnormal urinary environment in stone forming kidneys 

leads to epithelial cells losing their identity and becoming osteogenic. To test our hypothesis male 

rats were made hyperoxaluric by administration of hydroxy-l-proline (HLP). After 28 days, rat 

kidneys were extracted. We performed genome wide analyses of differentially expressed genes 

and determined changes consistent with dedifferentiation of epithelial cells into osteogenic 

phenotype. Selected molecules were further analyzed using quantitative-PCR and 

immunohistochemistry. Genes for runt related transcription factors (RUNX1 and 2), zinc finger 

protein Osterix, bone morphogenetic proteins (BMP2 and 7), bone morphogenetic protein 

receptor(BMPR2), collagen, osteocalcin, osteonectin, osteopontin (OPN), matrix-gla-protein 

(MGP), osteoprotegrin (OPG), cadherins, fibronectin (FN) and vimentin (VIM) were up regulated 

while those for alkaline phosphatase (ALP) and cytokeratins 10 and 18 were down regulated. In 

conclusion, epithelial cells of hyperoxaluric kidneys acquire a number of osteoblastic features but 

without CaP deposition, perhaps a result of down regulation of ALP and up regulation of OPN and 

MGP. Plaque formation may additionally require localized increases in calcium and phosphate and 

decrease in mineralization inhibitory potential.
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INTRODUCTION

Kidney stone formation is a common chronic disease and its life time prevalence is 

increasing in United States as well as the rest of the world.[1, 2] The increase in stone 

prevalence is associated with simultaneous escalation in cost of taking care of patients, 

which has already reached over ten billion dollars/year. But this figure does not include the 

hidden costs of nephrolithiasis, the impact on renal functions and quality of life.[3] New 

epidemiological studies also provide the evidence that stone formation is a risk factor for 

developing hypertension, chronic kidney disease and end stage renal disease.[4–7] Number 

of stone episodes and surgical interventions is highly correlated with reduction and loss of 

renal function.[3] Obesity, hypertension, diabetes, chronic kidney disease and metabolic 

syndrome, all of whom are on the rise, are also risk factors for stone formation in adult 

population.[5, 8] In the case of pediatric urolithiasis, analysis of PHIS database showed that 

stone patients had significantly higher odds of hypertension and obesity than the controls.[9]

Calcium oxalate (CaOx) kidney stones develop attached to Randall’s plaques (RP), 

subepithelial deposits of calcium phosphate (CaP) on renal papillary surface, or Randall’s 

plugs, crystal aggregates blocking the terminal collecting ducts.[10–14] The plaques 

themselves originate deep inside the renal interstitium associated with the basement 

membranes of loops of Henle, collecting ducts or blood vessels.[15, 16] Mechanisms 

involved in the initial formation of the RPs are still unclear. Pathogenesis is generally 

considered a passive, unregulated physicochemical process.[17] In our opinion,[18] as well 

as some others[19] plaque and stone formation are actively regulated processes similar to 

vascular calcification in the kidneys in which vascular smooth cells (VSMC) acquire 

osteogenic phenotype.[20–22] Exposure of VSMC to elevated levels of calcium and 

phosphate triggers osteogenic transformation of VSMC.[23–26] Transformation involves 

increased expression of osteoblast specific genes and decrease in smooth muscle cell 

markers.[27, 28] Bone morphogenetic proteins, BMP 2 and BMP 4, and Wnt signaling 

pathways are activated through up-regulation of transcription factor, Runt-related 

transcription factor 2 (RUNX2). Cells produce matrix proteins. Reactive oxygen species are 

likely involved in the VSMC transformation to osteogenic phenotype by regulating RUNX-2 

transcription factor.[29, 30] It is our hypothesis that abnormal urinary environment such as 

hyperoxaluria, hypercalciuria and hypocitraturia and associated oxidative stress, produce 

specific changes in the renal epithelial cells. The cells lose their epithelial character and 

become osteogenic. We decided to test our hypothesis in a rat model of hyperoxaluria. Since 

many genes and pathways are involved we performed genome wide analysis of differentially 

expressed genes in the kidneys and determined changes consistent with the dedifferentiation 

of epithelial cells into bone producing cells.

We investigated the expression of genes considered to be involved in epithelial 

transformation and bone morphogenesis including runt related transcription factors 

(RUNX),[31, 32] zinc finger protein Osterix,[33] bone morphogenetic proteins (BMP1-7),

[34] bone morphogenetic protein receptor(BMPR),[35] collagens,[36] alkaline phosphatase 

(ALP),[37] osteocalcin,[31] osteonectin,[38] osteopontin (OPN), [39] matrix-gla-protein 

(MGP),[21] osteoprotegrin (OPG),[40] cytokeratins,[41] cadherins,[42] fibronectin (FN)

[43]and vimentin (VIM).[44] Epithelial cells express high levels of cytokeratin 8, 10, 18, as 
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well as E-cadherin, while mesenchymal cells express N-cadherin, fibronectin and vimentin.

