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Abstract

Introduction—Olfactory dysfunction has been identified as an early warning sign for 

Alzheimer’s disease, Parkinson’s disease, dementia and more. A few occupational and 

environmental exposures have also been associated with reduced olfactory function, although the 

effects of long term environmental exposure to lead on olfactory dysfunction have not been 

explored. Here we performed olfactory recognition testing in elderly men in a community-

dwelling cohort and examined the association with cumulative lead exposure, as assessed by lead 

in tibial and patellar bone.

Methods—Olfactory recognition was measured in 165 men from the Normative Aging Study 

(NAS) who had previously taken part in bone lead measurements using K-X-Ray fluorescence 

(KXRF). Olfactory recognition was measured using the University of Pennsylvania Smell 

Identification Test (UPSIT). Associations between olfactory recognition, global cognition and 

cumulative lead exposure were estimated using linear regression, with additional adjustment for 

age, smoking, and functional polymorphism status for hemochromatosis (HFE), transferrin 

(TfC2), glutathione-s-transferase Pi1 (GSTP1) and apolipoprotein E (APOE) genotypes. 

Sensitivity analyses explored olfactory recognition in men with high global cognitive function as 

measured using the Mini-Mental Status Exam (MMSE).
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Results—The average age of the NAS participants at the time of olfactory recognition testing 

was 80.3 (standard deviation or SD = 5.7) years. Mean tibia lead was 16.3 (SD = 12.0) μg/g bone, 

mean patella lead was 22.4 (SD = 14.4) μg/g bone, and mean UPSIT score was 26.9 out of 40 (SD 

= 7.0). Consistent with previous findings, age at olfaction testing was negatively associated with 

UPSIT score. Tibia (but not patella) bone lead was negatively associated with olfaction 

recognition (per 15 μg/g tibia lead: β = −1.57; 95% CI: −2.93, −0.22; p = 0.02) in models adjusted 

for smoking and age. Additional adjustment for education did not significantly change results. Of 

all the genes explored, only the presence of one or more HFE variant alleles was significantly 

associated with olfaction recognition (HFE β = 2.26; 95% CI: 0.09, 4.43; p = 0.04). In a model 

containing the HFE term and a lead term, the tibia lead parameter estimate dropped by 21% (per 

15 μg/g tibia lead: β = −1.25; 95% CI: −2.64, 0.14; p = 0.08) while the HFE term dropped 15% (β 

= 1.91; 95% CI: −0.28, 4.10; p=0.09). None of the other gene terms were associated with olfactory 

recognition in this cohort, nor were any gene-lead interaction terms significant. Additional 

sensitivity analysis in men with MMSE scores of 25 or higher (n = 149) showed a similar but 

slightly attenuated association between lead and olfactory recognition (per 15 μg/g tibia lead β = 

−1.39; 95% CI: −3.00, 0.22; p = 0.09)

Conclusion—Cumulative exposure to lead is associated with reduced olfactory recognition in a 

cohort of elderly men. The association was similar but not significant in men with better cognitive 

function as measured by the MMSE. Iron metabolism gene status may also affect olfactory 

function.
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1. INTRODUCTION

Olfactory dysfunction is regarded as an early warning sign of Parkinson’s disease (Louis et 

al., 2008, Mollenhauer et al., 2013, Ross et al., 2012), Alzheimer’s Disease (Murphy et al., 

1990, Thompson et al., 1998, Wang et al., 2010), and cognitive decline (Royall et al., 2002, 

Seo et al., 2009, Sohrabi et al., 2012, Swan and Carmelli, 2002). Given that lead, pesticides 

like DDT and other environmental exposures also show associations with these diseases 

(Richardson et al., 2014, Richardson et al., 2009, Weisskopf et al., 2010), and are known to 

be rhinotoxic in occupationally exposed populations and animal models (Sunderman, 2001), 

it is plausible that environmental exposures such as lead could also be related to olfactory 

dysfunction.

