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Abstract

Cryptococcosis is caused by the fungal genus Cryptococcus. Cryptococcosis, predominantly 

meningoencephalitis, emerged with the HIV pandemic, primarily afflicting HIV-infected patients 

with profound T-cell deficiency. Where in use, combination antiretroviral therapy has markedly 

reduced the incidence of and risk for disease, but cryptococcosis continues to afflict those without 

access to therapy, particularly in sub-Saharan Africa and Asia. However, cryptococcosis also 

occurs in solid organ transplant recipients and patients with other immunodeficiencies as well as 

those with no known immunodeficiency. This article reviews innate and adaptive immune 

responses to C. neoformans, with an emphasis on recent studies on the role of B cells, natural IgM 

and Fc gamma receptor polymorphisms in resistance to cryptococcosis.
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Cryptococcal disease, or cryptococcosis, is caused by a basidiomycetous yeast belonging to 

the genus Cryptococcus. This genus is unique among pathogenic fungi in having a 

polysaccharide capsule. Although the Cryptococcus genus contains many species, the 

majority of human infections are caused by two species: Cryptococcus neoformans and 

Cryptococcus gattii [1]. These species are further categorized based on the antigenic 

specificity of their capsular polysaccharide, with each variety constituting a separate 

serotype. C. neoformans is comprised of three varieties, C. neoformans var. grubii (serotype 

A), C. neoformans var. neoformans (serotype D) and a hybrid (serotype AD). C. gattii is 

comprised of two serotypes, B and C. C. neoformans predominantly causes disease in 

individuals with immune impairment, most commonly those with HIV/AIDS and CD4 T 
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cells less than 50 cells/μl [2,3], whereas C. gattii predominantly causes disease in 

individuals without consistent or unifying immune defects [4]. However, the pathogenesis of 

C. gattii is an area of intense investigation as it is thought that as yet unidentified immune 

defects could enhance susceptibility to C. gattii-related cryptococcosis. This review will 

focus on the species C. neoformans.

Ecology

C. neoformans is an environmental microbe that is found in soil. Historically, the majority of 

human cases of cryptococcosis outside of Australia were attributed to C. neoformans var. 

grubii and var. neoformans [5]. However, a significant minority of cases in the world are 

due to C. gattii [6], which recent data show is an emerging cause of cryptococcosis in North 

America [7]. C. neoformans is a free-living microbe that does not require a host to reproduce 

or survive. As such, it is honed for survival, with its key virulence factors, including the 

polysaccharide capsule and cell wall associated melanin serving as protection from 

environmental assaults ranging from predators such as ameobae, UV irradiation and 

temperature [8–10]. Thus, C. neoformans is an accidental human pathogen. For a review of 

this topic, see reference [11].

Epidemiology

Cryptococcosis emerged as a global epidemic in patients with HIV/AIDS in the 1980s. Prior 

to the HIV/AIDS pandemic, there were fewer than 200 cases of cryptococcosis in the 

literature [12]. The occurrence of disease in HIV-infected individuals with profound CD4 T-

cell deficiency highlights the central role of T-cell-mediated immunity in immunity to C. 

neoformans. However, loss of CD4 T cells alone is not sufficient for disease to occur. The 

use of fluconazole therapy in patients with profound CD4 T-cell deficiency and the 

introduction of combination antiretroviral therapy (cART) in the mid-1990s led to a marked 

decrease in cryptococcosis in those with access to cART [13,14]. However, cryptococcosis 

remains a catastrophe in under-resourced settings where cART is not available, such as sub-

Saharan Africa and parts of Asia [15,16]. In 2009, Park et al. estimated the global burden of 

the disease to be close to 950,000 cases with approximately 625,000 deaths annually [16]. 

Cryptococcal meningitis also causes significant morbidity and mortality in the USA [17]. 

Compounding HIV-associated cryptococcosis-attributable morbidity and mortality is the 

immune reconstitution inflammatory syndrome (IRIS). There are two types of C. 

neoformans-associated IRIS; paradoxical IRIS, which is a recurrence of cryptococcosis that 

occurs after the initiation of cART, and unmasking IRIS, which occurs soon after the 

initiation of cART in patients with no prior diagnosis of cryptococcosis [18]. A recent study 

found that delaying the start of cART in patients presenting with HIV-associated 

cryptococcosis was associated with a significant reduction in mortality [19]. The occurrence 

of IRIS in HIV-associated cryptococcosis as well as in solid organ transplant recipients [20] 

reveals that excessive as well as insufficient inflammatory responses can result in disease, 

underscoring that the outcome of host–C. neoformans interaction is determined by the 

immune status of the patient. This fits with the paradigm put forth in the Damage response 

framework, whereby host damage and disease can stem from either insufficient or excessive 

immune responses [21].
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Other forms of immunodeficiency, including that due to drugs used to prevent organ 

rejection also pose a risk for cryptococcosis [22], which occurs in approximately 2.8% of 

solid organ transplant recipients [23]. Some biologics, such as the TNF-α inhibitor 

adalimumab have also been linked to an increased risk for cryptococcosis [24]. Others at 

increased risk for cryptococcosis are pregnant women [25], and those with X-linked 

immunodeficiency [26], liver disease [27], idiopathic CD4 T-cell deficiency [28] and 

apparently immune competent individuals [29,30]. Presence of anti-GM-CSF autoantibodies 

was also associated with some cases of cryptococcal meningitis in immunocompetent 

individuals [31]. Hence, conditions associated with cryptococcosis range from profound 

CD4 T-cell deficiency to none that can be identified.