[45] BMPs play significant role in osteoblast differentiation and interact with BMPRs.[46, 

47] Collagens are major constituent of extracellular matrix,[48] control matrix remodeling 

and are involved in calcification [49] including growth of Randall’s plaques.[50] ALP is a 

membrane associated enzyme and plays critical role in both physiological and pathological 

calcification.[51, 52] RUNX2 also known as core-binding factor alpha-1 is a key 

transcription factor associated with osteoblast differentiation.[53, 54] Osterix is a zinc-finger 

containing transcription factor essential for osteoblast differentiation.[46] This report shows 

the changes that occur in the expressions of these molecules of interest in renal tissues in 

response to sustained hyperoxaluria and crystal formation. We discuss how these changes 

point to a number of molecular processes that may be involved in the deposition of CaP 

crystals in the renal interstitium and formation of plaques.

MATERIALS AND METHODS

Animal Procedures

The experiments described herein were performed in Sprague-Dawley rats purchased from 

Harlan Labs, Inc. The studies were approved by the University of Florida’s IACUC and 

were conducted in accordance with the recommendations of the NIH Guide for the Care and 

Use of Laboratory Animals. All procedures are detailed in our earlier publications.[55–57] 

In brief, two groups of 6 rats each, average weight of 150 grams, were placed in metabolic 

cages with free access to food and water. Rats in group 1 were fed a normal rat chow diet 

and given sterile water. Rats in group 2 were fed the same chow as group 1 rats, but 

supplemented with 5% (w/w) hydroxy-l-proline (HLP). At the end of day 28, all rats were 

euthanized and their kidneys removed. From each rat, one kidney was used for RNA 

isolation, while the second was placed in 10% phosphate buffered formalin for histological 

analyses.

RNA extraction and differential expression of genes by microarray analysis

Each rat kidney excised for RNA isolation was surgically separated into medulla and cortex, 

then snap frozen in liquid nitrogen and stored at −80°C. Total RNA was isolated 

concurrently from each of the specimens using the RNeasy Mini-Kit (QIAGEN, Valencia, 

CA) as per the manufacturer’s instructions. Microarray hybridizations were carried out with 

each of the RNA specimens using the Illumina™RatRef-12 Expression Bead Chip 

containing >22,000 genes expressed in the rat genome. Expressed values were determined 

using the Illumina™ bead array reader. All microarray data have been deposited with the 

Gene Expression Omnibus (GSE36446).

Gene expression data analysis was performed using the Genome Studio Gene Expression 

Module V1.0. Before the analysis, the individual signal intensity values retrieved from the 

microarray probes were log transformed (using 2 as a base) and normalization was done for 

all the individual samples within each study group. After normalizing the signal intensity 

values for each of the 36 arrays, the Student’s t-test was used to do a probe-by probe 

comparison between two groups concurrently. For each comparison, the fold change (FC) 

and p-value was calculated for each gene within each experimental group and volcano plots 
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were drawn for each comparison. Differential gene expressions were compared between the 

cortex and medulla tissues from control versus HLP-treated rats using Database for 

Annotation, Visualization of Integrated Discovery (DAVID) enrichment analysis tool 

(Bioinformatics Resources, National Institute of Allergy and Infectious Diseases) for GO: 

TERM and KEGG pathway analysis. [58, 59] Cluster analysis of genes was also done for 

the identification of biological processes, cellular component, and molecular function 

ontology.

Histological examinations

Formalin fixed tissues were embedded in paraffin and sectioned to a thickness of 5-µm. 

Deparaffinization of paraffin-embedded slides was performed by xylene immersion 

followed by dehydration in ethanol. Kidney sections were stained with Hematoxylin/ Eosin 

(H&E) and periodic acid-Schiff (PAS). Immunohistochemical staining was performed using 

specific antibodies against VIM, collagen, OPN, MGP, FN and pancytokeratin antibody 

AE1/3, a cocktail for a number of cytokeratins found in epithelial cells. Staining was 

developed by the addition of diaminobenzidine (DAB) substrate (Vector Labs, Burlingame, 

CA, USA) and counterstained with hematoxylin. Images were taken using the Zeiss 

Axiovert 200M microscope (Carl Zeiss Microimaging, Inc., Thornwood, NY, USA).

