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Abstract

MicroRNAs (miRNAs) are short (22 nucleotides), single-stranded, non-coding RNAs that form 

complimentary base-pairs with the 3’ untranslated region of target mRNAs within the RNA-

induced silencing complex (RISC) and block translation and/or stimulate mRNA transcript 

degradation. The non-coding miRBase (release 21, June 2014) reports that human genome 

contains ~2,588 mature miRNAs which regulate ~ 60% of human protein-coding mRNAs. 

Dysregulation of miRNA expression has been implicated in estrogen-related diseases including 

breast and endometrial cancers. The mechanism for estrogen regulation of miRNA expression and 

the role of estrogen-regulated miRNAs in normal homeostasis, reproduction, lactation, and in 

cancer is an area of great research and clinical interest. Estrogens regulate miRNAs transcription 

through estrogen receptors α and β in a tissue-specific and cell-dependent manner. This review 

focuses primary on the regulation of miRNA expression by ligand-activated ERs and their bona 

fide gene targets and includes miRNAs regulation by tamoxifen and endocrine disrupting 

chemicals (EDCs) in breast cancer and cell lines.
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1. Introduction

The three primary estrogenic steroid hormones: estradiol, estrone, and estriol regulate 

fertility, development, and homeostasis in various tissues including the brain, breast, 

cardiovascular system, colon, skin, brain, lung, and reproductive tract in both women and 

men. The word estrogen is often used in studies when referring to the use of estradiol (E2), 

the primary circulating estrogen in premenopausal women which is synthesized from 

cholesterol in the granulosa cells in the ovary in response to luteinizing hormone (LH). 

Estrone (E1) is the primary estrogen in postmenopausal women, synthesized primarily in 

adipose from adrenal androgens. E2 and E1 can also be formed locally, e.g., in breast (1) and 

lung (2).

Lifetime estrogen exposure is widely accepted as a major risk factor for the development of 

breast cancer (3). Because estrogens have a clear role in the majority of breast cancers and 

since estrogen receptor α (ERα)is the best prognostic indicator for breast cancer patients and 

is considered to be the most successful molecular target in the history of cancer drug 

discovery (4), much is known about the molecular mechanisms of estrogen regulation of 

transcription.

Data from ENCODE (Encyclopedia of DNA Elements, http://www.nature.com/encode/) 

revealed that ~ 75 % of the human genome is transcribed while only ~ 1% is protein-coding 

mRNA, suggesting that other RNA transcripts, including long non-coding RNAs (lncRNAs) 

and small RNAs (85% of which correspond to four major classes: small nuclear (sn)RNAs, 

small nucleolar (sno)RNAs, micro (mi)RNAs and transfer (t)RNAs), have regulatory 

functions (5). Next-generation sequencing (NGS) by RNA sequencing (RNA seq), also 

called ‘whole transcriptome shotgun sequencing’, is used to identify the transcriptome (6). 

The transcriptome includes all the RNAs in that source: mRNA, rRNA, and tRNA; and the 

non-coding RNAs (ncRNAs): miRNAs, enhancer RNAs (eRNAs), endogenous small-

interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), and lncRNAs ranging from 

1,000 to> 90,000 bases (7). Like miRNAs, siRNAs and piRNAs bind Argonaute family 

members and base pair with target RNA to cause RNA degradation and/or translation 

repression (8). LncRNAs are involved in assembly of active e.g., Neat1, or repressed, e.g., 

Xist, nuclear domains for transcription in a cell-dependent manner (9). This review focuses 

on estrogen regulation of miRNAs.

miRNAs, first described in 1993, are small (22 nucleotides), single-stranded non-coding, 

evolutionarily conserved RNA molecules that are related to, but distinct from, small 

interfering RNAs (siRNAs) which regulate mRNA translation or stability (10–12). 

Comparative genomics analyses have revealed > 45,000 miRNA binding sites within human 

3'UTRs that are conserved, indicating that > 60% of human protein-coding genes have been 

under selective pressure to maintain pairing to miRNAs (13). Compared to transcriptome or 

microarray analyses identifying miRNA expression patterns in different human cells, 

tissues, or with various treatments, there are far fewer published reports of estrogen or 

tamoxifen regulation of miRNAs expression in human cells or tissues (Figure 1). The pace 

of publication on miRNAs in humans has slowed since 2013 and publication rate on 

estrogen and human miRNA peaked in 2012 and is in decline. Given the role of estrogens in 
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stimulating breast cancer, it is not surprising that most studies have examined changes in 

miRNA expression and their correlation with diagnostic markers used in breast cancer 

therapies, e.g., ERα and tumor grade (14–24). Estrogens regulate miRNA expression by 

both genomic (transcriptional) and non-genomic/membrane-initiated mechanisms of action. 

Identification and characterization of estrogen-regulated miRNAs and their targets may 

provide new biomarkers and therapeutic targets in in diseases including breast cancer. There 

are many online resources about miRNA-mRNA targets recently compiled in http://

multimir.ucdenver.edu/ and reviewed in (25).

2. Genomic ER activities

Transcription is initiated through a complex series of activities occurring through the 

cooperative interaction of multiple factors at the target gene promoter in association with 

interactions with other chromatin regions at great distances from the transcription start site- 

and even on different chromosomes (26). I will use the term ER to refer to either ERα or 

ERβ or to both subtypes. I will refer to each subtype individually when appropriate to 

differentiate their established differences. Estrogens bind the ligand binding domains (LBD) 

of ERα and ERβ which are members of the 48 member steroid/nuclear receptor (NR) 

superfamily of proteins (27). ERα and ERβ are highly conserved within the DNA binding 

domain (DBD, C domain), but differ in their N- and C- termini (28).

Crystal structure studies of the LBD of ERα, excluding the F domain, identified 12 alpha 

helices and found that E2 binding repositions helix 12 that acts as a “switch” controlling 

accessibility of coregulator interaction site: the ‘coactivator binding groove’ (29).

Chromatin forms a barrier for transcription factor binding. FoxA1, PBX, TLE1, AP2g, and 

GATA3 act as “pioneer factors” that remodel condensed chromatin to facilitate ERα binding 

(reviewed in (30)). ERα interacts directly with high affinity to a specific DNA sequence 

called the estrogen response element (ERE = 5’-AGGTCAnnnTGACCT-3’) (28). ER-ERE 

binding enhances the recruitment of coactivator/chromatin remodeling complexes resulting 

in histone modifications, nucleosomal repositioning, increased accessibility to the DNA 

template for RNA polymerase II interaction, and increased target gene transcription 

(reviewed in (31, 32)). Chromatin immunoprecipitation (ChIP) of ERα in cell lines, most 

notably MCF-7 human breast cancer cells, followed by sequencing of the bound DNA(ChIP 

seq) has established that EREs are located in gene promoters and at great distances from the 

transcription start site, including in the 3’ flanking regions of regulated genes (33–40). Cell-

specific ERα cistromes have been identified in ERα-transfected U2OS cells (41), MDA-

MB-231 breast cancer cells(40)., and HeLa cells (42). In another example, ERα 

overexpression in ERα- HeLa cells identified only 9% of common promoter binding sites 

with MCF-7

In addition to direct ER-ERE binding, ER also activates transcription via a “tethering 

mechanism” whereby ER interacts directly with transcription factors, e.g. Sp1 (43) and AP-1 

(44), bound to their response elements. ERβ binding sites appear enriched for AP-1 sites 

(45). ChIP-seq, ChIP-PET (ChIP for ERα followed by paired-end tag sequencing) and 

ChIP-chip experiments identified a number of transcription factor binding sites with which 
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ERα interacts in MCF-7 cells including: AP-1, CEBP, FOXA1, PAX6, RORA, PITX2, and 

GATA2 (46).

3. Rapid, membrane-initiated, nongenomic estrogen action

In addition to its classical genomic/transcriptional effects mediated by ER-DNA interaction, 

described above, E2 has rapid “nongenomic, extra-nuclear, or membrane-initiated” effects 

that occur very rapidly, i.e., within seconds-minutes after E2 administration (reviewed in 

(47, 48)) These effects are independent and distinct from the genomic, i.e., ER-mediated 

transcription, activities reviewed in the preceding section. Rapid estrogen-stimulated 

intracellular activities are mediated by plasma membrane (PM)-associated ERα, ERβ, ERα 

splice variants: ERα46, ERα36, and/or by an ‘orphan’ G-protein coupled estrogen receptor 

GPR30/GPER (49–60). Palmitoylation of ERα46 helps it to localize to the PM (61–64). 

ERα36 is also recruited to the PM by palmitoylation (65). Evidence of the biological 

function of PM-associated ERs, including GPER, is supported by experiments in which cell-

impermeable E2–bovine serum albumin (E2-BSA) or other E2-conjugates rapidly initiated 

intracellular kinase cascade activities including MAPK/ERK (p42/p44 MAPKs), endothelial 

nitric oxide synthase (eNOS), and PI3K/AKT (66–75). Increased E2 during pregnancy 

activates GPER which, with activation of glucagon-like peptide 1 (GLP1) receptor, 

increases cAMP-PKA and decreases miR-338-3p resulting in increased expression of 

proliferation and/or anti-apoptotic genes and β-cell proliferation (76). Overexpression of 

ERα46 stimulates E2-induced endogenous miR-21 transcription and reduced miR-21 targets 

PTEN and PDCD4 in MCF-7 cells (77). ERα36 and miR-210 expression were correlated in 

TNBC tumors (78), but to my knowledge, no mechanistic studies have been performed on 

ERα36 regulation of miRNA transcription.

4. miRNA processing and general activity

The human genome contains ~ 2,588 mature miRNAs (June 2014, http://www.mirbase.org/) 

(79). The term miRNome is defined as the full spectrum of miRNAs for a specific genome 

(80). About half of miRNAs are expressed from introns of protein-coding transcripts and 

miRNAs have 5' and 3' sequence features that form boundaries including transcription start 

sites, CpG islands, and transcription factor binding recognition elements (81). miRNAs may 

be differentially processed from the sense and antisense strands of the same hairpin RNA or 

transcripts from the same locus (82). miRNAs are produced by canonical miRNA processing 

or noncanonical pathways (83).