Pathogenesis of human Cryptococcosis

Infection with C. neoformans occurs by inhalation of desiccated yeast cells or spores from 

the environment in early childhood, most likely at the time of acquisition of other 

encapsulated microbes [32]. This event is not thought to be associated with clinical 

manifestations, although an association between childhood asthma and serological evidence 

of cryptococcal infection has been noted [33]. Based on serological surveys of 

immunocompetent and immunocompromised adults and children, cryptococcal infection is 

common [32,34,35]. However, disease is rare. In most, infection leads to a state of latency, 

most likely in the lungs, where the yeast resides in granulomata usually without evidence of 

clinical disease. However, in some, predominantly those with underlying immune 

impairment, the state of latency transitions to a state of disease as the fungal burden rises 

[11,36]. Although reactivation is a major cause of disease due to C. neoformans, particularly 

in those with immune impairment, disease can also follow primary acquisition [22]. 

Cryptococcosis is most commonly a disseminated disease characterized by 

meningoencephalitis and/or fungemia, but pneumonia and skin lesions can also occur.

HIV-associated cryptococcosis can be heralded by identification of cryptococcal antigen 

(CrAg) in the blood. Monitoring serum CrAg levels in HIV-infected individuals with CD4 

T-cell levels less than 100 cells/μl in resource-limited settings in regions of high HIV/AIDS 

prevalence has been extremely successful and cost-effective in identifying high-risk patients 

who are candidates for fluconazole treatment in sub-Saharan Africa [37–40]. The success of 

this approach underscores the importance of rapid, point-of-care diagnostic tests [41]. CrAg 

screening and fluconazole treatment are a goal of the Global Action Fund for Fungal 

Infections (GAFFI [42]).

Cryptococcal virulence

The central determinant of virulence for C. neoformans is its polysaccharide capsule. There 

is abundant experimental evidence that the capsule is required for cryptococcal virulence in 

immunologically normal hosts [43,44]. The capsule is comprised primarily of 

glucuronoxylomannan (GXM), which can have many deleterious effects on the host 

response including inhibition of phagocytosis [45,46]. Fungal containment is crucial for host 

resistance to cryptococcosis. Thus, impairment of the function of macrophages or 

phagocytes by GXM or other cryptococcal virulence factors, such as melanin, enhances 
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cryptococcal virulence. However, C. neoformans is also able to replicate intracellularly and 

can escape the intracellular state without being killed or killing the host cell [47,48]. The 

latter, which could contribute to intracellular or extracellular dissemination, is one of several 

mechanisms that have been implicated in how C. neoformans enters the bloodstream and 

invades the CNS. For a review of cryptococcal virulence, see reference [49].

Host response to C. neoformans

Fungal diseases in animals and humans are relatively rare. In fact, although there are more 

than 1.5 million fungal species, only 300 cause human disease [50]. One determinant of the 

latter is that many fungal species cannot survive at mammalian thermal temperatures [51]. 

Importantly, C. neoformans and other fungi that cause human mycotic disease are able to 

survive at mammalian temperatures. Nonetheless, most of these fungi are very rare causes of 

disease in immunologically intact individuals. This is exemplified by the fact that 

cryptococcosis was rare before the HIV/AIDS pandemic and frequent use of transplant 

drugs that induce immune suppression. Similarly, candidiasis was rare before the use of 

broad-spectrum antibiotics and intravenous catheters. Hence, the rise in fungal diseases in 

the last quarter of the 20th century paralleled the emergence of an expanded population of 

patients with immune impairment. The degree to which cryptococcosis and HIV-associated 

immune deficiency are intertwined is illustrated by a report in the 1950s of cryptococcosis in 

young people in sub-Saharan Africa, the area where the HIV/AIDS pandemic is thought to 

have begun [52].

The recognition that normal host defense is sufficient to confer resistance to cryptococcosis 

in most individuals led to intense study of the immune response to C. neoformans. This 

research led to a better understanding of factors that predispose to cryptococcosis and has 

informed strategies to devise new drugs, vaccines and immunotherapy. The immune 

response to C. neoformans is reviewed below. This is an enormous topic and we have tried 

to cite critical literature, but it is not possible to cite every study. With respect to our goal of 

reviewing immunity to C. neoformans, we have endeavored to provide an overview of the 

innate and acquired immune response, while focusing in more detail on new discoveries on 

the contribution of B cells, natural antibody and genetic polymorphisms to host defense 

against C. neoformans.

Innate immune & cellular responses to C. neoformans

The first line of defense against C. neoformans is the surface barrier(s) of the innate immune 

system (e.g., skin, nasal mucosa). In addition, human serum and saliva demonstrate 

anticryptococcal activity [53,54].