Occupational exposures including cadmium (Rose et al., 1992, Sulkowski et al., 2000), 

solvents (Schwartz et al., 1990), pesticides (Dick et al., 2001), industrial chemicals 

(Schwartz et al., 1989) and manganese (Antunes et al., 2007) have been associated with 

decrements in olfactory function. An Italian occupational study found significant 

associations between lead measured via air sampling and performance on an olfactory 

threshold task (Caruso et al., 2007), while two other studies on occupational lead exposure 

found detrimental but not significant associations with performance on an odor identification 

task (Bolla et al., 1995, Schwartz et al., 1993). Environmental manganese emitted from a 

ferroalloy plant was associated with reduced performance on an olfactory task in Italian 
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adolescents (Lucchini et al., 2012), and reduced olfactory scores were associated with air 

pollution exposure in children and young adults in Mexico (Calderon-Garciduenas et al., 

2010).

While environmental lead exposure’s effect on olfactory function has yet to be investigated, 

cumulative lead exposure has been previously shown to be associated with multiple types of 

cognitive dysfunction in adults (Bandeen-Roche et al., 2009, Schwartz, Bolla, 1993, Shih et 

al., 2006, van Wijngaarden et al., 2009). Specifically among men in the Normative Aging 

Study (NAS), bone lead measured in either the tibia or patella has been shown to be 

associated with impaired visuomotor skills (Payton et al., 1998), increased rate of cognitive 

decline (Weisskopf et al., 2007, Weisskopf et al., 2004), lower scores on the Mini-Mental 

Status Exam (Wright et al., 2003), reduced associative learning (Grashow et al., 2013a), and 

poorer hand-eye coordination (Grashow et al., 2013b).

A number of genes related to metal ion transport (TfC2) and absorption (HFE) have been 

shown to affect how lead is processed and stored in the body. Lead exposure may interfere 

with iron metabolism (Eaton and Qian, 2002, Samson and Nelson, 2000) and be associated 

with toxic levels of non-transferrin bound iron in plasma leading to neurodegenerative 

disease (Huang et al., 2004, Todorich and Connor, 2004). The hemochromatosis gene 

encodes a protein that is in part responsible for iron sensing and regulation and HFE variant 

homozygosity results in clinical hemochromatosis, which is characterized by iron overload. 

The presence of one or more polymorphism of the HFE gene (either H63D or C282Y) has 

been shown to exacerbate the detrimental effects of lead on cognitive function in elderly 

men (Wang et al., 2007), and has been associated with increased susceptibility to 

neurodegenerative disease (Eum et al., 2014, Mariani et al., 2013, Nandar and Connor, 

2011). Interestingly, variant HFE gene expression has also been associated with lower blood 

and bone lead in the NAS cohort (Wright et al., 2004). Based on this finding, we 

hypothesized that carriers of any HFE variant would have reduced circulating blood and 

bone lead and therefore reduced effects on olfactory recognition performance.

Other genes, such as the ApoE gene, may also play a role in age-related cognitive function 

and olfaction. ApoE is a polymorphic gene that encodes a protein regulating transport of 

cholesterol, lipids, and fat-soluble vitamins. Certain ApoE polymorphisms such as ApoE-ε4 

have been found to predispose individuals to neurodegenerative diseases like Alzheimer’s 

(Poirier et al., 2014, Teter et al., 2002). Recently, it was shown that metals may be involved 

in the regulation of Alzheimer’s related proteins, and that aberrant metal ions concentrations 

are more likely to occur in AD-diagnosed patients (Xu et al., 2014). ApoE is expressed in 

olfactory brain structures, and those with the ApoE-ε4 variant allele show reduced odor 

identification (Olofsson et al., 2010) and altered brain responses to olfactory stimuli (Green 

et al., 2013).