The canonical and noncanonical pathways of miRNA biogenesis and the regulation of 

components of this pathway by miRNAs, phosphorylation, and protein: protein interactions 

and E2are depicted in Figure 2. miRNAs are transcribed as primary-micro-RNAs (pri-

miRNAs) by RNA polymerase II either as independent transcription units or are 

cotranscribed within introns of pre-mRNAs (84). Pri-miRs are caped and polyadenylated 

(85). The self-base-pairing stem-loop structure of the pri-miR is cleaved by the 

microprocessor complex with catalytic Drosha (RNASEN), an RNAse III family 

endonuclease, and its cofactor DGCR8 (DiGeorge syndrome critical region 8 gene) into 

shorter (60 to 70 nt) imperfect hairpin-containing precursor-miRNAs (pre-miRNAs) (86). 
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DGCR8 functions as an anchor by binding the pri-miRNA to direct cleavage by Drosha 11 

bp from the dsRNA-ssRNA junction (84). The Drosha microprocessor also binds and 

regulates other cellular RNAs (84) and includes other proteins and hnRNPs shown in Figure 

2: EWSR1, FUS< Nucleolin, p68, p72 which interacts with YAP2.

Exportin and Ran-GTP or CRM1 export pre-miRNAs from the nucleus. In the cytoplasm, 

pre-miRNAs are cleaved to the mature ~22 nt transiently double-stranded miRNA duplexes 

by the RNAse III enzyme Dicer. Dicer with its associated cofactors TRBP (TAR 

(transactivating response) RNA-binding protein) and PACT (protein activator of the 

interferon-induced protein kinase) transfers the miRNA to the RNA-induced silencing 

complex (RISC) containing the catalytic Argonaute proteins (AGO1, AGO2, AGO3, and 

AGO4 (87)) which unwind the duplexes to form single stranded miRNAs. One strand 

miRNA is preferentially selected to bind one of the AGO proteins and by base-pairing 

directs translational inhibition and/or mRNA degradation by binding either to the 3’ 

untranslated region (3’ UTR) or to the open reading frame (ORF) of its target mRNA (88–

91). AGO2 is the catalytic component of RISC. Dicer binds not only miRNAs, but also 

tRNAs, snoRNAs, mRNA and promoter RNAs (92). The widespread reduction of miRNAs 

in cancers is considered to be the result of defective miRNA processing as reflected in 

increased pri-miRNAs due to Hippo signaling regulation of p72 nuclear function by YAP 

sequestering p72 from the Microprocessor in a cell-density-dependent manner (93).

The non-canonical pathways of miRNA generation include the generation of mirtrons which 

are short hairpin pre-miRNAs directly produced by splicing, thus bypassing Drosha-

mediated cleavage (94, 95). Some miRNAs function as bimodal miRNAs controlling 

different target gene sets depending on the region used for interaction. i.e., a canonical seed 

in positions 2–8 or positions nt 6–12, e.g., miR-4728-3p, encoded in intron 24 of HER2 gene 

(96) which downregulates ESR1 expression through an internal seed interaction (97).

Just like protein-coding genes, complexity of the miRNome has increased with further 

research. miRNAs are heterogeneous in length and sequence with isomiRs that are sequence 

variants of the canonical miRNA currently in the miRBase generated from a single miRNA 

locus by template and non-template variants (98). Templated isomiRs match the genomic 

sequence, but have different 5′-start and/or 3′-ends, resulting from imprecise Drosha or 

Dicer cleavage (99), whereas non-templated isomiRs diverge from the genomic sequence 

due to post-transcriptional enzymatic modification. The most common non-templated 

modification is adenylation, catalyzed by the adenosine deaminase (ADAR) family of 

enzymes (100). The expression isomiRNAs is dynamic, with differences between cell types 

and tissues. A tool called IsomiRage http://cru.genomics.iit.it/Isomirage/ is available for 

profiling the miRNAs/isomiRs and corresponding differential expression patterns using 

Illumina next-generation sequencing datasets of small RNA (99). When applied to primary 

breast normal and cancer cells the IsomiRage increased the number of detected miRNA 

species by ~40%, thus revealing additional information “hidden” in sequencing datasets 

(99). These isomiRNAs are effectively loaded on AGO/RISC complexes and thus are 

thought to function as canonical miRNAs, thus increasing the repertoire of mRNA targets.
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Not only are miRNAs active in the cells in which they are transcribed, but miRNAs circulate 

in exosomes: 40–100 nM membrane-bound vesicles composed of different growth factors, 

cytokines, lipids, cytoplasmic proteins, and nucleic acids, including miRNAs, which 

circulate in the blood and lymph and deliver molecules between tissues (101). The exosomal 

content is tightly regulated by endosomal sorting complexes required for transport (ESCRT) 

(102). Specific cell surface markers allow cellular uptake of exosomes with high specificity. 

The physiological role of exosomes is controversial. Exosomes can facilitate tumor 

progression by supplying tumor niches with factors that favor proliferation, invasion, drug 

resistance, and metastasis (101). Circulating miRNAs embedded in exosomes reprogram 

cellular mechanisms in recipient cells (103, 104). Whether exosomal miRNAs will be 

makers in cancer is currently speculative. A recent study appears to be the first comparison 

between cell-free and exosomal miRNAs in breast cancer patients and healthy women (105). 

The authors reported higher exosomal miR-372 and cell free (not exosomal) miR-373 in 

triple negative breast cancer compared to luminal breast cancer patients and higher cell free 

miR-101 in both groups (102).

5. miRNA-mRNA interaction

The critical, perfectly complementary basepairing between 7 to 8 nucleotides at the 5’ end of 

the miRNA and its target mRNA is referred to as the ‘seed sequence’. Base pairing of the 

miRNA-RISC complex within the ORF requires almost perfect complimentarity and the 

mRNA is either degraded or translation is blocked (85). RNA binding proteins (RBP), e.g. 

HuR, hnRNP E1, and hnRNP L, and miRNAs compete and collaborate to regulate mRNA 

stability and RBPs can recruit miRNA-containing RICSs to target lncRNAs (106). There is 

evidence that miRNA-mRNA gene silencing occurs in the rough endoplasmic reticulum 

(RER) by interaction of components of Dicer, TRBP and PACT with the RER (107).

Most commonly, because of imperfect base pairing between the miRNA and the 3’UTR, the 

RISC complex causes translational repression by interaction with eIF6 which prevents 80S 

ribosomal assembly (108) or by inhibition of translation (18). The exact mechanisms of 

translational inhibition versus mRNA degradation have not yet been fully elucidated (109). 

miRNAs initiate target mRNA degradation by recruiting mRNA decay pathway effectors 

such as de-adenylation and de-capping enzymes (110). The miRNA-containing 

ribonucleoprotein particle (miRNP)-silenced mRNA is directed to the P-bodies and the 

mRNA is either released from its inhibition upon a cellular signal and/or actively degraded 

(111). Some miRNAs may also increase translation of select mRNAs in a cell cycle-

dependent manner (112).

miRNAs are considered highly stable, although this is cell-type, cell cycle, and miRNA- 

specific; further target regulation can promote miRNA’s 3’-end uridylation and degradation 

(106). This means that an increase in target mRNA leads to a decrease in its target miRNAs. 

miRNAs are regulated by competing endogenous RNAs (ceRNAs) (113) which contain 

miRNA target sties and thus act as miRNA ‘sponges’ and sequester miRNAs from 

interaction with target mRNAs. Circular RNAs (circRNAs) are ceRNAs that contain 

miRNA binding sites and are resistant to miRNA-mediated destabilization (reviewed in 
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(114)). Multiple non-coding RNA species, including sncRNAs, pseudogenes, lncRNAs and 

circRNAs appear to possess ceRNA activity (114).

miRNAs have important roles in regulating cellular processes including replication, 

differentiation, and apoptosis. In cancer, miRNAs can either act as ‘oncosuppressor 

miRNAs’ which are often downregulated in cancer, e.g., the miR29b-1/a in acute myeloid 

leukemia resulting in upregulation of oncoprotein BCL-2 (115),or, as ‘oncomiRs’, by 

decreasing the levels of tumor suppressor proteins, e.g., miR-21 decreasing PDCD4 (116). 

MiRNAs are expressed in a tissue-specific manner (117). Each miRNA targets ~ 200 

transcripts directly or indirectly (118), but the bone fide physiological targets of the vast 

majority of miRNAs remain to be experimentally verified.

6. HITS-CLIP to identify miRNA-mRNA interaction by Ago2 

immunoprecipitation

High-throughput RNA-seq isolated by crosslinking immunoprecipitation (HITS-CLIP) of 

Argonaute 2 (Ago 2, catalytic component of the RISC complex (119)) is used to identify 

putative miRNA-mRNA ternary complexes (120, 121). HITS-CLIP of E2-treated MCF-7 

cells revealed Ago 2 footprints throughout ESR1 mRNA, including peaks in the 3’UTR and 

within the coding region, and follow-up experiments identified miR-9-5p binding the 3’ 

UTR, directly downregulating ERα protein levels (122).

7. Nomenclature of miRNA

miRNAs are preceded a three lettered prefix indicating the species of origin e.g., hsa for 

homo sapiens and mmu for mouse (123). miRNAs originating from different genomic loci 

are assigned a numerical suffix, i.e, hsa-miR-29b-1 and hsa-miR-29b-2. If transcripts are 

equally expressed they are referred to as miR-21-5p (from the 5’ arm) and miR-21-3p (from 

the 3’ arm) arise from the same hairpin precursor. Alternatively, miR-21* indicates the less 

predominant species in RISC (124). miRNAs differing by a few bases are given a lettered 

suffix, e.g.,miR-125a and miR-125b. miRNA families arise from a common ancestor and 

have similar sequences, e.g. miR-221 and miR-222 family. 61% of mammalian miRNAs are 

expressed from polycistronic clusters. reflecting shared biological functions for unrelated 

miRNAs in the same primary transcript (125). miRNA clusters arise due to gene duplication, 

e.g., the miR-200 cluster of miRNAs are located in two chromosomes, i.e., miR-200a, 

miR-200b, and miR-429 are located on chromosome 1 and miR-200c and miR-141 are 

located on chromosome 12 (126). Each cluster is transcribed into a common precursor RNA.