Complement

Complement is a vital component of the innate immune response and a key mediator of 

phagocytosis of C. neoformans [55,56]. Complement-deficient animals are more susceptible 

to C. neoformans infection than complement sufficient animals [57] and complement 

components can be depleted in patients with cryptococcal fungemia [58]. The cryptococcal 

capsule activates the complement system, mainly through the alternative pathway, leading to 
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C3 deposition on the fungal capsule [56]. Species differences have been shown to influence 

the site of C3 deposition on the cryptococcal capsule [59]. It was also observed that specific 

anticapsular antibodies could promote C. neoformans activation of the classical complement 

pathway [59,60]. Also, mannose-binding lectin (MBL) can bind to the C. neoformans cell 

wall and activate complement via the lectin pathway [61].

Phagocytosis

Containment of C. neoformans by phagocytic cells, including macrophages, dendritic cells 

and neutrophils, is crucial for natural host defense [46,62–63]. Once the fungus is inhaled, it 

travels to the lungs where it encounters various phagocytic effector cells. Phagocytosis can 

be mediated by complement receptors as well as Fc receptors. Complement-mediated 

phagocytosis of C. neoformans occurs via recognition of complement-opsonized yeast by 

complement receptors (CRs) CR1, CR3 and CR4 [64]. Fc-γ receptors on macrophages/

neutrophils/dendritic cells can bind and mediate phagocytosis of antibody- opsonized C. 

neoformans [65], although phagocytosis of nonopsonized C. neoformans can also occur 

[66]. Additionally, mannose receptors on macrophages and dendritic cells can bind 

cryptococcal mannoproteins and mediate phagocytosis of C. neoformans [67,68].

When C. neoformans reaches the brain, resident microglial cells act as the primary 

phagocytic cells. Microglial cells express Toll-like receptors (TLRs), which can identify 

pathogen-associated molecular patterns. TLR2, TLR4 and TLR9 have been shown to bind 

and interact with zymosan (yeast β-glucan), GXM and fungal DNA, respectively [69–71]. 

Redlich et al. demonstrated that stimulation of microglial cells by these TLR agonists 

enhanced C. neoformans phagocytosis [72].

Macrophages

Alveolar macrophages (AMs) internalize C. neoformans in the lungs where they can link 

innate and adaptive immunity, but C. neoformans can also survive and proliferate 

intracellularly [73]. In mice, depletion of AMs delays cryptococcal dissemination and 

improves survival, suggesting that AMs promote fungal growth and dissemination [74]. 

However, depletion is detrimental in rats [63], highlighting the importance of species 

differences in host–C. neoformans interaction. C. neoformans can also escape from host 

macrophages through nonlytic exocytosis [48,75]. It can also be taken up by and survive in 

amoebae [8], underscoring its ability to resist destruction by environmental predators. C. 

neoformans has been shown to be able to disseminate to the brain inside of monocytes, 

providing experimental support for a Trojan horse model to explain fungal invasion of CNS 

[76]. Nonetheless, monocytes and macrophages have a major role in controlling C. 

neoformans in the lungs [77]. Macrophages can promote Th1-like responses that induce 

fungal clearance, serve as APCs to T lymphocytes [78], and secrete cytokines that skew 

CD4 T cells toward Th1/ Th2 or Th17 pathways [79]. AMs can enhance or control C. 

neoformans pathogenesis depending on the immune status of the host [80]. The host 

response to C. neoformans in the lungs correlates with macrophage polarization [81], 

whereby M1 (classically activated) macrophages lead to Th1 responses (mainly IFN-γ 

dominated) and M2 (alternatively activated) macrophages lead to Th2 responses. M1 

macrophages are more efficient fungicidal cells than M2 macrophages. Changes in the 

Rohatgi and Pirofski Page 5

Future Microbiol. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytokine environment can influence macrophage polarization, with M1 macrophages 

enhancing host defense against C. neoformans [81].

Dendritic cells

Dendritic cells (DCs) phagocytose C. neoformans via complement or antibody-mediated 

opsonization, leading to fungal internalization and killing [68,82]. DCs also induce T-cell 

responses following stimulation of pattern recognition receptors (e.g., TLR4 and TLR9) and 

secrete cytokines that are crucial for immunity to C. neoformans, including IL-12 and IL-23 

[83]. In vivo, DCs internalize C. neoformans in the lungs of mice [84], and their lysosomal 

components can mediate fungal killing [85].

Polymorphonuclear cells

Neutrophils can enhance granuloma formation, by containing and killing C. neoformans in 

the lungs by oxidative and nonoxidative mechanisms [86–88]. They also contain 

antimicrobial peptides (defensins) that are cytotoxic to C. neoformans [89]. However, early 

depletion of neutrophils in vivo was protective against C. neoformans in a murine pulmonary 

infection model in which there was less inflammatory damage [90]. On the other hand, in a 

systemic infection model, survival of neutrophil-depleted mice was comparable to that of 

neutrophil sufficient mice, underscoring that regulation of the inflammatory response in the 

lungs is crucial for protection [90].

Eosinophils were associated with a lack of protection against C. neoformans in pulmonary 

infection model in which their presence was associated with excessive lung inflammation 

[91]. C57BL/6 mice develop eosinophilic pneumonia in response to pulmonary cryptococcal 

infection [92] and eosinophilia has also been observed in human cryptococcosis [93].