Glutathione-s-transferase Pi1(GSTP1) has been shown to reduce the effects of oxidative 

stress through free radical clearance (Hayes and Strange, 2000), and may modify the 

relationship between lead and cognitive function in the elderly (Eum et al., 2013) and 

inflammatory markers in adult males (Sirivarasai et al., 2013). Finally, the gene TfC2 

encodes the transferrin protein that is responsible for iron transport, and interacts with HFE 
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(Namekata et al., 1997). We therefore examined the association between cumulative lead 

exposure as measured in bone and olfactory recognition in a population of elderly men in the 

Boston, MA area, with additional analysis of associations with HFE, GSTP1, TfC2 and 

ApoE polymorphism status. Additional analyses explored associations between olfactory 

identification and lead in men with higher MMSE scores.

2. METHODS

2.1 Study population

The Normative Aging Study (NAS) began recruiting men from the Boston area community 

beginning in the 1960s. Since that time, NAS subjects have been encouraged to return every 

three to five years for medical examinations (Bell et al., 1966, Hu et al., 1996, Weisskopf, 

Proctor, 2007). Current NAS participants are elderly and are mostly Caucasian. Starting in 

1991, subjects were invited to participate in bone lead testing using K-shell X-ray 

fluorescence (KXRF). 68% (876 participants) agreed to bone lead testing. Two hundred and 

forty-three NAS subjects participated in olfactory recognition testing between January of 

2009 and March of 2012, with 231 completing the entire olfactory recognition test (12 

subjects did not complete all questions). Of those with completed tests, 165 had participated 

in bone lead testing. None of the men participating in the olfactory recognition testing 

reported diagnosis of Alzheimer’s Disease or Parkinson’s Disease. Approval from the 

Institutional Review Boards at the VA Boston Healthcare System, Brigham and Women’s 

Hospital and the Harvard School of Public Health was obtained prior to study 

commencement. All subjects provided written informed consent before participating.

2.2 KXRF measurement of bone lead

Lead concentrations in tibial and patellar bone are considered to be markers of cumulative 

lead exposure: patella lead reflects exposure over the previous 8–10 years, while tibial shaft 

bone represents exposure occurring over decades (Wilker et al., 2011). For this study, KXRF 

was used to measure bone lead concentrations at the patella and midtibial shaft using either 

an ABIOMED KXRF prototype or upgraded system (ABIOMED, Danvers, MA). As 

previously explained (Weuve et al., 2009), a linear relationship was established between the 

two instrument types, and data used in this study adjust for the linear difference between the 

two machines. Additional detail on the testing protocol has been previously described (Aro 

et al., 1994, Chettle et al., 2003, Hu et al., 1998). Bone lead concentration is measured in μg 

of lead per gram of bone.

2.3 Olfactory recognition testing

The University of Pennsylvania Smell Identification Test (UPSIT, Sensonics, Inc., Haddon 

Heights, NJ) is considered a highly reliable test of olfactory recognition or identification 

(Doty et al., 1989). Detail on this test can be found elsewhere (Doty et al., 1984). Briefly, 40 

microfragrances (e.g. licorice, rose and pine) were embedded in capsules, and fragrances are 

released when scratched by the subject. A trained tester instructs the subject to smell each 

sample and then choose the best answer from a multiple choice list of four items. The score 

ranges from 0 to 40, with 40 representing 40 correct identifications.
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2.4 Cognitive function assessment

The Mini-Mental Status Exam (MMSE) is used as a screening instrument to identify 

dementia and global cognitive function. NAS subjects who participated after 1993 were 

invited to take a series of cognitive tests, including the MMSE. The MMSE has a maximum 

score of 30. However, in this population the question related to “county of residence” was 

ignored because it is not generally used for geographical identification in the greater Boston 

area. Therefore, the maximum score for this population was 29. For these analysis, we 

treated the MMSE score as continuous and also dichotomously (between 25 and 29, and 24 

or below). All models including MMSE score were additionally adjusted for education.