8. Regulation of miRNA expression

Levels of mature miRNA are regulated transcriptionally and by processing of pri-miRNAs 

and pre-miRNAs. In the microprocessor complex the ratio of Drosha and DGCR8 are tightly 

regulated (127). DGCR8 stabilizes Drosha and Drosha cleaves and inactivates DGCR8; 

providing a tight feedback loop (128). ERα interacts directly with helicases p68 and p72 

(which are established ERα coregulators (129)). ERα-p68 interaction was reported to inhibit 

Drosha complex formation (130), and thus repress pri-miRNA processing. Importantly, this 
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work was recently retracted (131). However, another group of investigators also reported 

that Drosha and p68/DDX5 could be co-purified with ERα in MCF-7 cells, but not with ERβ 

in ERβ-stably transfected MCF-7 cells (132). This report has not been confirmed.

Dicer processes pre-miRNA to mature miRNA. Dicer activity is enhanced by MAPK-

phosphorylation of TRBP (Figure 2) which promotes miRNA processing (133). The RNA 

coactivator SRA (steroid receptor RNA activator) binds Dicer complex components PACT, 

TRBP, and PKR in various cell lines and also binds NRs, including ERα (134). Dicer acts as 

a NR coactivator in MCF-7 cells and is recruited to the PSA gene promoter in DHT-treated 

LNCaP prostate cancer cells with androgen receptor (AR) (134). These findings suggest that 

pre-miR processing may be coupled with ERα and AR regulation of gene transcription.

AGO2 is the catalytic component of the RISC complex and serves as a platform to recruit 

additional regulators of mRNA stability (125). AGO2 is regulated at the transcriptional and 

post-transcriptional level. For example, in MCF-7 breast cancer cells, E2 inhibits AGO2 

expression by activating epidermal growth factor (EGF)-MAPK signaling (135). Direct 

interaction of EGF receptor (EGFR) with AGO2 in the cytoplasm phosphorylates AGO2 at 

Tyr 393 which reduced AGO2 association with Dicer (Figure 2) and TRBP suppresses 

maturation of specific tumor suppressor miRNAs under hypoxic conditions (136).

Nucleolin is a multifunctional protein concentrated in the nucleolus, but located throughout 

the cell, including the plasma membrane, and has roles in transcription, ribosome 

biogenesis, DNA replication, chromatin remodeling, apoptosis, and macropinocytosis (137, 

138). There are several examples of nucleolin functioning as a transcription factor or as a 

coregulator through its interactions with other proteins (reviewed in (139)). Nucleolin was 

reported to promote the maturation of specific miRNAs implicated in carcinogenesis in 

MCF-7 and HeLa cells: miR-21, miR-103, miR-221, and miR-222 (140).

9. Estrogen regulation of miRNA expression overview

Regulation of miRNA expression by estrogens in animals, fish, and humans has been 

reviewed by us (141, 142) and others (143). Since my previous review, a non-inclusive list 

of new studies of E2 regulation of miRNA expression in animals includes: female Fischer 

344 rat brain, specifically in the ventral and dorsal hippocampus, central amygdala, and 

paraventricular nucleus and as a function of aging (144); in female ACI rats in an E2-

induced mammary carcinogenesis model (145); mouse aorta (146); mouse liver and primary 

murine hepatocytes (147); rat cardiac fibroblasts (148). I will not review these studies, but 

will focus on human cell lines and tissues.

10. ERα and ERβ regulate miRNA expression in a ligand-independent 

manner

ChIP studies have shown that ‘unliganded’ ERα (149)and ERβ (150) bind DNA in cells 

grown in serum-free or charcoal-stripped serum medium. Overexpression of ERα in MCF-7 

cells upregulated mIR-17 (151). Overexpression of ERβ in non-hormone treated MCF-7 and 

ZR-75.1 human breast cancer cell lines was reported to regulate the expression of > 450 
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miRNAs in next-gen RNA sequencing experiments (152). Here I will focus on updating 

reports on ER ligand-responsive regulation of miRNA expression in human cell lines and 

tissues.

11. E2 and other ER ligands regulate miRNA expression in human cell lines 

and tissues

The hope of current studies of E2 regulation of miRNA expression in breast cancer cell lines 

is that identification of E2-regulated miRNAs and their gene targets may offer insight into 

mechanisms of estrogen in breast carcinogenesis and progression and identify targets for 

therapeutic interference. By far and large, E2 regulation of the transcriptome, including 

miRNAs is best characterized in breast cancer cell lines with MCF-7 studies predominant. 

This will be apparent in Tables 1 and 2 which summarize the regulation of miRs and their 

bona fide targets by ER ligands including E2, tamoxifen, 4-OHT, and endocrine disruptors 

in human cell lines and tissues. It is worth noting that there are conflicting results of E2 and 

other ER ligand regulation of miRNAs within cell lines, e.g., MCF-7 and T47D, between 

reports from different investigators and even within the same lab group in different 

publications. There are many likely explanations for these differences including cell lines 

and variations in cell treatment conditions, circadian regulation of ERα expression (153), 

normalization of data (154), and control genes used for qPCR (155).

Identification of E2- and 4-OHT- regulated miRNAs was originally performed by 

microarray by us (155, 156) and others (132, 157–161). These reports are summarized in 

Tables 1 and 2. An Illumina human MicroRNA Expression Profiling Beadchip was used to 

identify E2-regulated miRNAs in MCF-7 and ZR-75.1 cells after 6, 12, 24, and 72 h of 

treatment following an initial 4 days of ‘hormone deprivation’ in medium containing 5% 

dextran-coated charcoal stripped FBS (159). The authors reported 230 significant miRNA 

changes (up- and down- regulation) that are summarized in Tables 1 and 2. The authors 

correlated miRNA expression with ERα in vivo binding in published data sets and found 

ERα binding within 10 kB of miR-125a-2, miR-181c, miR-23a, miR-27a, miR-24-2, and 

mIR-26 and ERα binding sites within 50kB of genes in which miRs are embedded: miR-25 

in MCM2; miR-26a in CTDSP2, miR-424 in GBC16121, miR-618 in LIN7A, miR-760 in 

BCAR3, and miR-942 in TTF2(159). The authors noted that they found more of miR * 

strands regulated by E2 and suggested a possible role of ER in strand selection. Since the * 

strands are now known to be functional in Ago2-RISC complexes (162), these findings 

appear to reflect the wide range of miRNAs functionally regulating estrogen action in vivo.

GRO-seq (global nuclear run-on and sequencing) identified all RNA transcripts in E2-treated 

MCF-7 cells (163). The authors identified 119 miRNA transcripts as regulated by E2 at 

minimally one of the time points (10 and 40 min) examined with half of the miRNAs 

upregulated and half downregulated, the same as protein-coding transcripts. However, GRO-

seq is unable to detect miRNAs that are co-transcribed as a part of their host gene within 

which they are embedded (164). Another genome wide analysis of E2-regulated miRNA 

expression was performed in MCF-7 and ZR-75-1 luminal-like breast cancer cells (165). In 

that study, E2 increased miR-760 and miR-424 and decreased miR-618, miR-570, and 
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miR-107 expression. It will be of interest to correlate binding events, transcriptional 

regulation, and functional outcome in these large-scale studies.

Aromatase inhibitors are used to inhibit the endogenous synthesis of estrogens in 

postmenopausal breast cancer patients (166). The aromatase inhibitor letrozole (10 nM) 

stimulated the expression of let-7f, miR-146a, miR-150, miR-27a, miR-263, miR-19a, 

miR-372, miR-23b, miR-203, miR-10b, miR-128a, miR-9, and miR-126 and inhibited 

miR-134, miR-142-5p, miR-96, miR-148b, and miR-222 expression in MCF-7 cells co-

cultured with primary human stromal cells (167). If these are E2-regulated miRNAs in 

MCF-7 cells, then we would expect E2 to increase miR-134, miR-142-5p, miR-96, 

miR-148b, and miR-222 and inhibit let-7f, miR-146a, miR-150, miR-27a, miR-263, 

miR-19a, miR-372, miR-23b, miR-203, miR-10b, miR-128a, miR-9, and miR126. We 

compared these expected results with published data summarized in Tables 1 and 2. E2 has 

not been reported to increase miR-134, miR-148b, or miR-96; however, in agreement with 

the expected results, E2 increased miR-142-3p and miR-222 in MCF-7 cells (Table 1). E2 

has not been reported to inhibit miR-146a, miR-150, miR-263, miR-372, miR-10b, miR-9, 

or miR-126; however, E2 reduced let-7f, miR-27a, miR-19a, miR-23b, miR-203, miR-128a:

9.1, in MCF-7 cells (Table 2).

12. Endocrine disrupting chemicals regulating miRNA expression

Endocrine disrupting chemicals (EDC) are environmental chemicals that mimic or block 

transcriptional activation elicited by naturally circulating steroid hormones by binding to 

steroid hormone receptors and either acting as agonists or antagonists of that receptor (168, 

169). EDC may also affect the levels or activities enzymes involved in steroid hormone 

synthesis or metabolism, alter the expression or activities of transcriptional coregulators, and 

cause epigenetic changes(170) (168). The role of EDC in breast cancer is suspected, but not 

proven (171). Based on their widespread use, environmental persistence, the possible role of 

EDC in hormone-related cancers is of keen interest (168, 171, 172).

There are few reports examining how EDC affect miRNA expression in fish, animals or 

animal cell lines (173). Treatment of mouse TM4 Sertoli cells with 10 µ g/mL nonylphenol 

(NP) increased the expression of 47 miRNAs and down-regulated the expression of 100 

miRNAs with 24 h of treatment (174). Only 10 miRNAs were increased > 1.5-fold with 

mmu-miR-135* being increased ~ 4-fold. The authors correlated the increase in miR-135* 

with decreased expression of 18 mRNAs in NP-treated cells, but did not confirm changes at 

the protein level or whether these are bona fide mRNA targets of mmu-miR-135a* (174). 