Natural killer cells

Natural killer (NK) cells bind and inhibit C. neoformans growth in vitro [94] and induce 

fungal clearance in mice [95]. Human NK cells are able to kill C. neoformans [96] with 

direct killing being mediated by perforin [97,98]. A recent study showed that in HIV-

infected patients, reduced expression of an NK-cell receptor that mediates direct fungal 

recognition, (NKp30), led to significantly reduced anticryptococcal cytotoxicity [99].

NK T cells

NK T cells (NKT cells) play an important role in the development of Th1 responses and host 

resistance to C. neoformans. In mice, NKT cells increased in the lungs after intratracheal 

infection with C. neoformans, and the chemokine MCP-1 was implicated in NKT-cell 

migration and accumulation [100]. Compared with NKT-cell-deficient mice, activation of 

NKT cells with a synthetic glycolipid (α-galactosylceramide) resulted in increased IFN-γ 

production and improved host defense [101]. Along with IFN-γ, NKT cells also secrete 

IL-4, suggesting that this subset regulates both Th1- and Th2-mediated immune responses 

[102].
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Adaptive immunity

CD4 T cells

CD4 T cells are a crucial component of cell-mediated immunity to C. neoformans in mice 

[103,104], as they mediate fungal clearance [105,106] and confer protection upon adoptive 

transfer to naïve mice [103,107]. CD4 T cells also play a dominant role in recruiting 

macrophages and granulocytes to the lungs in pulmonary cryptococcal infection [108]. 

Cryptococcal mannoproteins stimulate a protective CD4 T-cell response to C. neoformans, 

with glycosylation of mannoproteins being essential for an optimal response [109]. 

However, the specific epitopes recognized by T cells have not been definitively identified.

In humans, CD4 T-cell deficiency is a major predisposing factor for cryptococcosis 

[110,111], whereby a CD4 T-cell count less than 100 cells/μl and detectable serum CrAg 

portend high risk for HIV-associated cryptococcosis [37,112]. Cryptococcosis has also been 

reported in idiopathic CD4 lymphocytopenia, which is characterized by reduced levels of 

CD4 T cells without evidence of HIV infection [28,113].

CD8 T cells

CD8 T cells also play an important role in the host immune response to C. neoformans 

[114]. CD8 T cells mediate killing of C. neoformans [115], whereby killing requires direct 

cell contact thought to be mediated by granulysin. In vivo depletion of murine CD8 T cells 

reduced survival in a lethal cryptococcal infection model [116]. CD8 T cells also limit 

growth and survival of C. neoformans in macrophages by means of IFN-γ production 

independent of CD4 T cells [117]. For a complete review on this topic, see reference [114].

Gamma delta (γδ) T cells

γδ T cells are known to regulate Th1-Th2 responses to C. neoformans. They secrete anti-

inflammatory Th2 cytokines to balance exaggerated Th1 response caused by NKT cells. 

Depletion of γδ T cells resulted in increased IFN-γ synthesis and promoted cryptococcal 

clearance via Th1-mediated responses in lungs of mice [118]. Of note, increased production 

of IL-17A by γδ T cells was observed in neutrophil- depleted mice during pulmonary 

cryptococcal infection, suggesting that γδ T cells can induce protective response to C. 

neoformans in the absence of traditional adaptive immune response [119].

T-cell-derived cytokines

Th1-type CD4 T cells orchestrate host immunity to C. neoformans [103]. Th1-type 

responses are characterized by production of IL-2, IL-12, IFN-γ and TNF-α. IL-12, IFN-γ 

and TNF-α, protect against cryptococcosis in experimental models [120,121]. C. 

neoformans also induces secretion of other pro-inflammatory cytokines, including Type-I 

IFN (IFN-I), IL-1β and IL-6 from innate immune cells [122]. IL-1β and IL-6 induce the 

development of T-helper Th17 cells in the presence of IL-23. IL-17 and IL-22 are the major 

cytokines secreted by Th17 cells. While Th17 immunity was required for vaccine-mediated 

protection against C. neoformans in mice [123], Th17-mediated responses were not required 

to protect naïve mice [124]. Of note, IL-17A produced by neutrophils rather than T cells, 

was implicated in optimal vaccine-mediated protection against C. neoformans in mice [125]. 
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TNF-α production is required for the development of protective T-cell immunity to C. 

neoformans in mice [120]. TNF-α is crucial for induction of IL-12 and IFN-γ in the lungs 

following C. neoformans infection, which then promotes Th1-cell-mediated immunity [121].

Analysis of C. neoformans-specific CD4 T-cell responses in patients with HIV-associated 

cryptococcal meningitis revealed that the presence of an IFN-γ/TNF-α CD4 T-cell response 

correlated with survival [126]. In other studies, fungal clearance was positively associated 

with cerebrospinal fluid (CSF) IFN-γ levels, which were in turn positively correlated with 

the CD4 T-cell count [127,128]. The latter provided the rationale for IFN-γ as adjunctive 

therapy for HIV-associated cryptococcosis. The addition of a short course of IFN-γ to 

standard treatment increased the rate of cryptococcal clearance from the cerebrospinal fluid 

[129]. The importance of IFN-γ in resistance to cryptococcosis has been demonstrated 

experimentally with a C. neoformans- based vaccine that produces IFN-γ [130]. Thus, 

adjunctive IFN-γ and vaccines that induce tissue-specific IFN-γ production hold promise as 

immunotherapeutic interventions for cryptococcosis.