Real Time-PCR

Results of microarray analyses were confirmed using RT-PCR of selected genes. cDNA was 

generated using Invitrogen's SuperScript III First-Strand Synthesis System (Carlsbad, CA, 

USA; Cat. # 18080-051), as described previously.[55] Quantitative real time PCR was 

carried out to determine the mRNA expression of fibronectin1 (Fn1), runt related 

transcription factor-2 (RUNX2), Osterix, bone morphogenetic proteins (BMP2, BMP7), 

bone morphogenetic protein receptor, Type 2 (BMPr2), cytokeratins (KRT8, KRT18), VIM, 

OPN, CoL1a1, and ALP in both renal cortex and medulla. The mRNA of these genes was 

PCR amplified and detected using the Roche's FastStart High Fidelity PCR System 

(Indianapolis, IN, USA; Cat. # 03553426001). Housekeeping genes GAPDH and Actin were 

used to normalize the expression of the tested genes. These stable housekeeping or the 

internal control genes were used to remove any sampling differences (such as RNA quantity 

and quality) in order to identify real gene expression. The forward and reverse primers used 

are listed in Table 1.

“cDNA was generated using Invitrogen's SuperScript III First-Strand Synthesis System 

(Carlsbad, CA, USA; Cat. # 18080-051). Briefly, 5 µg of total RNA was added to a 0.5-mL 

tube with 50 µM Oligo (DT) 20, 10 mM dNTP mix, and DEPC-treated water for a final 

volume of 10 µL. The sample was incubated at 60°C for 5 min and then placed on ice for 1 

min. The sample was then added to cDNA Synthesis Mix [10 × RT buffer (supplied with 

kit), 25 mM MgCl2, 0.1 M DTT, 40 U/µL RNase OUT, 200 U/µL SuperScript III RT] and 

incubated at 50°C for 50 min. The reaction was terminated by heating at 85°C for 5 min 

followed by chilling on ice. One microliter of Rnase H was added to samples and incubated 

for 20 min at 37°C. After incubation, the samples were ready for use in RT-PCR reaction.”
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Real time RT-PCR was performed using the SYBR® Green PCR master Mix (Cat. # 

4309155) and the Applied Biosystems StepOnePlusTM Real Time PCR systems to 

determine the gene expression. PCR reactions were performed in total volume of 20 µL 

containing 10 µL of SYBR® Green PCR master Mix, 1 µL of forward and reverse primer 

each, 4 µL of cDNA, and 4 1 µL of sterile DD H2O. The reactions were cycled for 950C for 

10 min, followed by 40 × cycles of 950C for 15 min, 600C (for RUNX2, SP7, ALP, BMP2, 

KRT8, VIM,Fn1 and Col1A1) or 550C (for BMP7, BMPr2) or 650C (for KRT18) or 630C 

(for OPN) for 1 min.

RESULTS

Histology

HLP administration to male rats produced hyperoxaluria and CaOx crystal deposition in 

their kidneys as shown previously. [55, 56, 60] After 28 days of HLP consumption, urinary 

excretion of oxalate by the rats was many folds higher than the controls and extent of crystal 

deposition ranged from few small crystal aggregates to extensive deposition of large 

deposits throughout the kidneys. Even though renal tubules of all segments of the kidneys, 

cortex, medulla and papilla, contained CaOx crystals, the majority of the crystals were seen 

in the tubular lumens of the distal tubules and collecting ducts of the cortex and outer 

medulla (Figure 1). The tubular segments that contained crystals were dilated with many 

fold increase in lumen diameter. Their lining epithelium appeared damaged. Tubular 

epithelia were attenuated and focally sloughed from the tubular basement membranes. 

Interstitial inflammation was conspicuous around the tubules containing crystals. Glomeruli 

and tubules without crystals appeared normal.

Microarray Analysis

Relative gene expression of runt related transcription factor-1 and 2 (RUNX1 and RUNX2), 

and zinc finger protein Osterix/SP7 was greatly up regulated in both the renal cortex and 

medullary tissues of the HLP-fed rats compared to the tissues from the control rats (Figure 

2). Expression of gene for ALP was down regulated (Figure 2). Relative gene expression of 

bone morphogenetic proteins 2 and 7 (BMP2 and BMP7), and bone morphogenetic protein 

receptor Type 2 (BMPR2) were also up regulated in the kidneys of the HLP- fed rats (Figure 

3). Relative expression of genes for cytokeratin 10 (KRT 10) and cytokeratin 18 (KRT 18) 

were down regulated while that of cytokeratin 8 (KRT 8) up regulated in both the cortex and 

medulla of HLP-treated rat kidneys (Figure 4). Relative expression of gene encoding for 

VIM was also highly up regulated in kidneys of the HLP treated rats as shown in Figure 4.