Neonatal exposure to the estrogenic analog estradiol benzoate (EB) from postnatal days 

(PND)1–5 with doses of 0, 0.75, 1.25, 2.5, or 25 µ g/d given sc, increased miR-29 (a,b, and 

c) in adult (PND90) rat testicular tissue with a concordant decrease in miR-29 target Mcl-1 

protein (175).

To my knowledge, based on searching PubMed, there are only four studies of the effect of 

EDC on miRNA expression in human cell lines. One study showed that, like E2 (156), 10 µ 

M o,p-dichlorodiphenyltrichloroethane (DDT) and 10 µ M bisphenol A (BPA) activate ERα 

in MCF-7 cells and downregulated miR-21 (161). In addition, the authors reported that 
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treatment of MCF-7 cells with 1 nM E2, 10 µ M BPA, or 10 µ M DDT reduced the 

expression of let-7a, b, c, d, e, and f, miR-15b, and miR-28b and upregulated miR-638, 

miR-663, and miR-1915. We reported that the anti-fungal agents fenhexamid and 

fludioxonil increased miR-21 expression in MCF-7, T47D, and MDA-MB-231 human 

breast cancer cells and reduced the expression of miR-125b and miR-181a (176). In MCF-7 

cells, fenhexamid and fludioxonil induction of miR-21 was inhibited by fulvestrant; by AR 

antagonist, bicalutamide; by actinomycin D and cycloheximide, and by inhibitors of the 

mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. 

Fenhexamid activation was inhibited by the arylhydrocarbon receptor antagonist α-

napthoflavone.

The cooking of meat, particularly at high temperature with browning, e.g. grilling on a 

charcoal grill, results in the formation of heterocyclic amines (HCA), including the most 

abundant: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) which is considered a 

mammary carcinogen (177). Treatment of MCF-7 cells with 100 nM PhIP decreased 

miR-21, miR-1, and miR-106b expression and increased miR-923, miR-574-3p, 

miR-574-5p, and miR-494 (160). Other miRNAs regulated by PhIP are listed in Tables 1 

and 2.

The antimicrobial agents triclosan (TCS) and triclocarban (TCC) are widely used in many 

consumer products including soaps, skin creams, toothpastes and deodorants and are present 

in the aquatic and terrestrial environment (178). TCS and TCC are established EDS that 

compete with E2 for ERα and ERβ binding, albeit with lower affinity (179). TCS and TCC 

(each at 1 µ M) increased the expression of miR-22, miR-206, and miR-193b (2–3-fold) in 

MCF-7 cells, similar to the stimulation with 1 nM E2 (178).

13. miRNAs regulating ER expression

miRNAs can influence estrogen-regulated gene expression by directly reducing ERα mRNA 

stability or translation. Nine miRNAs have been reported to reduce ERα protein levels: 

miR-18a, miR 18b, miR-193b, miR-302c, miR-22 (180), miR-201, miR-221, and miR-222 

(142), miR-206 (181), miR-222-3p (182), miR-4728-3p (97), miR-373 (105); miR-9-5p 

(122). let-7a, let-7b, and let-7i (183) (Figure 3). MiR-206 is inversely correlated with ERα 

expression, but not ERβ, in human breast tumors (184). miR-221/222 is higher in ERα 

negative than ERα positive breast cancer cell lines and human breast tumors (185, 186). 

Anti-miR-221 suppressed the growth of TAM-resistant breast cancer cells as xenografts in 

nude mice (187). Similarly, the expression of miR-22 was significantly lower in MCF-7, 

T-47D and BT474 ERα-positive versus ERα-negative MDA-MB-231 and SK-BR-3 breast 

cancer cells (188). A protein lysate microarray (LMA)-based strategy in which a library of 

pre-miRs was transiently transfected into MCF-7 and BT-474 cells in 384-well plates and 

ERα protein was subsequently analyzed in protein lysates that were printed on 

nitrocellulose-coated slides (189). miR-18a, miR-18b, miR -193, miR -206, and miR-302c 

reduced ERα by directly binding sites in the 3’UTR of ERα. Further, the authors reported an 

inverse correlation between the expression of miR-18a, -18b and ERα-negative breast tumor 

samples (189). ERα is upregulated during breast carcinogenesis and cancer stem cells 

(CSCs) isolated from MCF-7 and T47D cells had increased ERα and decreased let-7a, 
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let-7b, let-7c, let-7d, let-7g levels (190). miR-873 was reported to inhibit E2-ERα-regulated 

gene transcription and cell proliferation by directly targeting CDK3, thus inhibiting ERα 

phosphorylation (Ser104, 106, and 118) and thus, ERα activity in MCF-7 cells (191). Stable 

overexpression of miR-873 in tamoxifen-resistant MCF-7 cells sensitized cells to tamoxifen 

(191).

14. miRNAs that regulate ER coregulators

miRNAs may also affect estrogen-regulated gene expression by reducing the expression of 

ER-interacting coactivators. miR-17-5p inhibited translation of coactivator SRC-3/AIB1/

NCOA3 and reduced E2-ERα-ERE-luciferase activity in transfected cells (192). miR-195 

inhibited SRC-3 expression in HepG2 cells by direct interaction with the 3’UTR region 

(193). There are 3 reports on miRNA regulation of corepressors that target ERα. miR-10a 

and -10b repress SMRT/NCOR2 (194). miR-184 (195) and miR-16 (196) represses SMRT/

NCOR2 translation, but how they affect ER activity is unknown. MTA1 (metastatic tumor 

antigen 1) repressed miR-661, but the effect on ERα transcription was not evaluated (197). 

miR-615-3p repressed LCoR expression (198), but whether this affects ERα was not 

studied. Clearly, little is known about regulation of ER coactivators and corepressors by 

miRNAs.

15. E2 regulation of AGO2 in human breast cancer cell lines

The expression of Argonaut-2 (Ago2), the catalytic subunit of the RISC complex that 

mediates miRNA-dependent cleavage/degradation in mammals is higher in ERα-negative, 

HER2-positive than ERα-positive/HER2 negative (luminal) human breast cancer cell lines 

and tumors (16). However, E2 and the ERα-agonist PPT, but not the ERβ-agonist DPN, 

increased AGO2 protein expression in MCF-7 cells (16). Further studies showed that EGF 

acts through the MAPK pathway to increase Ago2 protein stability, but there were no 

studies examining the mechanism by which E2 and PPT, presumably through ERα, increase 

Ago2 protein levels. Surprisingly, Ago2 overexpression in MCF-7 cells increased ERα 

protein levels by 3-fold, despite also increasing miR-206 that reduces ERα (16). The authors 

concluded that this “discordant” finding indicates that there is a greater concentration of 

miRNAs than target proteins involved in ERα suppression than those that target ERα itself” 

(16). Microarray profiling shows that the expression of Ago1 and Ago2 proteins is higher 

while Dicer and TRBP1 is lower in ERα-negative versus ERα-positive breast cancer cells 

(199).

16. MicroRNA and endocrine-resistant breast cancer

Altered miRNA expression is likely to play a role in endocrine-resistance in breast cancer. A 

PubMed search for ‘MicroRNA and endocrine resistance in breast cancer’ generated nine 

new publications since my previous review (200). A recent review of mechanisms of 

endocrine resistance includes a paragraph on the upregulation of miR-221, miR-222, and 

miR-181b and downregulation of miR-21, miR-342, and miR-489 in tamoxifen-resistant 

breast cells (201). miR-221/222 promoted TAM-resistance by targeting ERα and the cell 

cycle regulator p27 (also known as Kip1) (185). Overexpression of miR-221/222 also 

associates with Fulvestrant-resistance (202). miR-221/222 is also increased in 
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CD44+CD24−/low human breast cancer stem cells, indicating a role for these stem cells in 

endocrine resistance (203). miRNAs in CSCs and their role in chemoresistance has been 

recently reviewed (204).

My laboratory identified miRNAs that are differentially regulated by TAM in endocrine-

sensitive MCF-7 and endocrine-resistant LY2 human breast cancer cells (155). LY2 cells 

were derived from MCF-7 by serial passage in the antiestrogen LY 117018, a precursor to 

Raloxifene (RAL) (205), and express wild-type ERα mRNA levels similar to MCF-7 cells 

(206), but are resistant to TAM, RAL, and Fulvestrant (ICI 182,780) (207). We identified 97 

miRNAs regulated in the opposite direction in MCF-7 and LY2 cells. Quantitative real-time 

PCR (qPCR) selectively confirmed higher miR-200a, miR-200b, and miR-200c in MCF-7 

than LY2 cells and higher miR-10a, miR-22, miR-29a, miR-125b, and miR-222 in LY2 than 

in MCF-7 cells (155). Some of the mRNA targets include PDCD4, BCL2, CYP1B1, and 

ERBB3.

Members of the miR-200 family and miR-221/222 are implicated in epithelial-mesenchymal 

transition (EMT) and metastasis (208). Many studies have identified an inverse relationship 

between the expression of the miR-200 family and its targets ZEB1/2 in cells (209–213). 

ZEB1, a target of miR-200 family of miRNAs and a promoter of EMT, was found to be 

overexpressed in LY2 cells when compared to MCF-7 cells (155). We observed a 

progressive decrease in the expression of miR-200a, miR-200b, and miR-200c in an MCF-7-

derived cell line model of TAM/endocrine resistance, i.e., decreasing from MCF-7, LCC1 

(E2-independent, but TAM-sensitive; to the TAM-resistant LCC2, LCC9, and LY2 cell 

lines, respectively (214). Concurrently, we detected an increase in ZEB1 expression in 

LCC9 and LY2 cells. Overexpression of miR-200b and miR-200c enhanced the sensitivity 

of LY2 breast cancer cells to growth inhibition by antiestrogens 4-OHT and fulvestrant. 