The role of B cells in immunity to C. neoformans

Numerous studies have now shown that B cells play a crucial role in protection against 

experimental cryptococcosis [131–133]. Prior to these reports, very few studies directly 

examined the role of B cells in host defense against C. neoformans. An early study utilizing 

an intravenous infection model reported no difference in C. neoformans lethality in B-cell-

depleted and B-cell-sufficient mice [134]. However, another study linked B cells with 

resistance to C. neoformans in SCID mice [135], whereby SCID recipients of T cells from 

B-cell-deficient mice failed to express the adoptive immunity seen in recipients of T cells 

from B-cell-sufficient mice. Of note, B cells were the predominant cell type in the lungs of 

C. neoformans-infected A/JCr mice [136] and cryptococcal infection was more lethal and 

associated with more pulmonary immunopathology and inflammation in B-cell-deficient 

(uMT mice) than B-cell-sufficient mice [137], linking B cells to control of lung 

inflammation.

Mature B cells are subdivided into B-1 and B-2 cells. B-1 cells can be further classified into 

two populations based on expression of CD5, CD5+ B-1a cells and CD5− B-1b cells, 

whereas conventional B-2 cells are composed of follicular and marginal zone B-cell subsets. 

B-1 cells enhance resistance to and prevent dissemination of C. neoformans in several 

different mouse models. X-linked immunodeficient (XID) mice, which lack B-1 cells and 

natural IgM, were more susceptible to intravenous infection with C. neoformans than 

CBA/Ca control mice [138]. In pulmonary infection models, B-1a cells were associated with 

fungal containment during the early immune response [132], and XID mice, which lack 

B-1a cells, are less able to contain C. neoformans in the lungs than control mice and develop 

more fungal dissemination to the brain [133]. This phenotype is associated with a virtual 

absence of serum IgM (see below), reduced yeast uptake by macrophages, an aberrant tissue 

inflammatory response and enlargement of yeast cells in the lungs [133]. These studies 

implicate B-1a cells and IgM in cryptococcosis, with the caveat that XID mice have other 

defects including T-cell and NK-cell immunodeficiency. In C. neoformans infected 

C57BL/6 mice, CD5+B-1a cells exhibited more binding to C. neoformans than B-1b and B-2 
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cells and directly mediated lung and brain fungal clearance during early pulmonary 

cryptococcal infection [132]. Reconstitution of B-1 cells in B-1-cell-depleted mice increased 

AM phagocytosis of C. neoformans and reduced lung and brain fungal burdens. Several 

reports have demonstrated that B-1-cell-derived mono-nuclear phagocytes have fungicidal 

activity against C. neoformans [139,140].

In humans, IgM memory B cells are considered the main homolog of mouse CD5+ B-1 cells. 

These cells, which are identified by their expression of CD27 and IgM, produce naturally 

occurring IgM that binds conserved microbial determinants and carbohydrates [141]. In one 

study, peripheral blood IgM memory B-cell levels were lower in HIV-infected individuals 

with a history of cryptococcosis than in those with no history of cryptococcosis and were 

predictive of cryptococcal disease status [142]. In this study, a predisease cohort had CD4 T-

cell levels greater than 400 cells/μl, suggesting that IgM memory B-cell levels could hold 

promise as a biomarker of risk for human cryptococcosis.

Natural antibodies to C. neoformans

IgM memory B cells produce ‘naturally occurring’ IgM that binds conserved microbial 

determinants [143]. Because natural IgM is produced in the absence of antigen stimulation, 

it is a part of the innate immune system and considered to provide ready-made pathogen 

defense. In mice, IgM deficiency was associated with increased susceptibility to pulmonary 

C. neoformans infection and reduced AM phagocytosis of C. neoformans, which was 

restored by reconstitution with natural mouse (nonimmune) IgM [144]. B-1 cells from C. 

neoformans-infected mice secreted C. neoformans-binding IgM and depletion of these cells 

resulted in reduced AM phagocytosis and increased fungal dissemination to the brain [132]. 

These findings support the hypothesis that B-1 cells enhance innate antifungal immunity via 

natural IgM, which promotes fungal containment in the lungs [132,133]. This is consistent 

with a report that an antibody to laminarin, a fungal cell wall determinant recognized by 

natural IgM, bound to and was protective against C. neoformans in mice [145,146].

The natural antibody response to C. neoformans in humans has been studied in detail. IgM 

and IgG that bind cryptococcal polysaccharides (capsule and cell wall) are present in normal 

human serum, although they are generally not opsonic for macrophage phagocytosis of C. 

neoformans [147,148]. Serum GXM-binding antibodies are virtually ubiquitous in adults 

and can be detected early in childhood [32,34–35,149]. Like other capsular polysaccharides, 

IgG2 is the predominant GXM-binding IgG subclass. Notably, IgG2 is decreased in 

individuals with HIV/AIDS [34,35]. HIV-infected individuals have higher levels of GXM-

IgG1 and lower levels of IgG2 than HIV-uninfected individuals [94].

A number of studies have shown that levels of GXM-binding IgM are lower in HIV-infected 

than HIV-uninfected individuals [34,142,150–151], including one in which levels were 

lower in HIV-infected individuals who developed cryptococcosis than those who did not 

[142]. GXM-binding IgM levels were also lower in HIV-uninfected solid organ transplant 

recipients who developed cryptococcosis post-transplant than those who did not [152]. 