2.5 Genotyping

Archived blood samples taken from participants were genotyped for two single nucleotide 

polymorphisms (SNPs) of the HFE gene, H63D and C282Y; for two SNPs of the APOE 

gene (T392C and T530C), the GSTP1 gene Ile105Val SNP, and for the transferrin gene 

pro570ser SNP (TfC2). Genotypes were ascertained using multiplex polymerase chain 

reaction (PCR) in conjunction with restriction fragment length polymorphism (RFLP) 

analysis assays (Sequenom, Inc., San Diego, CA). 10% of samples were run in duplicate for 

quality control. Further information on laboratory methods can be found elsewhere (Park et 

al., 2006, Wright, Silverman, 2004). Due to the small sample size, subjects were categorized 

as being homozygous wild type, or having at least one variant allele (either H63D or 

C282Y). Subjects were dichotomized into having no copies of the APOE E4 allele, or 

having at least one copy of the APOE -ε4 allele. Similarly, TfC2 and GSTP1 were also 

dichotomized into two categories of wild-type or having at least one variant allele. 

Genotyping for the GSTP1 Ile105Val polymorphism was done using Multiplex PCR assays 

(Sequenom, San Diego, CA). A 384 well spectroCHIP was used to spot the extension 

product prior to MALDI-TOF mass spectrometry (Eum, Wang, 2013).

2.6 Covariates

Covariates considered were based on biology, previous literature on olfactory function and 

prior studies on cumulative lead exposure. Age at time of olfactory recognition test 

(continuously in years) and smoking (dichotomized as current smoker or not) were included 

in our base models. Other variables considered in other models were the interval between 

XRF and olfactory recognition testing (continuously in years) and years of education 

(continuously and also categorized into high school or less [12 years or fewer], some college 

[between 12 and 16 years] and some graduate school [greater than 16 years]).

2.7 Statistical analysis

Olfactory identification test score was quantified as the raw number of correctly identified 

odors out of a total of 40 total odors. Initial spline regression analyses were performed 

(using R version 2.14.2) and did not suggest any non-linear associations with bone lead, 

therefore this was treated linearly using ordinary least squares regression using PROC 

GENMOD in SAS software (version 9.4; SAS Inc., Cary, NC). Models including tibia and 

patella lead concentrations were run separately. One subject was missing patella lead, and 

was therefore excluded from all models of patella lead and olfactory function. Six subjects 
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who completed the XRF measurement and olfactory testing did not have genotype data, and 

were excluded from models that included variant allele status terms. All genotypes analyzed 

in this study were in Hardy-Weinberg equilibrium as assessed in the entire NAS population.

To assess effect modification between bone lead and genotype, cross product interaction 

terms were created and included in models with the lead term, gene term and other 

covariates. We explored the lead-olfaction relationship in a subset of men who received an 

MMSE score of 25 or higher. Additional sensitivity analyses was conducted using non-

smokers only, and including terms for years of education as both a continuous and 

categorical variable.

3. RESULTS

Among the 165 NAS subjects who completed both bone lead and olfactory recognition 

testing, the average age at the time of XRF testing was 68.4 years (standard deviation or SD 

= 6.6) and the average age at the time of the olfactory recognition testing was 80.3 (SD = 

5.7). There was no significant difference in smell scores between the men that did (26.9. SD 

= 7.0) and did not (28.5, SD = 6.3) participate in bone lead testing (p=0.11). Men with bone 

lead measures were slightly older (average age 80.0 years, SD = 5.7) when compared to men 

without bone lead (average age 77.4 years, SD = 6.6). Only subjects with completed 

olfactory test results were included in analyses.

An average of 12.0 years (SD = 2.6) elapsed between the KXRF bone lead measure and the 

UPSIT. Mean tibia lead in this population was 16.3 (SD = 12.0) μg/g bone, and the mean 

patella lead was 22.4 (SD = 14.4) μg/g bone. Subjects had on average 14.7 (SD = 2.6) years 

of education. Only 3.0% currently smoked, while 66.1% were former smokers.