These data are in agreement with other reports showing an inverse correlation between 

miR-200 family and ZEB1 expression in basal-like, triple negative breast cancer (TNBC) 

cells such as MDA-MB-231 and BT549 (210, 212, 213, 215). CpG island methylation of 

miR-200c/miR-141 promoter has been reported in breast and prostate cancer cells (216–

218). Treatment of MDA-MB-231 and BT549 breast and PC3 prostate cancer cells with 5-

aza-2’-deoxycytidine (5-aza-dC), a demethylating agent, increased miR-200c and miR-141 

expression (216). Our study agrees with these reports of epigenetic silencing of the miR-200 

family, because we demonstrated that treatment of LY2 cells with 5-aza-dC + histone 

deacetylase inhibitor trichostatin A (TSA) increased miR-200b and miR-200c expression 

(214). There was a concomitant decrease in the expression of ZEB1 mRNA and protein and 

the LY2 cells appeared more epithelial in in morphology and were sensitized to TAM and 

fulvestrant inhibition. Likewise, knockdown of ZEB1 increased antiestrogen sensitivity of 

LY2 cells resulting in inhibition of cell proliferation (214).

Global miRNA analysis of 153 ERα+ primary breast tumors from women who subsequently 

took tamoxifen as an adjuvant mono-therapy revealed that no single miRNA profile was 

predictive of patient outcome (219). Decreased expression of miR-190b, miR-339-5p, 

miR-520c-3-, miR-520g, miR-520h, miR-139-3p, miR-204, miR-502-5p, miR-365, and 

miR-363 in the primary tumors was associated with recurrence in tamoxifen-treated patients 

(219).
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miR-342 was downregulated in two TAM-resistant cell lines derived from MCF-7 cells 

called LCC2 and TAMR1 (220). Overexpression of miR-342 conferred TAM-sensitivity and 

increased apoptosis. miR-451, an oncosuppressor miRNA, was downregulated in TAM-

resistant breast cancer cells (221). miR-451 targets 14-3-3ζ an anti-apoptotic gene that is 

overexpressed in TAM-resistant tumors and is associated with lower survival (221). 

Increased expression of ERα36, a truncated form of the full length ERα66, that blocks 

ERα66 genomic activity while activating MAPK signaling, has been reported in TAM-

resistant breast tumors (222). Let-7a targets ERα36 and loss of Let-7 family members 

conferred TAM-resistance by activating non-genomic estrogen signaling mediated by 

ERα36 (223).

miRNA microarray profiling identified 10 miRNAs downregulated in a TAM-resistant 

MCF-7 cell line compared with wt MCF-7 cells: miR-125a, miR-489, miR-375, miR-653, 

miR-135b, miR-556-3p, miR-190b, miR-556-5p, miR-561, and miR-548h; while 12 miRs 

were upregulated: miR-551b, miR-519a, miR-376a*, miR-31, miR-224, miR-521, miR-31*, 

miR-655, miR-205, miR-518f, miR-520h, miR-455-3p (224). Transfection of TAM-resistant 

MCF-7 cells with pre-miR-375 re-sensitized the cells to ~ 15% growth inhibition by 5 µ M 

TAM, reduced mRNA expression of EMT markers: FN1, ZEB1, and SNAI2, and reverted 

EMT-like invasive appearance of the cells (224). MTDH was identified as a direct target of 

miR-375 and siMTDH in TAM-resistant MCF-7 cells partially sensitized the cells to 

tamoxifen and higher TDFH was correlated with reduced disease-free survival in tamoxifen-

treated breast cancer patients (224).

The miRNA cluster C19MC, encoding 59 miRNAs spanning ~ 100 kB(225), is the largest 

known cluster of miRNAs in the human genome (226). Many miRNAs of C19MC are 

oncomiRs when re-expressed in tissues (225). miRNA microarray profiling revealed that 18 

miRNAs in the C19MC cluster were upregulated in in a TAM-resistant MCF-7 cell line 

compared with wt MCF-7 cells including miR- 520c-3p, miR-519d, miR-518b, miR-520h, 

miR-521, miR-518f, miR-520b, miR-518c, miR-512-5p, miR-512-3p, miR-518e*, 

miR-515-5p, miR-517c, miR-522, and miR-519a (227). Overexpression of a miR-519a 

mimic in MCF-7 cells resulted in TAM-resistance and transfection of TAM-resistant MCF-7 

cells with a miR-519a inhibitor restored TAM-growth inhibition on the cells (227). The 

authors verified CDKN1A, RB1, and PTEN as bona fide targets of miR-519a and correlated 

increased miR-519a expression with poorer disease-free survival in ERα+ breast cancer 

patients (227).

CONCLUSION

Estrogens, most commonly E2, and other ER ligands including tamoxifen and endocrine 

disruptors regulate diverse physiological effects through genomic and nongenomic/

membrane-initiated mechanisms that alter cellular expression of miRNAs. miRNAs are 

post-transcriptional regulators of mRNA translation and stability. Although miRNA changes 

in fish, mice, rats, and human breast cancer cells in response to E2 and tamoxifen have been 

reported, there are relatively few studies examining the detailed mechanisms for these 

responses and their downstream bona fide targets. The effect of E2 varies between and 

within cell lines depending on the ratio of ERs, including GPER, expressed, coregulators, 
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chromatin structure, cell cycle, circadian rhythms, and numerous other physiological 

parameters. Future HITS-CLIP and global high-throughput studies are needed to elucidate 

the general principles while detailed biochemical/molecular studies are required to dissect 

the specific mechanisms involved in ER/miRNA interactions and their roles in human health 

and disease.
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Highlights

• Reviews miRNA biogenesis and regulation by estradiol

• Two tables summarize miRNAs stimulated or repressed by estradiol and 

tamoxifen or other ER ligands in human tissues or cell lines

• Reviews regulation of miRNAs by endocrine disrupting chemicals
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Figure 1. History of PubMed citations on human miRNA, estrogen AND miRNA, and tamoxifen 
AND miRNA
The search terms used were human AND miRNA (black closed circles) and human AND 

miRNA AND estrogen. Each point is the number of publications in the calendar year 

indicated. The number of citations was taken directly from an advanced search of PubMed 

and was not hand-curated to remove non-relevant citations.
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Figure 2. Model of canonical miRNA biogenesis and function
Primary transcripts of microRNAs (pri-miRNAs) are transcribed by RNA polymerase II, 

processed by the RNAse III enzyme, Drosha and its cofactor DGCR8, to precursor 

microRNAs (pre-miRNAs) which are exported from the nucleus by Exportin/RAN-GTP 

(85). In the cytoplasm, pre-miRNAs are processed by the Microprocessor complex that 

includes Dicer, an RNAse III enzyme, to form mature ~22 nt transiently double-stranded 

miRNA duplexes that are transferred to Argonaute proteins (most notably AGO2 in the 

RNA-induced silencing complex (RISC), leading to unwinding of the duplexes to form 
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single stranded miRNAs. The RISC complex binds either to the 3’ untranslated region (3’ 

UTR) or to the open reading frame (ORF) of its target mRNA. Binding of miRNA/RISC 

complex with the 3’UTR causes translational repression (18).
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Figure 3. Overview of miRNAs regulating ERα and ERβ expression and function
MiRNAs that inhibit ERα, ERβ, and coregulators involved in gene transcription are 

indicated as discussed in the text.
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Table 1
miRNAs upregulated by estradiol (E2), tamoxifen (TAM), 4-hydroxytamoxifen (4-OHT), 

Fulvestrant (ICI 182,780), or endocrine-disrupting chemicals (EDC) in animal studies and 
human cell lines

The bona fide targets of the miRNAs are experimentally proven in the reference cited; however, this direct 

targeting is not necessary substantiated in E2 regulation in the cells indicated in column 3. DIANA-TarBase 

v7.0 (228) web site has a list of bona fide targets of miRNAs : http://diana.imis.athena-innovation.gr/

DianaTools/

miRNA Ligand Human cell line/tissue Comments Bona fide targets

Let-7a,b,c,d,e,f, g, i

E2 MCF-7 cells stably expressing a 
biscistronic vector control (157). MCF-7 
cells (141, 229).
1 µM E2 in Ishikawa and ECC-1 ERα+ 
human endometrial cancer cells (158).
Let-7a and let-7f-1* were increased at 
6,12, and 72 h but decreased at 24 h 
with 10 nM E2 in MCF-7 cells (159).
Let-7a* was increased in response to 10 
nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

Oncosuppressor miR- 
stimulate apoptosis 
(230)

DICER1 (231); 
let-7g:COL1A2 
(232)

miR-7
E2 10 nM E2 MCF-7 cells (141, 233) oncomiR XRCC2 (234)

KLF4 (235)

miR-10a
miR-10b

E2 10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236).

miR-10b is down-
regulated in breast 
tumors and 
upregulated in sera 
(237).

BUB1, PLK1, 
CCNA2 (238)

miR-15a
E2 10 nM E2 MCF-7 cells (141). Upregulated by E2F1 

(239).
CCNE1 = CyclinE 
(239)

miR-16-1*
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-16-2* E2 10 nM E2 for 24 h in T47D cells (154).

miR-17*
E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells (159).

miR-17-3p
E2 MCF-7 stably transfected to overexpress 

the aromatase gene (MCF-7aro) (240).

miR-17-92

E2 MCF-7 cells (233, 241, 242). miR-17-92 cluser 
encodes miR-17, 18, 
19, 20, 19b-1, 92-1

miR-19a and 
miR-92a: PTEN 
(243)

miR-18a E2
10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-18a* E2

10 nM E2 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-18a is higher in 
ERα-breast tumors 
(244)

ERα (241)

miR-18b

E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
cells (159).
10 nM E2 for 6, 12 h in MCF-7 cells 
stably overexpressing inducible ERβ or 
ERα-downregulated at 24 and 72 h 
(132).
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

miR-18b* BPA 10 µM BPA for 18 h in MCF-7 cells 
(161)

miR-19a, 19b

E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159)
miR-19a and 19a* were increased by 10 
nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-19b-1
E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 

cells (159).

miR-19b

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-20a*

E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-21

Fludioxonil fenhexamid
4-OHT

MCF-7 cells (176)
MCF-7 cells (156)

oncomiR
Fludioxonil and 
fenhexamid are 
endocrine disruptors

NFIB (245); PTEN, 
PDCD4 (156); 
RASA1 and 
RASA2 (148)

miR-22 E2
EDC

1 nM E2, 1 µM triclosan or 1 µM 
triclocarban for 18 h in MCF-7 cells 
(178).