Osteoblast marker genes, encoding for OPN, FN, COL1a1, COL1a2 (Figure 5), osteocalcin, 

bone differentiation marker osteonectin (results not shown) were also upregulated. Similarly 

there were significant increases in gene encoding for MGP (results not shown). Genes for 

osteoblast secreted receptor osteoprotegrin (OPG) and cadherins 1, 10, 16, which are 

involved in regulating cell adhesion and mobility, were all down regulated (results not 

shown).
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Real Time PCR

Results of microarray analyses were confirmed by performing RT-PCR for selected 

molecules. Both RUNX2 and Osterix mRNA showed many fold increases in both the cortex 

and medulla of the HLP-treated rat kidneys (Figure 6). There was many fold reduction in 

alkaline phosphatase mRNA, a very important player in calcification, in both the cortex and 

medulla of hyperoxaluric rat kidneys compared to the control (Figure 6).

mRNA’s of bone morphogenetic proteins BMP2, BMP7, and their receptor BMPR2 were 

also increased in both the cortex and medulla of the treated rats (Figure 7). Figure 8 shows 

results of real time PCR of cytokeratin 8 (KRT8), cytokeratin 18 (KRT18), and Vimentin 

(VIM) in the cortex and medulla of the control and HLP fed rats. Expression of cytokeratin 

8 mRNA increased while that of 18 decreased in both cortical and medullary tissues. There 

was many fold increase in VIM mRNA in HLP treated rat kidneys.

There were many fold increases in mRNA expression for OPN, Fn1, Col1a1 in both the 

cortex and medulla of the hyperoxaluric rats compared to the control tissues (Figure 9). 

MGP mRNA expression was similarly increased (results not shown).

Immunohistochemistry

Vimentin is an intermediate filament expressed mostly in mesenchymal cells. Vimentin 

staining in normal kidneys was limited to the podocytes and mesangial cells of the glomeruli 

and endothelium of the peritubular capillaries in the cortex and vasa recta of the renal 

medulla (Figure 10 A,B). Tubular epithelia in both cortex and medulla were generally 

devoid of vimentin staining. The papillary surface urothelium of the normal kidneys was 

also not stained. There was increased vimentin immunoreactivity in the kidneys of 

hyperoxaluric rats with CaOx nephrolithiasis. Almost all elements of the kidney including 

the renal interstitium and most renal tubules showed vimentin staining. Strong vimentin 

expression was seen in tubules that contained CaOx crystals (Figure 10 C,D). Papillary 

surface urothelium and both the cortical and medullary collecting ducts that did not contain 

CaOx crystals lacked vimentin expression.

Pancytokeratin antibody AE1/3 is a cocktail for a number of cytokeratins found in epithelial 

cells. No obvious difference was visible in staining patterns between the kidneys of the 

control and rats with CaOx nephrolithiasis (Figure 10 E,F). Glomeruli, endothelium of the 

peritubular capillaries and vasa recta and proximal tubules were negative for pancytokertain. 

The papillary surface urothelium and epithelia of the collecting ducts, distal tubules, and thin 

limbs of the loops of Henle were generally positively stained.

Figure 11 shows images of normal and hyperoxaluric kidneys stained for collagen. In the 

normal kidneys, Collagen 1 staining was mostly seen around the large and small blood 

vessels (Figure 11A). Staining increased in kidneys of hyperoxaluric rats (Figure 11 B, C) 

particularly around the tubules that contained CaOx crystals. Collagen stained blue with 

Masson’s trichrome, around the dilated renal tubules that contained CaOx crystals (Figure 

11D). Epithelial cells of renal tubules without crystals stained red and their nuclei, dark 

brown.
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Figure 12 shows staining for OPN, fibronectin and MGP. Normal kidneys showed 

nonspecific, infrequent and light staining for these macromolecules (Figures 12 A, C, E). 

Heavy OPN expression was mostly associated with the crystal deposits (Figure 12D). 

Luminal surfaces of the tubular epithelial cells in contact with the crystals were heavily 

stained compared to their lightly stained cytoplasm. Fibronectin staining was seen in the 

renal tubular epithelial cells, their lumens as well as peritubular spaces (Figure 12 F). Matrix 

gla protein expression was most pronounced in the medullary peritibular vessels (Figure 12 

B) in the kidneys of the hyperoxaluric rats. It was also seen associated with CaOx crystals 

deposits and the epithelial cells in contact with the crystals. Normal kidneys showed no 

staining or non specific staining of the tubular contents (Figure 12A).