The mean UPSIT olfactory score was 26.9 (SD=7.0) out of 40. Olfactory recognition test 

performance in NAS subjects who participated in K-XRF bone lead testing by genotype is 

shown in Table 1. 70.6% of subjects had the wild type allele for the H63D single nucleotide 

polymorphism (SNP), while 86.9% of subjects were identified as wild type carriers for the 

C282Y SNP. Men with all wild type versions of the HFE SNPs studied here had slightly 

higher bone lead levels (Table 1). Among men with wildtype HFE the mean tibia lead was 

18.0 (SD = 13.5) μg/g bone and mean patella lead was 24.0 (SD= 15.8) μg/g bone, while 

men with at least one variant allele had a mean tibia lead of 13.7 (SD = 8.6) μg/g bone and a 

mean patella lead of 20.0 (SD = 12.0) μg/g bone. There was little difference in bone lead 

levels by other genotypes (Table 1).

As expected, age at the time of olfactory recognition testing was negatively associated with 

UPSIT score (Doty, 1989). In smoking-adjusted models the olfactory score was .25 points 

lower (95% CI: −0.44, −0.07; p=0.008) per year of age. This was reduced when tibia lead 

was added to the model (−0.19 per year of age; 95% CI: −0.38, 0.004; p=0.05), while higher 

tibia lead was significantly associated with worse olfactory recognition score (Table 2). 

Patella bone lead was not significantly associated with olfactory recognition in unadjusted or 

adjusted models (adjusted model per IQR of parent population [20 μg/gbone]: β= −0.80; 

95% CI: −2.32, 0.72; p = 0.30). When patella bone lead at the time of olfactory 

identification testing was estimated using an exponential decay model, results were stronger, 
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but still not significant (adjusted model per IQR of parent population [20 μg/gbone]: β= 

−2.61; 95% CI: −6.31, 1.08; p = 0.17). When a term for the interval in years between KXRF 

lead measures and the UPSIT was added to the models, results for both patella and tibia lead 

were effectively unchanged. Results were also effectively unchanged if we included a term 

for years of education, or modeled smoking as current, former and never smokers or 

excluded the five current smokers (data not shown).

The presence of an HFE variant allele was associated with a higher UPSIT score (Table 2; β 

= 2.26; 95% CI: 0.09, 4.43; p = 0.04). When tibia lead and HFE variant status were in the 

model together, the association with each term was reduced somewhat relative to estimates 

from separate models (Table 2). There was no interaction between tibia lead and HFE status 

(p=0.55). None of the other genotypes were associated with olfaction recognition score 

whether or not tibia lead was in the model, and their inclusion did not change the tibia lead 

estimate (Table 2). There were also no interactions between tibia and patella lead and any of 

the other genotypes (all p>0.50).

We wanted to determine whether the relationship between lead and olfactory recognition 

would still be seen in men with higher global cognitive function as measured by the the 

Mini-Mental Status Exam (MMSE). For all participants, the mean (SD) for the MMSE was 

26.6 (2.3), and the mean (SD) interval between the MMSE and the olfactory recognition task 

was 1.1 (SD=2.0) years. Of the 165 participants, 4 (2.4%) took the MMSE after the 

olfactory test, 111 (67.2%) took both tests on the same day, and 50 (30.3%) took the smell 

test before the MMSE. In this population tibia lead was significantly negatively associated 

with MMSE performance (adjusted model per IQR of tibia lead in parent population [15 μg/

gbone]: β= −0.73; 95% CI: −1.19, −0.27; p = 0.002). To eliminate overall cognitive 

impairment as the cause of olfactory recognition dysfynction, we explored the lead-UPSIT 

relationship in men who had an MMSE score of 25 or higher (n = 149). In this group, the 

parameter estimate for lead remained similar, although this term was no longer significant 

(per 15 μg/g tibia lead: β = −1.39; 95% CI: −3.00, 0.22; p = 0.09). When the lead-MMSE 

association was modeled in this group, the tibia lead term dropped by 40%, and remained 

significantly associated with MMSE (per 15 μg/g tibia lead: β = −0.44; 95% CI: −0.76, 

−0.12; p = 0.007).