EDC

miR-23b*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ but not 
ERα (132).

miR-24 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-24-1*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ but not 
ERα (132).

miR-25

E2

MCF-7 cells (141, 233).

miR-106b-25 cluster 
encodes miR-106b, 
miR-93, and 
miR-25in the 13th 

intron of the MCM7 
gene (246)

BIM (247); DR4 
(248); MCU (249); 
Smad7 (250); 
LATS2 (251); 
RECK (252)

miR-25*
E2 10 nM E2 12 and 24 h in MCF-7 and 

ZR-75-1 cells (159).

miR-26a

E2 and fulvestrant Primary human myometrial smooth 
muscle cells (MSMC) (253)

Oncosuppressor miR ESR1 (254)
CHD1, GREB1, 
and KPNA2 (255)

miR-27a
E2 1 µM E2 in Ishikawa and ECC-1 ERα+ 

human endometrial cancer cells (158).
OncomiR EGFR (256)

miR-27b
E2

MCF-7 cells (233).
Oncosuppressor miR Sp1 (257); LIMK1 

(258); PPARγ (259)

miR-29a

E2

MCF-7 cells (233).

OncomiR: stimulates 
migration and 
invasion; Repressed 
by c-myc, YYI, 
NFκB, CEBPA and 
stimulated by p53 
(260)

BCL2, CDC42, 
CDK6, DNMT, 
MCL1, 
Osteonectin, 
TGFβ3m, TTP, 
TGF-β1, TGF-β2, 
TTP (260)

miR-29b-2*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ but 
inhibited by ERα (132).
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

miR-29c E2 10 nM E2 for 24 h in T47D cells (154).

miR-30b

E2 MCF-7 cells (141) Oncosuppressor miR CCNE2(261); 
KRAS, PIK3CD 
and BCL2(262)

miR-30d

E2 1 µM E2 in Ishikawa ERα+ human 
endometrial cancer cells (158).
10 µM BPA for 18 h in MCF-7 cells 
(161).

miR-32
E2 10 nM E2 72 h in MCF-7 cells stably 

overexpressing inducible ERβ (132).

miR-33a
E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 

cells (159).

miR-92 E2 10 nM E2 24 and 72 h in MCF-7 cells 
(159)

miR-92a

E2 1 µM E2 in ECC-1 ERα+ human 
endometrial cancer cells (158).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-92a-1* E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159)

miR-92b E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-93

E2 10 nM E2 24 h in MCF-10A and T47D 
cells (263). 1 nM E2 for 18 h in MCF-7 
cells (161).

miR-98
E2

BPA
MCF-7 cells (141).
10 µM BPA for 18 h in MCF-7 cells.

miR-99b E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-101 E2 10 nM E2 24 h in MCF-7 cells (264).

miR-101*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ (72 h) but 
not ERα (132).

miR-103 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-122
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-124 E2 MCF-7 cells (233). Oncosuppressor miR Ets1 (265)
miR-124-5p: 
LAMB1 (266)
ROCK1 (267)
FLOT1(268)
SphK1 (269)
CD151 (270)
iASPP (271)
Slug (272)

miR-130b
E2 MCF-7 cells (242). TP53INP1 (273); 

DICER1 (274)

miR-135a

E2 10 nM E2 6 h in MCF-7 cells (264)
10 nM E2 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159)

miR-135b
E2 10 nM E2 for 6 and 72 h in ZR-75-1 

cells, but no change at 12 or 24 h (159).

miR-142-3p
E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 

cells (159).
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

miR-148

E2 MCF-7 cells (233). miRNA-148/152 
family include 
miR-148a, miR-148b, 
miR-152 (275)

PXR, DNMT1, 
CAND1, BCL2, 
p27, ACVR1, 
PETN, WNT10B, 
MSK1, CDC25B, 
ROCK1, CCKBR, 
CCK2R, IGF-1R, 
IRS1 (275)

miR-149

E2 MCF-7 cells (233). GSK3α (276)
GIT1 (277)
AKT and E2F1 
(278)

miR-151-5p E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-155

E2 100 nM E2 for 48 h in MCF-7 cells 
(279).
Higher levels circulating in the serum of 
breast cancer patients than healthy 
women (280).

oncomiR TRF1 (281).
TP53INP1(282)

miR-181a
E2 1 µM E2 in Ishikawa ERα+ human 

endometrial cancer cells (158).

miR-181d E2 MCF-7 cells (233) CCND1 (245)

miR-186
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159).

miR-190
E2 10 nM E2 for 6, 12, and 72 h in ZR-75-1 

cells, but not 24 h (159).

miR-190a

E2 100 nM E2 in MCF-7 cells increased 
ERα recruitment to the miR-190a 
promoter containing a half-site ERE 
(283).

PAR-1 (283)

miR-190b
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159).

miR-191

E2 10 nM E2 for 6 h in MCF-7 cells (284).
10 nM E2 (24 h) stimulation was 
inhibited by 100 nM tamoxifen and by 
siERα and siERβ in MCF-7 cells (285). 
ERα and ERβ ChIPped to the miR-191 
promoter in MCF-7 cells (285). 1 nM E2 

for 18 h in MCF-7 cells (161).

EGR1 (284)
CDK6, BDNF, and 
SATB1 (285)

miR-193a-5p E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-193b

E2
EDC

MCF-7 cells (242)
1 nM E2, 1 µM triclosan or 1 µM 
triclocarban for 18 h in MCF-7 cells 
(178).

uPA (286); 
YWHAZ, SHMT2, 
AKR1C2 (287); 
miR-193-3p: MYB 
(288)

miR-194
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159).

miR-195 E2 MCF-7 cells (141) CCND1 (245)

miR-195*

E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells- highest at 6 h (159).

ASF1B, BIM, 
BCL2L2, CCL5, 
CADM1, EZH2, 
FGF$1, HDGF, 
LTF, MAP2K3, 
NRAS, PTEN, 
TP53, TWIST1, 
XBP1 (and others) 
(289)

miR-196a2* E2 10 nM E2 6 h in MCF-7 cells (264) Mediated by ERα and 
the protein kinase 

TP63 (264)
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

ERK2 (264). By ChIP 
assay, both ERα and 
ERK2 were recruited 
to chromatin with 45 
min 10 nM E2 alone 
with increased pSer5 
RNA pol II 
recruitment (264).

miR-198 E2 10 nM E2 for 24 h in T47D cells (154).

miR-199a/b-3p E2 10 nM E2 for 12, 24, and 72 h in 
ZR-75-1 cells, but not at 6h (159).

miR-199a-5p

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-200a

E2

MCF-7 cells (141)

BAP1, PTPRD, 
KLF11, SEPT7, 
HOX5B, ERBB2IP, 
RASSF2, ELMO2, 
SHC1, VAC14 
(DIANA)

miR-200c

none Endogenous ERα in MCF-10A cells 
ChIPed to the miR-200c promoter and 
Overexpression of ERα in MCF-10A 
cells increased miR-200c expression 
(290).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-203 E2 MCF-7 cells (141)

miR-205
E2 10 nM E2 24 h ERβ stably expressing 

SW480 colon cancer cells (236).

miR-206

DPN
E2

EDC

ERβ-selective agonist in MCF-7 cells 
(181).
1 nM E2, 1 µM triclosan or 1 µM 
triclocarban for 18 h in MCF-7 cells 
(178)

Oncosuppressor miR

miR-210
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-216a E2 10 nM E2 for 6, 12, 24, and 72 h in 
MCF-7 and ZR-75-1 cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-219-5p E2 10 nM E2 for 6, 12, 24, and 72 h in 
MCF-7 and ZR-75-1 cells (159).

miR-222

E2
BPA

1 nM E2 or 10 µM BPA for 18 h in 
MCF-7 cells (161).

KIT (291); 
PPP2R2A (292); 
CDKN1C (293); 
CDK1B (294); 
DICER1 (229)

miR-223
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 and ZR-75-1 cells (159).

miR-301b E2 MCF-7 cells (242)

miR-320
E2 1 µM E2 in Ishikawa and ECC-1 ERα+ 

human endometrial cancer cells (158).

miR-320a
E2 1 nM E2 or 10 µM BPA for 18 h in 

MCF-7 cells (161).

miR-320c
E2

BPA
1 nM E2 or 10 µM BPA for 18 h in 
MCF-7 cells (161).
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

miR-330-5p

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ not ERα 
(132).

miR-335
E2 10 nM E2 for 6, 12 and 72 h in MCF-7 

and ZR-75-1 cells, but not at 24 h (159).

miR-342

E2; Not blocked by 1 µM 
4-OHT

MCF-7-HER2 cells, MCF-7 cells stably 
overexpressing HER2, but still 
tamoxifen-sensitive (220)

miR-363
E2 10 nM E2 for 12 and 24 h in ZR-75-1 

cells, but not 6 or 72 h (159).

miR-365 E2 MCF-7 cells (141)

miR-374a*

E2 10 nM E2 for 6, 12 and 72 h in MCF-7 
and ZR-75-1 cells, but repressed > 1.5 
fold at 24 h (159).

miR-375
E2 10 nM E2 for 24 and 72 h in ZR-75-1 

cells, but not 6 or 12 h (159).

miR-376b
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells- highest at 6 h (159).

miR-423-5p E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-424

E2 MCF-7 cells (165)
10 nM E2 for 6, 12, 24, and 72 h in 
MCF-7 cells (159).

miR-424*
E2 10 nM E2 for 6, 12 and 72 h in MCF-7 

and ZR-75-1 cells, but not at 24 h (159).

miR-425

E2 1 µM E2 in Ishikawa and ECC-1 ERα+ 
human endometrial cancer cells (158).
10 nM E2 for 6 h in MCF-7 cells (284).