DISCUSSION

It is generally agreed that Randall’s plaques, the sub-epithelial deposits of CaP on renal 

papillary surfaces, act as nidi for the development of at least some idiopathic CaOx kidney 

stones.[10, 14, 61] Pathogenesis of the plaques, where and how do they begin and grow, is 

however not well understood. The observations that stone formation and cardiovascular 

diseases such as hypertension, myocardial infarction, carotid artery atherosclerosis, coronary 

heart disease,[4, 5, 62, 63] often co-exist and share risk factors, markers and outcomes have 

led us to hypothesize that similar molecules and pathways may be involved in vascular 

calcification and RP formation.[5, 64] The mechanism of calcification is complicated, but 

results of multiple investigations suggest it to include a competition between pro- and anti- 

mineralizing factors. In the case of vascular calcification, one of the best studied processes, 

first step appears to be transformation of vascular smooth cells into an osteoblast/

chondrocyte phenotype.[21] In vitro studies have shown that exposure of VSMC to elevated 

levels of calcium and phosphate [23–26] or uremic toxins such as oxidized proteins, and 

lipids[65] can trigger transformation and accelerate calcification. We hypothesize that high 

oxalate and CaOx crystals can similarly trigger epithelial to osteoblast transformation. But it 

alone cannot explain the formation of Randall’s plaques, which are common even in non-

stone formers.[10, 12] There is the possibility of other instigators and situations, such as 

reduction in crystallization inhibitory capacity as shown in THP null mice.[66] Lack of overt 

inflammation around the plaques would also indicate malfunctioning crystal clearance 

system. Experimental studies have shown that crystals, CaOx as well as CaP, provoke 

inflammatory responses, attract monocytes and macrophages which surround the crystals 

and eventually dispose of them.[67–70]

Previous in vitro cell culture and in vivo animal model studies have already shown that renal 

epithelial cells react to the presence of high oxalate and CaOx/CaP crystals.[71–76] The 

response is probably mediated by the production of reactive oxygen species[77, 78] through 

mitochondria [79–82] or NADPH oxidase [57, 83, 84] involvement and characterized by 

altered expression of specific genes encoding for transcriptional activators, regulators of the 

extracellular matrix, and growth factors. [85, 86] The production of pro and anti-

inflammatory molecule, including OPN, Tamm-Horsfall protein, monocyte 

chemoattractant-1 (MCP-1), prostaglandin E2 (PGE2), bikunin and other components of 

inter-α-inhibitor (IαI), α-1 microglobulin, CD-44, calgranulin, heparin sulfate, fetuin, 

osteonectin, fibronectin and matrix-gla-protein (MGP) is modified.[60, 71, 87] Genes 
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encoding for fibronectin, CD-44, fetuin B, osteopontin, and matrix-gla protein, are up-

regulated while those encoding for heavy chains of inter-alpha-inhibitor 1, 3 and 4, 

calgranulin B, prothrombin, and Tamm-Horsfall protein were down-regulated.[88] Gene 

expression of vimentin, a mesenchymal marker, is also increased.[89]

Interestingly, the inflammatory molecules altered during CaOx nephrolithiasis and epithelial 

exposure to oxalate and CaOx crystals, [71, 87, 88] are also integral to the calcification 

cascade during both the physiological and pathological processes.[49] Production of OPN, 

FN, MGP, and collagens are indicators of osteoblastic character of the cells. Results 

presented here show up-regulation of genes for OPN, FN, MGP and collagens and their 

increased expression in the kidneys of hyperoxaluric rats indicate transformation of cells 

from their normal epithelial phenotype to osteoblast.

Transformation of vascular smooth cells into an osteoblast/chondrocyte phenotype is 

brought about through the up regulation of RUNX2 induced by multiple risk factors 

including oxidative stress and inflammation.[90] RUNX2 is considered master transcription 

factor for osteoblast differentiation and matrix production while Osterix works downstream 

of RUNX2.[53] RUNX1 also appears to be involved in osteogenesis and works in co-

operation with RUNX2.[91] In our study, both genome wide analyses and RT-PCR showed 

that genes responsible for these three transcription factors were up regulated in kidneys of 

the hyperoxaluric rats.

Bone morphogenetic proteins 2–7 (BMP2-7) belong to transforming growth factor beta 

superfamily of growth factors and interact with specific receptors, BMPRs on the cell 

surfaces. BMP2 and BMP7 interact with BMPR2 and are involved in a variety of cellular 

functions including osteoblast differentiation.[46, 47] RUNX2 is a common target of BMP2.