Given that IgM memory B cells are a major source of serum IgM, reduced levels of GXM-

binding IgM could stem from a loss of IgM-producing B cells. Consistent with this 
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hypothesis, IgM memory B cells are depleted in HIV/AIDS [153,154]. In fact, loss of these 

cells begins early in HIV infection before severe CD4 T-cell deficiency is manifest and 

unlike other B-cell subsets, IgM memory B cells are not fully reconstituted by cART [155]. 

The effect of drugs used in solid organ transplant recipients on B-cell and antibody levels 

has not been studied, but mycophenolate, prednisone and cyclophosphamide each depleted 

B-1a cells in mice [156]. Whether or not there is a loss of IgM memory B cells in solid 

organ transplant recipients and apparently normal individuals with cryptococcosis requires 

investigation.

Adaptive antibody response to C. neoformans

The acquired antibody response to various cryptococcal antigens, namely, GXM capsule, 

cell wall polysaccharides and cryptococcal proteins has been studied extensively. The 

antibody response to GXM is characteristic of antibody responses to other encapsulated 

microbes, such as Streptococcus pneumoniae. As T-independent type 2 antigens, capsular 

polysaccharides elicit restricted antibody responses notable for the use of a limited number 

of antibody variable region genes and an absence of class switching and recall or memory 

responses. GXM is considered a rational vaccine candidate for cryptococcosis, but similar to 

bacterial capsular polysaccharide-based vaccines, it was necessary to convert it to a T-

dependent antigen by conjugating it to a protein carrier to enhance its immunogenicity. An 

investigational GXM-tetanus toxoid (GXM-TT) [157] vaccine was promising in preclinical 

trials [158], but was not developed further due to nonscientific reasons [159]. Extensive 

work with GXM-TT in mice led to a paradigm shift in our understanding of antibody 

immunity to capsular polysaccharides stemming from the observations that GXM elicited 

protective as well as a nonprotective antibodies and that antibody action was a function of 

idiotype, isotype and specificity. This is reviewed in [160].

When the antibody response to GXM-TT was examined in human volunteers the GXM 

response was predominantly IgG2, which was also the main mediator of C. neoformans 

phagocytosis by human mononuclear cells [161]. A human monoclonal antibody derived 

from a GXM-TT vaccinated donor protected mice against experimental cryptococcosis 

[162] as did human monoclonal IgMs produced from GXM-diphtheria toxoid (GXM-DT) 

vaccinated Xeno-mouse™ mice [163] and a peptide mimotope- vaccine-derived from a 

protective human monoclonal antibody [164].

Studies of GXM-TT (and DT) elicited mouse and human monoclonal antibodies revealed 

that they are derived from a restricted B-cell repertoire [165,166]. The immunoglobulin 

VH3 family genes encoded the human anti-GXM antibodies, and this family shares 

structural homologies with the VH5 (7183) family genes used for encoding mouse anti-

GXM antibodies [163,167]. VH3-expressing B cells dominate the human response to 

bacterial polysaccharide antigens and are depleted in HIV infection. Thus, it has been 

hypothesized that a decrease in VH3-encoded antibodies could contribute to susceptibility 

for cryptococcosis [168].

A mouse monoclonal GXM IgG1 showed promise as adjunctive therapy for cryptococcosis 

in HIV-infected patients in a Phase I trial [169,170], but was not advanced further due to a 

Rohatgi and Pirofski Page 10

Future Microbiol. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lack of resources. Nonetheless, there is extensive preclinical data on this antibody, including 

its efficacy as radioimmunotherapy [171].

Genetic susceptibility to cryptococcal disease

Given that not all HIV-infected individuals with CD4 T-cell deficiency develop 

cryptococcosis and cryptococcosis occurs in HIV-uninfected patients without CD4 T-cell 

deficiency, other risk factors are under investigation. The idea that genetic factors could 

impact susceptibility seems plausible because polymorphisms can affect the expression of a 

multitude of host response genes. However, to date, only a few studies have addressed this 

possibility [172].

MBL polymorphisms

MBL is a circulating C-type lectin that plays an important role in innate immunity as a first 

line of pathogen defense. It selectively recognizes the pattern of glycans displayed on certain 

microbial surfaces, leading to opsonization and subsequent activation of the lectin pathway 

of the complement system. Complement activation results in further opsonization and 

induction of inflammatory reactions. Human MBL is encoded by a single gene (MBL2), 

encoding six common single-nucleotide polymorphisms (SNPs). These polymorphisms have 

a major effect on serum MBL levels. MBL deficiency caused by polymorphisms in the 

MBL2 gene was associated with increased susceptibility to cryptococcosis in HIV-

uninfected Chinese patients [173].

Fc-γ receptor polymorphisms

Fc-γ receptors (FCGR) are present on certain immune cells (macrophages, monocytes, 

neutrophils, natural killer cells, B cells and mast cells), and bind IgGs connecting the 

humoral response to cellular effector mechanisms. FCGRs contribute to regulation of a 

multitude of immune and inflammatory responses [174]. FCGR polymorphisms are 

associated with certain autoimmune diseases as well as increased susceptibility to certain 

infections [175,176], including cryptococcosis [94,177,178].