EGR1 (284)

miR-449a
E2 10 nM E2 for 6, 12and 24 h in ZR-75-1 

cells, but not 72 h (159)

miR-450b-3p,5p E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells- highest at 72 h (159)

miR-455-5p, 455-3p E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159)

miR-484 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-489
E2 10 nM E2 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells, but not at 6 h(159)

miR-491-3p E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-499-5p E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-515-5p tamoxifen 100 nM tamoxifen for 48 h ~ 25% 
decrease in MCF-7 cells (295).

SK1 (295)

miR-520d
E2 MCF-7 cells stably expressing a 

constitutively active AKT (157)

miR-542-5p E2 10 nM E2 for 72 h in MCF-7 cells (159)

miR-542-3p E2 10 nM E2 for 72 h in MCF-7 and 
ZR-75-1 cells (159)

miR-548d-3p
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ, but not 
ERα (132).

miR-548e
E2 10 nM E2 for 6, 24, and 72 h in ZR-75-1 

cells (159).

miR-550 E2 10 nM E2 for 72 h in MCF-7 cells (159).

miR-556-5p

E2 10 nM E2 for 6, 12, 24, and 72 h in 
MCF-7 and ZR-75-1 cells, but not at 24 
h (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-560:9.1 E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
cells (159).

miR-564
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-574-5p

E2
PhIP

1 µM E2 in Ishikawa ERα+ human 
endometrial cancer cells (158).
10 nM E2 or 100 nM PhIP for 4, 8, 12, 
or 24 h in MCF-7 cells (160).

miR-574-3p E2 or PhIP 10 nM E2 or 100 nM PhIP for 4, 8, 12, 
or 24 h in MCF-7 cells (160).

miR-579
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159)

miR-590-3p

E2 10 nM E2 highest stimulation at 6, 12 
and 72 h in ZR-75-1 cells with no 
change detected at 24 h (159)

miR-594:9.1 E2 10 nM E2 6, 12, 24, and 72 h in MCF-7 
cells (159)

miR-615-3p E2 10 nM E2 6 h in MCF-7 cells (264)

miR-628-5p
E2

10 nM E2 for 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-638 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-643 E2
10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-651
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-652
E2 10 nM E2 for 24 and 72 h in ZR-75-1 

cells, but not at 6 or 12 h (159).

miR-653
E2 10 nM E2 for 72 h in MCF-7 and 

ZR-75-1 cells(159).

miR-653:9.1 E2 10 nM E2 for 6, 12, 24, and 72 h in 
MCF-7 and ZR-75-1 cells (159).

miR-660
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-663 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-663b

E2 10 nM E2 for 6 and 24 h in ZR-75-1 
cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).
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miRNA Ligand Human cell line/tissue Comments Bona fide targets

miR-708
E2 10 nM E2 for 12, 24, and 72h in 

ZR-75-1 cells, but not at 6 h (159)

miR-720 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-760

E2 24 h and 3d in MCF-7 cells (165).
10 nM E2 for 24 and 72 h in MCF-7 and 
ZR-75-1 cells (159).

miR-886-3p

E2

10 nM E2 for 24 h in MCF-7 and 
ZR-75-1 cells, but not at 6, 12, or 72 h 
(159).

miR-938 E2 10 nM E2 for 6 h in MCF-7 cells (66).

miR-939 E2 10 nM E2 for 72 h in MCF-7 cells (159)

miR-940
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159).

miR-942 E2

10 nM E2 for 72 h in MCF-7 and 
ZR-75-1 cells, but not 6, 12, or 24 h 
(159).

miR-944 E2 10 nM E2 for 6 h in MCF-7 cells (66)

miR-1206 E2 10 nM E2 for 72 h in MCF-7 cells (159)

miR-122
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159).

miR-1248
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159).

miR-1268
E2 10 nM E2 for 6, 12, 24, and 72 h in 

MCF-7 cells (159),

miR-1275 E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-1305
E2 10 nM E2 for 12 and 72 h in MCF-7 and 

ZR-75-1 cells (159)

miR-1323
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-1826
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-1915
E2

BPA
1 nM E2 for 10 µM BPA for 18 h in 
MCF-7 cells (161).
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Table 2
Estradiol- and tamoxifen- inhibited miRNAs

This table lists miRNAs whose expression is decreased by E2, tamoxifen, or 4-OHT. MCF-7, T47D, ZR-75-1, 

BT-474, and BG1 are ERα positive breast cancer cells.

miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

Let-7g, -7f, -7a, -7c

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296).10 nM E2 6 h in MCF-7 cells (141).
Let-7g in MCF-7 cells (297).
10 nM letrozole stimulated Let-7 
expression in MCF-7 cells co-cultured with 
primary human stromal cells (167).
1 nM E2 for 18 h in MCF-7 cells (161).

Blocked by fulvestrant GAB2; FN1 (297)

Let-7b
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells (159).

Let-7f
4-OHT 1 µM 4-OHT for one month in MCF-7 cells 

(298)

Let-7i
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-7-1
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

cells (159).

miR-9, miR-9-d

E2 10 nM E2 for 24 h in ER β stably 
expressing SW480 colon cancer cells 
(236).

miR-15a*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-16

E2 10 nM E2 for 6, 24, and 48 h in MCF-7 
cells; blocked by pretreatment with 1 uM 
ICI 182,780 (299).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-16-1*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-17
E2 10 nM E2 for 24 h ER β stably expressing 

SW480 colon cancer cells (236).
Oncosuppressor miR206

miR-17*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ but increased 
by ERα (132).

miR-18a, miR-18b E2 10 nM E2 24 h ER β stably expressing 
SW480 colon cancer cells (236)

miR-19a, 19b E2 10 nM E2 24 h ER β stably expressing 
SW480 colon cancer cells (236).

miR-20a

E2 24 h 10 nM E2 in isolated human 
endometrial glandular epithelial cell; 
blocked by ICI 182,780 (300).
10 nM E2 for 24 h ERβ stably expressing 
SW480 colon cancer cells (236).

miR-21

E2 24 h 10 nM E2 in isolated human 
endometrial glandular epithelial cells and in 
Primary human leiomyoma smooth muscle 
cells (LSMC) (253)

blocked by ICI 182,780 isolated 
human endometrial glandular 
epithelial cells

PTEN, PDCD4 
(156)
JAG1 (301)
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miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

10 nM E2 for 48 h in MCF-7 cells (296) 
(181). 10 nM E2 6 h: ~ 60% reduction in 
miR-21 in MCF-7 cells (156)
10 nM E2 for 12 or 24 h in MCF-7 cells 
(264). 10 µM E2 for 24 h in MCF-7 cells, 
no effect in MDA-MB-231 cells (301). 10 
nM E2 for 6, 12, 24, and 72 h in ZR-75-1 
cells (159). 10 nM E2 or 100 nM PhIP for 
24 h in MCF-7 cells (160). 1 nM E2 for 18 
h in MCF-7 cells (161).

ERα or ERK2 knock-down 
reduced E2-downregulation of 
miR-21 expression(264)

miR-22, 22* E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).

miR-23a.
23b

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296).
miR-23a: 10 nM 3 h in MCF-7 cells (302) 
and 10 nM E2 for 12, 24, and 72 h in 
MCF-7 and ZR-75-1 cells (159).

miR-24

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296)

miR-25
E2 10 nM E2 for 24 h ERβ stably expressing 

SW480 colon cancer cells (236).

miR-26a
E2 24 h 10 nM E2 LSMC(253).

1 nM E2 for 18 h in MCF-7 cells (161).

miR-26a-2* E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

miR-26b

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296).
10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-27a*

E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-27b

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296).
10 nM E2 for 72 h in MCF-7 cells (159)

Oncosuppressor miR

miR-29a E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-29a*
E2 10 nM E2 6, 12, 24, and 72 h in MCF- 7 

cells (159)

miR-29b-1*, 29b-2* E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159)

miR-30a
E2 10 nM E2 in MCF-7 cells stably 

overexpressing inducible ERβ (132).
ERβ ChIPed to the promoter 
(132).

miR-30c-2*
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells (159).
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miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-30d

E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132). ERα was more inhibitory than ERβ.

miR-34a

E2 10 nM E2 for 24 h MCF-7 cells (303)
10 nM E2 for 6 h in HUVEC, LNCaP, 
C38IM, and C27IM human prostate cancer 
cells (304).
Higher levels circulating in the serum of 
breast cancer patients than healthy women 
(280).
10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159)

Oncosuppressor miR- stimulate 
apoptosis (230)

LMTK3 (303)
SIRT1 (305)

miR-92a E2
10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236)

miR-99a E2
10 nM E2 6, 12, 24, and 72 h in MCF-7 and 
ZR-75-1 cells (159)

miR-99b

E2 10 nM E2 for 6,12, 24 and 72 h in ZR-75-1 
cells, most repressed at 72 h (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-105-2
4-OHT 1 µM 4-OHT for one month in MCF-7 cells 

(298)

miR-106
E2 10 nM E2 24 h ERβ stably expressing 

SW480 colon cancer cells (236)

miR-106b

E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-107

E2 10 nM E2, for 6, 12, 24 h and 3 d in MCF-7 
cells (306).
10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).

miR-125a-3p E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

Oncosuppressor miR

miR-125a
4-OHT 1 µM 4-OHT for one month in MCF-7 cells 

(298)

miR-125b-2*

E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).

Oncosuppressor miR BAK1, BCL2, 
DICER1, ERBB2, 
ERBB3, ETS1, 
FGFR2, IL6R, 
JUN, LIN28A, 
LIN28B, MCL1, 
MUC1, NCOR2, 
SIRT7, STAT3, 
TNF, TP53 (and 
others)(289)

miR-128a:9.1 E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).

oncomiR

miR-130b*
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells (159).

miR-132*
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

cells (159).