[92, 93] Results of our study show up regulation of BMP2, BMP7 as well as BMPR2 genes 

in the kidneys of hyperoxaluric rats. BMP2 induces OPN expression through RUNX2.[93] 

RUNX2 is also involved in transcriptional regulation of many other proteins involved in 

mineralization such as matrix-GLA protein (MGP),[94] collagen1a1,[95, 96] osteocalcin,

[97] and fibronectin.[92] BMP2 and RUNX2 induced calcification is modulated through 

NADPH oxidase mediated production of reactive oxygen species.[29, 98]

Whether oxalate or CaOx crystals were responsible for altered expressions is difficult to say 

in this model. However, expression of various genes studied, was higher in the medulla than 

in the cortex while more crystals were seen in the cortex than in the medulla.

Demonstration of increased gene and protein expression of OPN, FN and MGP in animal 

model of CaOx nephrolithiasis and cell culture studies is not new. However, upregulation of 

genes encoding for RUNX1 and 2, Osterix, BMP2 and 7, BMPr2 and Col1a1 and 2 in 

response to oxalate and/or CaOx crystal exposures and transformation of renal epithelial 

cells into osteoblast has not been previously reported. A recent study has however, shown 

high basal levels of BMP2, RUNX2, and Osterix in kidneys of genetic hypercalciuric rat 

kidneys with intratubular calcium phosphate deposits.[99] Vitamin D receptor (VDR) 

knockdown in the rats reduced the expression levels of BMP2, RUNX2, and Osterix as well 
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as CaP crystal deposition in the kidneys. Authors concluded that VDR might be a significant 

regulator of nephrocalcinosis in genetic hypercalciuric rats.

Our investigations demonstrate upregulation of many key osteogenic genes and proteins 

involved in calcification, and down regulation of epithelial markers, indicating that renal 

epithelial cells in hyperoxaluric conditions lose their epithelial phenotype and acquire 

characteristic features of osteoblasts. That epithelial cells transform into other cell types is 

well known. Epithelial to mesenchymal transformation is known to play a role in renal 

fibrosis [100] and mesenchymal stem cells are known to promote calcification.[101] But we 

did not find any calcium phosphate deposition, intratubular or interstitial, in the kidneys of 

the hyperoxaluric rats. Actually, none of the experimental rat or mice models of 

hyperoxaluria have ever reported calcium phosphate crystal deposition in the kidneys.[102, 

103] Our study also showed down regulation of alkaline phosphatase and upreguation of 

calcification inhibitors, OPN and MGP. We deduce that lack of calcium phosphate 

deposition in the kidneys is related to decrease in the production of alkaline phosphatase 

which hydrolyses pyrophosphate to provide inorganic phosphate for the formation of CaP 

crystals. Increased production of OPN and MGP, key inhibitors of crystal formation may 

also play a role. We postulate that pathogenesis of kidney stones involves renal tubular 

epithelial cells becoming osteogenic and production and activation of alkaline phosphatase. 

Deposition of CaP in the renal tubules will lead to the formation of Randall’s plugs. 

Transcytosis of intratubular CaP crystals from the apical to the basal aspect of the 

epithelium will lead to the formation of Randall’s plaques.[72, 104] Both plugs and plaques 

can act as nidi for the formation of CaOx kidney stones.[10, 14]

Results of our studies indicate the possibility of tubular cells acquiring an osteoblast 

phenotype after a metabolic stimulus. Despite the osteogenic transformation of the epithelial 

cells, apatite deposition was not observed indicating the necessity of additional stimuli, 

alterations, or perhaps involvement of the elements of vascular system.[62] It should also be 

pointed out that animal models have limitations.[102, 103] For example rats and mice have 

unipapillate kidneys; may metabolize oxalate differently; and compared to humans, 

normally excrete very high amounts of oxalate in the urine, without CaOx crystalluria or 

crystal deposition in the kidneys. Rats and mice appear to possess protective capabilities. 

Down regulation of alkaline phosphatase seen in this model may be one such response.

Conclusion

Present study represents the first robust demonstration of the possible evolution of tubular 

cells to osteoblast-like cells. We conclude that hyperoxaluria can induce epithelial cells to 

acquire a number of osteoblastic characteristics. But those changes are not sufficient to 

produce deposition of calcium phosphate, which may require additional changes including 

localized increase in calcium and phosphate and decrease in mineralization inhibitory 

potential.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Joshi et al. Page 9

Biochim Biophys Acta. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGEMENTS

The authors appreciate Dr. Jin Yao, Ms. Ginger Clark, and Dr. Yijun Sun efforts from the University of Florida's 
Interdisciplinary Center for Biotechnology Research (ICBR) for running the microarrays and providing expert 
assistance in data analyses. The funding for the research was provided by National Institute of Health (NIH) grant 
numbers RO1-DK078602 and RO1 DK092311.