4. DISCUSSION

Studies showing associations between environmental risk factors and neurodegenerative 

diseases imply that exposures are incurring physiological, chemical and anatomical changes 

in the brain. In fact, olfactory dysfunction has been shown to precede motor symptoms in 

Parkinson’s disease and cognitive deficits in Alzheimer’s patients (Hawkes, 2006, Kranick 

and Duda, 2008, Takeda et al., 2014) and even distinguish between disease subtypes 

(Katzenschlager et al., 2004). Given that many environmental exposures occur via inhalation 

such as air pollution, olfactory dysfunction may be an important link between neurotoxicant 

exposures and neurological disease. In a cohort of elderly men residing in the greater Boston 

area, we found that cumulative lead exposure as measured in tibial bone was associated with 

reduced performance on the UPSIT, a well-established olfactory recognition task. 
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Additionally, we saw that the presence of at least one variant HFE allele was associated with 

increased olfactory recognition.

Nasal passages serve to filter and protect the lungs and upper airways from airborne 

exposures. However, airborne metals inhaled into nasal passages will bypass the circulatory 

system and blood brain barrier to accumulate in the olfactory bulb and other types of neural 

tissue. In addition to passing through the olfactory pathway, metal-binding molecules such 

as carnosine and metallothionein are abundant in the olfactory bulb, thus increasing ion 

uptake into the brain (Sunderman, 2001). Interestingly, a study of untreated rats found 

similar lead concentrations in the olfactory bulb and other areas of the brain (Scheuhammer 

and Cherian, 1982), however it is difficult to know if this pattern would also be seen in 

studies in animals and humans exposed to higher levels of lead.

Lead’s effects on the brain have been in part attributed to its ability to substitute for calcium 

(Sanders et al., 2009, White et al., 2007), which is central to functions such as 

neurotransmission, mitochondrial function, apoptosis and more. The mechanism behind the 

effects of lead on olfactory function is unknown, but animal models indicate that lead 

exposure could alter neurotransmission in olfactory-related areas. Exposure to lead via 

intraperitoneal injection altered gene and enzyme expression patterns in the nitric oxide 

signaling pathway in the olfactory bulbs of adult mice (Kim et al., 2011). Additionally, 

prenatal lead exposure has been shown to alter olfactory discrimination in rats (Lim et al., 

2005) as well as acetylcholine function in the olfactory bulb (Gietzen and Woolley, 1984, 

Widmer et al., 1992).

Olfactory recognition testing involves the olfactory system as well as brain processing areas 

that include cognitive and language abilities. There is a risk that a decline in olfactory 

recognition performance could be incorrectly attributed to dysfunction in olfactory areas, 

when in fact it results from dysfunction in cognitive and language abilities. We therefore 

investigated whether subjects with higher global cognitive function as measured by the 

MMSE showed a similar association between lead and olfactory recognition scores. In this 

smaller subset of the population, the term for tibia lead was essentially unchanged, although 

the p-value got larger clearly in part because the sample size was smaller. Interestingly, in 

this subset with better MMSE scores, the lead-MMSE relationship was reduced by almost 

half, while remaining significant. These results suggest that the effect of lead exposure seen 

in this study is not primarily due to cognitive effects, but instead lead may be directly 

influencing olfactory function. Further study is necessary to determine the impact of 

cumulative lead exposure on olfaction is affected by lead-related dysfunction in other brain 

areas.