FCGR2A 131H/R polymorphism involves the substitution of arginine (R) to histidine (H) at 

the 131 amino acid position in the ligand binding domain of the receptor. FCGR2A is 

unique in its ability to bind human IgG2 and is crucial for clearance of encapsulated 

pathogens. As noted above, IgG2 is the main subclass of antibodies to microbial 

polysaccharides [175]. The FCGR2A 131H allele displays higher IgG (including IgG2) 

binding than the 131R allele. FCGR2A 131H-expressing effector cells have a higher 

capacity for phagocytosis [179,180], as exemplified by a study showing that monocytes 

from FCGR2A 131HH donors internalized immune complexes more efficiently than 

monocytes from 131RR donors [181]. Meletiadis et al. reported an association of FCGR2A 

131R with cryptococcosis in HIV-uninfected patients, including solid organ transplant 

recipients [177]. Although this study did not examine IgG2 levels, it speculated that 

increased susceptibility to cryptococcosis in individuals with FCGR2A 131RR could be 

explained by inefficient phagocytosis of IgG2-opsonized C. neoformans [177,182]. 

However, FCGR2A 131H/R polymorphism was not associated with risk for cryptococcosis 
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in an HIV-infected cohort that had lower levels of IgG2 than HIV-uninfected participants 

[94]. Given previous data showing that IgG2 is the main isotype responsible for 

phagocytosis of C. neoformans in immune sera [161], it is possible that FCGR2A 131R 

confers risk in those with normal levels of IgG2 [94]. This requires further study. Of note, 

FCGR2A 131R was not associated with cryptococcosis in an HIV-uninfected Chinese 

cohort [178].

FCGR3A 158F/V polymorphism results in substitution of phenylalanine (F) for valine (V) at 

amino acid position 158. Compared with FF homozygous donors, FCGR3A expressed on 

NK cells and monocytes in VV homozygotes bound more IgG1 and IgG3 despite identical 

levels of receptor expression [183]. The FCGR3A 158V polymorphism was first reported to 

be associated with risk for cryptococcosis among HIV-uninfected patients by Meletiadis et 

al. [177]. Recently, an association between FCGR3A 158V and risk for cryptococcosis was 

also reported in HIV-infected individuals [94]. This study also showed that the FCGR3A 

158V allele exhibited more binding of C. neoformans–Ig complexes and when expressed by 

NK cells, it induced more antibody-dependent cellular cytotoxicity (ADCC) against C. 

neoformans-infected monocytes than FCGR3A 158F-expressing cells [94]. These findings 

provide a possible mechanistic explanation for how the 158V polymorphism could enhance 

C. neoformans virulence. It could increase phagocyte cargo (due to increased binding and 

uptake of C. neoformans–immune complexes), thereby increasing fungal burden, and/or it 

could increase immune activation via ADCC, thereby leading to host damage and fungal 

dissemination [94,172]. Again of note, FCGR3A 158F/V polymorphism was not associated 

with cryptococcosis in the aforementioned Chinese cohort [178]. Given that the cohorts in 

which this polymorphism was associated with cryptococcosis (Meletiadis et al. [177] and 

Rohatgi et al. [94]) were both predominantly Caucasian, further studies are needed to 

determine whether it affects risk in other racial groups.

FCGR2B is the only inhibitory receptor to suppress downstream events such as cellular 

proliferation, phagocytosis and inflammatory cytokine release. In addition to its expression 

on B cells, FCGR2B is expressed on macrophages, neutrophils and mast cells, but not on T 

or NK cells. FCGR2B receptors contain a polymorphism at position 232, in which an 

isoleucine (I) is replaced by a threonine (T). Receptors encoded by FCGR2B 232T lack 

inhibitory activity, as they are unable to interact with activating receptors. FCGRR2B 

232T/T genotype was associated with increased risk for SLE and protection against malaria 

[184]. In a case-control genetic association study in the aforementioned study Chinese 

cohort, FCGR2B 232I/I was associated with cryptococcal meningitis [178].

Although more work and studies in larger, more diverse cohorts must be done, the discovery 

of SNPs of FCGRs that are associated with risk for cryptococcosis suggests that these 

polymorphisms, which are likely to contribute to dysregulation of inflammatory responses to 

C. neoformans, could serve as potential biomarkers of risk for disease and enable the 

identification of those who might benefit from prophylaxis.
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Conclusion & future perspective

C. neoformans is ubiquitous in the environment and exposure is very common, yet clinically 

apparent disease is rare, except in patients with immune impairment. HIV/AIDS is the most 

common predisposing condition for disseminated cryptococcal disease, but disease also 

occurs in patients with other types of immunodeficiency, including that due to the 

immunosuppressive drugs used in solid organ transplantation. However, some patients with 

cryptococcosis have no known underlying condition.

Many different innate and acquired immune constituents and functions, including B cells, T 

cells, macrophages, cytokines and phagocytosis contribute to host defense against C. 

neoformans, but the loss or absence of a single constituent, (e.g., CD4 T cells), appears to be 

insufficient to cause human cryptococcosis. Recent studies reveal associations between 

FCGR polymorphisms and HIV-associated and HIV-unassociated cryptococcosis and roles 

for B cells, natural and C. neoformans-specific antibodies in resistance to disease. Current 

data suggest that B- and T-cell deficiency, absence of natural IgM, reductions in tissue-

specific IFN-γ and FCGR polymorphisms could all promote C. neoformans growth and 

dissemination. However, more studies are needed to validate this hypothesis.