Abbreviations

CaOx calcium oxalate

CaP calcium phosphate

RP Randall’s plaque

RUNX Runt-related transcription factor

BMP bone morphogenetic protein
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Highlights

First robust demonstration of the possible evolution of tubular epithelial cells to 

osteoblast-like cells.

Hyperoxaluria causes up regulation of genes for runt related transcription factors 

(RUNX) and zinc finger protein Osterix in kidneys of hyperoxaluric kidneys.

Hyperoxaluria causes up regulation of genes for bone morphogenetic proteins (BMP2 

and 7), bone morphogenetic protein receptor(BMPR2), collagen, osteocalcin, 

osteonectin, osteopontin (OPN), matrix-gla-protein (MGP), osteoprotegrin (OPG), 

cadherins, fibronectin (FN) and vimentin (VIM).

Hyperoxaluria causes down regulation of genes for alkaline phosphatase (ALP) and 

cytokeratins 10 and 18.
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Figure 1. 
H&A stained section of a kidney from hyperoxaluric rat on 28th day of feeding on hydroxyl-

L-proline (HLP). A. Low mag image showing both cortical and medullary segments of the 

kidney. Calcium oxalate (CaOx) crystal deposits appear as bright spots and most of them are 

located in the cortical renal tubules. Original ×2.5. B. High magnification image showing a 

glomerulus and tubules with and without CaOx crystals. Glomerulus and tubules without the 

crystals appear normal. Tubules with crystals are dilated with many fold increase in their 
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luminal diameter and compressed lining epithelia. Renal interstitium shows signs of 

inflammation. Original ×45.
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Figure 2. 
Relative gene expression in the cortex and medulla of kidneys of control and HLP-fed rats. 

Gene expression of runt related transcription factor-1 and 2 (RUNX1 and RUNX2), and zinc 

finger protein Osterix/SP7was up regulated in the HLP-fed rats. Genes for alkaline 

phosphatase were downregulated in both cortex and medulla of the HLP-fed rats.
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Figure 3. 
Relative gene expression in the cortex and medulla of kidneys of control and HLP-fed rats. 

Gene expression of bone morphogenetic proteins 2 and 7 (BMP2 and BMP7), and bone 

morphogenetic protein receptor, Type 2 (BMPR2) were up regulated in the HLP- fed rats.
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Figure 4. 
Relative gene expression of cytokeratin 10 (KRT 10), cytokeratin 18 (KRT 18), cytokeratin 

8 (KRT 8) and Vimentin (VIM) in the cortex and medulla of HLP treated rats. KRT10 and 

KRT18 gene expression was down regulated whereas KRT 8 and VIM were up regulated.
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Figure 5. 
Relative gene expression of OPN, Fibronectin (FN1), COL1A1 and COL1A2 in the cortex 

and medulla of HLP treated rats. Gene expressions were up regulated.
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Figure 6. 
Real Time PCR of runt related transcription factor-2 (RUNX2), zinc finger protein 

Osterix/SP7 and ALP in the cortex and medulla of the control and HLP fed rats. The 

statistical analyses were performed using GraphPad Prism version 5 for windows (GraphPad 

software, La Jolla, CA). P-values were calculated using unpaired T-test. P < 0.05 was 

considered statistically significant. *Control vs. HLP group (P < 0.05), **Control vs. HLP 

group (P < 0.005), ***Control vs. HLP group (P < 0.0001).
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Figure 7. 
Real Time PCR of bone morphogenetic proteins 2 (BMP2), bone morphogenetic proteins 7 

(BMP7), and bone morphogenetic protein receptor, Type 2 (BMPR2) in the cortex and 

medulla of the control and HLP fed rats. The statistical analyses were performed using 

GraphPad Prism version 5 for windows (GraphPad software, La Jolla, CA). P-values were 

calculated using unpaired T-test. P < 0.05 was considered statistically significant. *Control 

vs. HLP group (P < 0.05), **Control vs. HLP group (P < 0.005), ***Control vs. HLP group 

(P < 0.0001).
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Figure 8. 
Real Time PCR of cytokeratin 8 (KRT8), cytokeratin 18 (KRT18), and Vimentin (VIM) in 

the cortex and medulla of the control and HLP fed rats. The statistical analyses were 

performed using GraphPad Prism version 5 for windows (GraphPad software, La Jolla, CA). 