Associations between tibia lead and olfactory identification ability were found, while no 

significant associations were found for patella. This could be due to the different time 

courses of lead deposition into bone type: the half-life of lead in tibial (cortical) bone is on 

the order of decades, while the half-life in patellar (trabecular) bone is only a few years 

(Wilker, Korrick, 2011).
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Subjects with one or more copy of a variant HFE allele showed significantly increased 

UPSIT olfactory scores over those with wild type genes. Why this is the case is not clear, 

but one possibility is that it is related to differential effects on metal transport between the 

olfactory bulb and other regions. Although variant HFE allele carriers have general iron 

excess, which can have neurotoxic effects, it has been found that HFE knockout mice do not 

accumulate iron in the olfactory bulb (Kim et al., 2013). Furthermore, while H67D mutant 

mice show higher whole brain iron levels, they have similar olfactory bulb iron levels when 

compared to wildtype (personal communication, JK Kim). As this may relate to HFE mutant 

effects on metal transport, a similar phenomenon could occur with other metals like lead. It 

has been shown previously that HFE variant allele carriers have lower bone and blood lead 

concentrations than those with wildtype HFE (Wang, Hu, 2007). This is not likely the result 

of different external lead exposures and so suggests differences in lead distribution within 

the body. If variant HFE carriers tend to distribute lead to locations other than the olfactory 

bulb, similar to what is seen for iron, this could afford protection from adverse effects of 

lead. In this regard, having a variant HFE allele could be an indicator of reduced lifetime 

lead exposure to the olfactory bulb. This is consistent with the effect estimate for tibia lead 

being slightly reduced in the model with HFE allele status. In addition, HFE variant carriers 

show reduced blood levels of manganese (Mn), a known neurotoxin (Claus Henn et al., 

2011). It is therefore possible that improved olfactory identification may be due to reduced 

circulating Mn in HFE variant carriers.

APOE-ε4 allele was not related to UPSIT score, nor did it modify the association with lead 

in this cohort. However this may be due to a small sample size. Studies with much larger 

sample sizes have shown odor identification impairment in APOE-E4 carriers (Finkel et al., 

2011, Olofsson, Nordin, 2010). To our knowledge, this is the first investigation into the 

effects of TfC2 and GSTP1 on olfactory function. We found no olfaction differences 

between genotypes.

A limitation of our study is that for many of the subjects, a number of years elapsed between 

the bone lead XRF testing and the olfactory task. This may partially explain why no 

associations were seen with patellar bone, which has a half-life that is half as long as the 

average XRF-olfaction testing interval. The half-life of tibia bone is believed to be on the 

order of decades (Wilker et al, 2011). Our overall numbers were also somewhat small, 

particularly for analyses of interactions. It should also be noted that most of the subjects in 

this study were Caucasian men. It cannot be determined from these data whether older 

women or minority populations would show similar effects.

None of the subjects in this study reported diagnoses of Alzheimer’s Disease (AD) or 

Parkinson’s Disease (PD). Given that olfactory dysfunction may be an early sign of both of 

these conditions, we cannot rule out the possibility that some of the participants with poorer 

olfactory recognition scores were displaying subclinical symptoms of AD or PD.

Taken together, these results indicate that in addition to acting as a premorbid signal for 

serious neurological disease, olfactory recognition deficits may also occur in response to 

cumulative exposure to lead. Given other findings that cumulative lead exposure is 

associated with Parkinson’s disease (Coon et al., 2006, Gorell et al., 1999, Weisskopf, 
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Weuve, 2010), our results raise the possibility that reduced olfactory recognition dysfunction 

is an early indicator of neurological effects of lead exposure that ultimately result in 

Parkinson’s disease.
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Highlights

• We explored olfactory recognition in elderly men with environmental exposure 

to lead.

• Higher tibia lead was associated with reduced olfactory recognition performance

• Variant HFE allele status was associated with improved olfaction recognition

• APOE-ε4, GSTP1 and TfC2 were not associated with olfactory recognition.

• Lead exposure and iron metabolism gene status may affect olfactory recognition
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