Mol Cell Endocrinol. Author manuscript; available in PMC 2016 December 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Klinge Page 49

miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

miR-135a

E2 10 nM E2 for 24 h ERβ stably expressing 
SW480 colon cancer cells (236).
10 nM E2 24 h in MCF-7 cells (66).

miR-139-5p E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-140

E2 10 nM E2 for 24 h in ERα-stably 
transfected MCF-10A cells (307).
ERα binds the miR-140 promoter in E2 or 
BPA-treated MCF_7 cells.

SOX2 (307)

miR-140-5p
E2 10 nM E2 for 24 h ERβ stably expressing 

SW480 colon cancer cells (236)

miR-141
E2 or PhIP 10 nM E2 or 100 nM PhIP for 24 h in 

MCF-7 cells (160).

miR-142-3p E2 10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236)

miR-143

E2 10 nM E2 for 6, 24, and 48 h in MCF-7 
cells; blocked by pretreatment with 1 uM 
ICI 182,780 (299).

miR-148b*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-149 E2 10 nM E2 6 h in MCF-7 cells (141)

miR-142-3p E2 10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236)

miR-146b-5p E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).

miR-181a, 181b, 181d

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296).
miR-181a and 181b inhibited by 100 nM 
E2 in MCF-7 cells (163).

miR-181
4-OHT 100 nM 4-OHT for 6 h in MCF-7 cells 

(155).

miR-181a*, 181c*

E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).
miR-181c* 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-181c E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-183

E2 10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-185* E2
10 nM E2 for 12 and 72 h in ZR-75-1 cells, 
but not 6 or 24 h (159).

miR-186

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ, but 
increased by ERα (132).

miR-192
E2 10 nM E2 24 h ERβ stably expressing 

SW480 colon cancer cells (236)

miR-193a
E2 10 nM E2 48 h in MCF-7 cells; Also 

repressed in T47D, ZR-75-1, BT-474, and 
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miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

BG1, but not SKBR3 breast cancer cells 
(296).

miR-193a-3p E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159)

miR-193b* E2 10 nM E2 for 72 h in ZR-75-1 cells (159).

miR-194
E2 10 nM E2 24 h ERβ stably expressing 

SW480 colon cancer cells (236).

miR-194b* E2 10 nM E2 for 72 h in ZR-75-1 cells (159).

miR-196a
E2 10 nM E2 24 h ERβ stably expressing 

SW480 colon cancer cells (236).

miR-196b

E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-199a/b-3p E2

10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ but increased 
by ERα (132).

miR-199b-5p E2

10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα-
except that 24 h of E2 increased 
miR-199b-5p in ERα-MCF-7 cells (132).

miR-200a E2

10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236)
10 nM E2 6 h MCF-7, LCC1, and LCC2 
breast cancer cells (214).

miR-200b
E2

4-OHT

10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236).
10 nM E2 6 h MCF-7, LCC1, LCC2, and 
LCC9 breast cancer cells (214).
500 nM 4-OHT for h in ECC-1 and 
Ishikawa endometrial cancer cells (308).

4-OHT induced c-Myc that 
inhibited miR-200a, miR-200b, 
and miR-429 transcription 
(308).
miR-200b promoter P2 is 
hypermethylated in primary 
breast tumors and ERα-
negative cell lines (309).

ZEB2 (308)

miR-200c
E2

4-OHT

10 nM E2 for 6 h in MCF-7 cells (141)
10 nM E2 for 6 h MCF-7, LCC1, LCC2, 
and LCC9 breast cancer cells (214). 500 
nM 4-OHT for h in ECC-1 and Ishikawa 
endometrial cancer cells (308).

ZEB2 (308)

miR-203

E2 10 nM E2 for 6, 24, and 48 h in MCF-7 
cells; blocked by pretreatment with 1 uM 
ICI 182,780 (299).
1 nM E2 for 18 h in MCF-7 cells (161).

miR-204
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-205 E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

Oncosuppressor miR

miR-206

1 nM E2 or 
10 nM PPT 
(an ERα-
selective 
agonist)

MCF-7 cells (181). 80% reduction in expression 
with 24 h treatment

miR-218
E2 10 nM E2 for 24 and 72 h in MCF-7 cells 

(159).

miR-220c E2 10 nM E2 for 24 h in T47D cells (154).
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miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

miR-221

E2 10 nM E2 for 24 h ~ 80% reduction in 
MCF-7 and T47D cells (294).
Repressed by ERα knockdown
10 nM E2 48 h in MCF-7 cells (202).
10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236).
1 nM E2 for 18 h in MCF-7 cells (161).

pro-metastatic/pro-proliferative ESR1 = ERα 
(reviewed in 
(310))

miR-221*
E2 10 nM E2 for 12, 24, and 72 h in ZR-75-1 

cells (159).

miR-222

E2
BPA

10 nM E2 for 24 h ~ 80% reduction in 
MCF-7 and T47D cells (294).
Repressed by ERα knockdown
10 nM E2 for 48 h in MCF-7 cells (202).

miR-223 E2 10 nM E2 for 3 h in MCF-7 cells (302)

miR-301a E2
10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236)

miR-320b
miR-320d

E2 1 nM E2 for 18 h in MCF-7 cells (161).

miR-328

E2 10 nM E2 6 h in MCF-7 cells (141).
10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-330-5p

E2
PhIP

10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).
10 nM E2 or 100 nM PhIP for 4, 8, 12, or 
24 h in MCF-7 cells (160).

miR-338-3p

E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159). 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-342 E2 10 nM E2 for 6 h in MCF-7 cells (141).

miR-345 E2 10 nM E2 for 72 h in ZR-75-1 cells (159).

miR-362-5p

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-365

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-374b*

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-375

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-376a
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-377 E2
10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-379
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-429
4-OHT 500 nM 4-OHT for h in ECC-1 and 

Ishikawa endometrial cancer cells (308).

Mol Cell Endocrinol. Author manuscript; available in PMC 2016 December 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Klinge Page 52

miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

miR-451

tamoxifen 1 µM tamoxifen repressed by 4 h and 90% 
at 24 h (311).

Expression ~ 2-fold lower in 
tamoxifen-resistant MCF-7 
cells (311)

miR-487b

E2 10 nM E2 for 6,12, and 72 h in ZR-75-1 
cells, but no significant expression at 24 h 
(159).

miR-499

E2 10 nM E2 for 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296).

miR-504 E2
10 nM E2 for72 h in MCF-7 and ZR-75-1 
cells (159).

miR- E2 10 nM E2 for 24 h in MCF-7 cells (159)

miR-515-5p E2 10 nM E2 48 h in MCF-7 cells mediated by 
ERα binding (295).

SK1 (295)

miR-518c*
E2 or PhIP 10 nM E2 or 100 nM PhIP for 4, 8, 12, or 

24 h in MCF-7 cells (160).

miR-520d

E2 10 nM E2 48 h in MCF-7 cells; Also 
repressed in T47D, ZR-75-1, BT-474, and 
BG1, but not SKBR3 breast cancer cells 
(296)

miR-548g
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

cells (159)

miR-570

E2 10 nM E2 for 6, 12, 24 h and 3 d in MCF-7 
cells (306).
10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
cells (159).

miR-574-3p

4-OHT 1 µM 4-OHT for one month in MCF-7 cells 
(298)

Clathrin heavy 
chain (CLTC) 
(298)

miR-579

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-582-3p
E2

10 nM E2 for 12, 24, and 72 h in ZR-75-1 
cells (159).

miR-583-5p
E2

10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

miR-584 E2
10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

miR-589
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-590-5p
E2

10 nM E2 24 h ERβ stably expressing 
SW480 colon cancer cells (236)

miR-610 E2
10 nM E2 for 6,12, 24 and 72 h in ZR-75-1 
cells, most repressed at 72 h (159).

miR-615-5p E2 or PhIP 10 nM E2 or 100 nM PhIP for 24 h in 
MCF-7 cells (160).

miR-616

E2 10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).
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miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

miR-618

E2 10 nM E2 for 6, 12, 24 h and 3 d in MCF-7 
cells (306). 10 nM E2 for 6, 12, 24, and 72 
h in MCF-7 and ZR-75-1 cells (159).

miR-632
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-638
E2 or PhIP 10 nM E2 or 100 nM PhIP for 4, 8, 12, or 

24 h in MCF-7 cells (160).

miR-646
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159)

miR-650 E2 10 nM E2 for 24 h in T47D cells (154).

miR-663 E2 or PhIP
10 nM E2 or 100 nM PhIP for 4, 8, 12, or 
24 h in MCF-7 cells (160).

miR-671:9-1, 671-3p
E2

10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

miR-708* E2

10 nM E2 for 6, 24, and 72 h in ZR-75-1 
cells, but not 12 h (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-874 E2
10 nM E2 for 6, 12, 24, and 72 h in MCF-7 
and ZR-75-1 cells (159).

miR-877 4-OHT 1 µM 4-OHT for one month in MCF-7 cells 
(298)

miR-935

E2 10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).
10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-938
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

cells (159)

miR-1225
E2 10 nM E2 for 12, 24, and 72 h in ZR-75-1 

cells (159).

miR-1228 E2 10 nM E2 for 24 h in T47D cells (154).

miR-1229
E2 10 nM E2 for 6, 12, 24, and 72 h in 

ZR-75-1 cells (159).

miR-1234
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells (159).

miR-1238
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

and ZR-75-1 cells (159) =.

miR-1257 E2

10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-1267 E2

10 nM E2 in MCF-7 cells stably 
overexpressing inducible ERβ or ERα 
(132).

miR-1301 E2
10 nM E2 for 6, 12, 24, and 72 h in 
ZR-75-1 cells (159).

miR-1303 E2
10 nM E2 for 12, 24, and 72 h in ZR-75-1 
cells (159).

Mol Cell Endocrinol. Author manuscript; available in PMC 2016 December 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Klinge Page 54

miRNA Ligand Species/tissue/cell line Comments Bona fide
targets

miR-1468
E2 10 nM E2 for 6, 12, 24, and 72 h in MCF-7 

cells (159).
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