P-values were calculated using unpaired T-test. P < 0.05 was considered statistically 

significant. *Control vs. HLP group (P < 0.05), **Control vs. HLP group (P < 0.005), 

***Control vs. HLP group (P < 0.0001).
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Figure 9. 
Real time PCR of OPN, Fn1, Col 1a1 and Col 1a2 showing increase in their expressions.
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Figure 10. 
Immunohistochemical analyses of the kidneys for vimentin and cytokeratin. A. Normal 

kidney cortex showing vimentin staining in the glomerulus and peritubular capillaries. B. 

Normal kidney papilla showing vimentin staining in the peritubular capillaries. C, D. Strong 

staining is seen for vimentin in the epithelial cells of the tubules with CaOx crystal deposits 

as well as the surrounding renal interstitium. E. Stainining with pancytokeratin antibody in 

normal kidney cortex. F. Stainining with pancytokeratin antibody in cortex of a kidney from 

HLP-fed rats. Original Mag ×45.
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Figure 11. 
Immunohistochemical analyses of the kidneys of control and HLP-fed rats for collagen. A In 

normal Collagen 1 expression is mostly limited to areas around large and small blood 

vessels. Original Mag ×10. B. C. In hyperoxaluric kidneys Collagen 1 expression is 

interstitial and more intense around tubules with CaOx crysral deposits. Crystals have been 

lost during the processing. D. Collagen stained blue with Mason’s trichrome. There is strong 

staining around the tubules with CaOx crystal deposits. Epithelial cells of the tubules 

without crystals stained red. Original Mag ×45.
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Figure 12. 
Immunohistochemical analyses of the kidneys of control (A, C, E) and HLP-fed rats (B, D, 

F) for MGP, OPN and fibronectin. A. Only nonspecific staining for MGP was seen (arrow) 

in normal rat kidneys. B. MGP staining was markedly increased in the peritubular vessels 

(arrows) of the kidneys of hyperoxaluric rats (atrrows). C. OPN staining was not seen in the 

normal kidneys except on the papillary urothelial surface (not shown). D. Staining of 

epithelial cells for osteopontin was mostly associated with crystal deposits (arrows). E. 

Diffuse light staining for fibronectin is seen in renal epithelial cells as well interstitium of 
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the normal kidneys. F. Intense fibronectin staining is seen in both the tubular epithelial cells 

as well as interstitium of the kidneys with hyperoxaluria. Original Mag ×45.
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Table 1

The list of forward and reverse primers used for quantitative Real Time PCR designed using Primer-BLAST 

(National Center for Biotechnology Information, NCBI, and National Institute of Health, NIH)

GENE PRIMER SEQUENCE

Fibronectin (Fn1) Fn1_F 5'- GTGGCTGCCTTCAACTTCTC-3'

Fn1_R 5'- GTGGGTTGCAAACCTTCAAT-3'

Runt-related transcription factor-2 (Runx2) Runx2_F 5'- TCCCATCTGCTAGAAGTGTT-3'

Runx2_R 5'- TTAGCCAGCTCACTTTCTTC-3'

Osterix/SP7 Sp7_F 5'- AAGCCATACACTGACCTTTC-3'

Sp7_R 5'- GTGGGTAGTCATTGGCATAG-3'

Bone Morphogenetic Protein-2 (Bmp2) Bmp2_F 5'- ACCAGACTATTGGACACCAG-3'

Bmp2_R 5'- AATCCTCACATGTCTCTTGG-3'

Bone Morphogenetic Protein-7 (Bmp7) Bmp7_F 5'- ATGGCCAACGTGGCAGAGAA-3'

Bmp7_R 5'- CAGCCCAGGTCTCGGAAGCT-3'

Bone Morphogenetic Protein Receptor, type II (Bmpr2) Bmpr2_F 5'- ATAGGCGTGTGCCAAAAATC-3'

Bmpr2_R 5'- GCTAGGGATTCGAGCTTGTG-3'

Cytokeratin 8 or Keratin 8 (Krt8) Krt8_F 5'- AGCCAGAGTACCAGCCCTAA-3'

Krt8_R 5'- ACAATTGAGTTGGGCATTGGC-3'

Cytokeratin 18 or Keratin 18 (Krt18) Krt18_F 5'- ATATCCGTGTCCCGCTCTGT-3'

Krt18_R 5'- TCGTTCAGGTCTTGCATGGT-3'

Vimentin (Vim) Vim_F 5'- TTCTCAGCACCACGATGACC-3'

Vim_R 5'- TGCTGAGCTCGTTTCTATCCC-3'
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