New insights into susceptibility and resistance to cryptococcosis are likely to inform the 

development of novel agents to treat and prevent disease. However, a major challenge over 

the next 5–10 years will be to ensure the availability of cART and antifungal agents in all 

areas of the world, particularly those where HIV/ AIDS remains epidemic, such as sub-

Saharan Africa and parts of Asia. Fluconazole therapy and initiation of cART can reduce the 

burden of HIV-associated cryptococcosis, but access to these agents and point-of-care rapid 

diagnostics, which are priorities for GAFFI [42], are needed to conquer cryptococcosis in 

under-resourced settings. Triumph over cryptococcosis in the resourced world will require 

clinical biomarkers that can identify high-risk patients who would benefit from antifungal 

prophylaxis, such as those with acquired and primary immunodeficiencies. Although levels 

of IgM memory B cells, GXM-IgM and FCGR polymorphisms have been associated with 

risk for disease in some studies, much work remains to be done to identify and validate 

biomarkers as clinical tools.

Given that the immune status of the patient is the main determinant of the outcome of host–

C. neoformans interaction, therapies that augment host immunity are logical, particularly for 

patients with known defects. Immunotherapy, such as passive antibody-based therapy and 

prophylaxis, vaccines and selected mediators such as IFN-γ, are potential modalities for 

treating and preventing cryptococcosis. Development of a vaccine is a high priority for the 

cryptococcal field. Given that C. neoformans is ubiquitous in the environment, yet disease is 

rare, the ideal vaccine for C. neoformans would prevent reactivation as well as acute disease. 

However, because cryptococcosis may occur in the setting of either insufficient or excessive 

immune responses [21], more than one type of vaccine might be required. The vast amount 

of knowledge about the host response to C. neoformans gained over the past two decades is 

poised to accelerate vaccine development. In this regard, a number of vaccine candidates 

and platforms have been developed over the past two decades [185]. Although the most 

promising vaccines developed so far are GXM-protein conjugates and whole cell vaccines 
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that enhance IFN-γ production, vaccines that bolster innate immune responses and leverage 

the immunogenicity of cell wall determinants are in development [186]. Over the past two 

and a half decades, immense progress has been made in our understanding of immunity to C. 

neoformans. However, the challenge to the field will be to obtain sufficient resources to 

translate this knowledge to identify biomarkers of disease risk and treat and prevent 

cryptococcosis with development and clinical trials of therapies and vaccines that bolster 

immunity to C. neoformans.
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Executive summary

Background

• Cryptococcosis occurs predominantly in immunocompromised patients, most 

commonly those with HIV/AIDS.

• Cryptococcus neoformans (variety neoformans and variety grubii) and 

Cryptococcus gattii cause majority of disease in humans.

Ecology

• Cryptococcal species are ubiquitous environmental microbes, differing in 

geographic distribution.

Epidemiology

• Incidence of HIV-associated cryptococcosis has been reduced by combination 

antiretroviral therapy (cART) but remains a threat to those not on cART, 

especially in underresourced areas.

• Cryptococcosis also occurs in solid organ transplant recipients, and in people 

with no apparent immune defects.

Pathogenesis

• C. neoformans is acquired by inhalation followed by a state of latency in the 

lungs.

• Cryptococcosis occurs during latency breakdown in the setting of immune 

deficiency.

• HIV-associated cryptococcosis is heralded by CD4 T-cell counts less than 100 

cells/μl and detectable serum cryptococcal antigen (CrAg).

Cryptococcal virulence

• The central virulence factor of C. neoformans is its polysaccharide capsule.

• Other virulence determinants include capacity to grow at mammalian 

temperatures as well as intracellular replication.

Host response to C. neoformans

• Innate and acquired immune mechanisms contribute to resistance to 

cryptococcosis.

• CD4 T cells and cytokines enhance phagocytosis and cryptococcal containment.

• CD8 T cells enhance cryptococcal killing.

• Macrophage phagocytosis promotes cryptococcal containment, but C. 

neoformans can replicate in macrophages.

• B cells enhance resistance to C. neoformans in experimental models.
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• Natural IgM promotes containment of C. neoformans in murine lungs, 

preventing dissemination to brain.

• HIV-associated cryptococcosis was linked to reduced levels of IgM memory B 

cells and lower levels of IgM.

Genetic susceptibility to cryptococcosis

• MBL and Fc-γ receptor polymorphisms have been associated with 

cryptococcosis.

• Genetic factors influence susceptibility and resistance to C. neoformans.

Conclusion & future perspective

• Victory against cryptococcosis will require access to antifungal drugs, cART 

and administration of fluconazole based on pre-emptive CrAg screening of 

patients with CD4 T-cell count less than 100 cells/μl.

• Clinical biomarkers are needed to assess risk for cryptococcosis in high-risk 

populations and to enable antifungal prophylaxis and therapy.

• Novel adjunctive immunotherapies, (monoclonal antibodies and/or IFN-γ) and 

immunomodulators should be explored.

• Need for vaccine development which can prevent acute as well as reactivated 

disease.
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