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ABSTRACT

In Pseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is
high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is neces-
sary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at
1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts
related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the �anr
derivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage,
type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the �anr strains. Prior reports
have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regu-
lated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and
protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the pro-
duction of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show
that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded
and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly
isolated from infections.

IMPORTANCE

Pseudomonas aeruginosa causes acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways
of cystic fibrosis patients. P. aeruginosa uses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the
master regulator of QS, lasR, are frequently observed in clinical isolates. We demonstrated that the regulon attributed to Anr, an
oxygen-sensitive transcription factor, was more highly expressed in lasR mutants. Furthermore, we show that Anr regulates the
production of several different secreted factors in lasR mutants. These data demonstrate the importance of Anr in naturally oc-
curring quorum sensing mutants in the context of chronic infections.

Pseudomonas aeruginosa, a notorious pulmonary pathogen, is
frequently a causative agent of nosocomial pneumonias (1), is

commonly isolated from the lungs of chronic obstructive pulmo-
nary disease (COPD) patients experiencing exacerbation (2), and
is a problematic colonizer of the lungs of individuals with cystic
fibrosis (CF) (3). By age 20, 80% of CF patients harbor P. aerugi-
nosa in their lungs (4), and the presence of P. aeruginosa in the
airway is correlated with accelerated lung function decline and
poor patient prognosis (5, 6). Evidence suggests that in the context
of infections, P. aeruginosa is often found in a biofilm state, which
contributes to its extreme recalcitrance to antibiotic treatments or
clearance by surveilling immune cells (7–9).

Multiple lines of evidence show that oxygen concentrations
within P. aeruginosa biofilms and Pseudomonas-infected mucus in
CF patient airways are low due to factors such as reduced ventila-
tion, chronic inflammation, and the consumption of oxygen by
microbes (10–14). P. aeruginosa senses and responds to low levels
of environmental oxygen through the activity of the transcription
factor Anr, due to the fact that Anr requires an intact, oxygen-
labile [4Fe-4S]2� cluster for dimerization and subsequent DNA
binding (15, 16). In addition, Anr activity is stimulated by phos-
phatidylcholine (PC) catabolic products that are abundant in vivo
(17). While required for anoxic growth via denitrification, P.
aeruginosa �anr strains are not impaired in growth under hypoxic
(low-oxygen) conditions (18, 19). Anr homologs have been iden-

tified as regulators of virulence in other Gram-negative microbes
(20–22). The high-level expression of transcripts encoding the
denitrification and arginine fermentation machinery, as well as
certain high-affinity cytochrome oxidases (23), suggests that Anr
activity is high in vivo (11, 18, 24).

In both in vitro (25) and clinical (3) P. aeruginosa biofilms, cells
use quorum sensing (QS) cascades to coordinately regulate gene
expression (26). P. aeruginosa QS is controlled by three hierarchi-
cally arranged systems, with the LasRI system being the regulatory
circuit in control of downstream pathways involving RhlRI and
Pseudomonas quinoline signaling systems. QS-controlled viru-
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lence factors include pyocyanin, hydrogen cyanide, protease, and
lipase (27). Because quorum sensing positively regulates virulence
factors, it may seem paradoxical that loss-of-function mutations
in lasR are frequently observed in strains isolated from the CF
airway (28) and that the presence of lasR mutants in a CF infection
is associated with a higher rate of lung function decline (29). In
addition, lasR mutants have been observed in acute infections at
other body sites (30–32) and can arise spontaneously in laborato-
ry-grown biofilms (33). Taken together, these data imply that un-
der certain conditions, the loss of lasR confers a selective advan-
tage. Previous studies have demonstrated that lasR mutants grow
to higher cell densities on specific amino acids found in CF spu-
tum (33), resist cell lysis in high-density cultures (34), show in-
creased resistance to oxidative stress and antibiotic treatment (33,
35), and have higher rates of denitrification (36). The prevalence
of QS mutants in infections and their relationship with disease
progression illustrates the importance of understanding how
pathogenesis is regulated in these strains.

Anr activity has been profiled in planktonic cultures grown
anoxically with nitrate, an important alternative electron acceptor
for P. aeruginosa. In this study, we used transcriptome sequencing
(RNA-Seq) to examine the Anr regulon in colony biofilms grown
in low oxygen without exogenous nitrate, using two strains of P.
aeruginosa: PAO1 (a laboratory strain) and a QS-deficient CF clin-
ical isolate. We observed Anr regulation of the denitrification ma-
chinery under these conditions, as well as a role for Anr in regu-
lation of high-affinity cytochromes, the arginine fermentation
genes, and transcripts associated with CupA fimbriae. We also
observed Anr regulation of the 4-hydroxy-2-alkylquinoline
(HAQ)-dependent quorum sensing pathway, iron acquisition
and storage, type VI secretion, the catabolism of aromatic com-
pounds, and many hypothetical proteins. We established that pro-
duction of CupA fimbriae, known to be important for acute and
chronic infections (37, 38), was strictly dependent on Anr in both
laboratory and clinical isolates and that enhanced Anr activity
increases CupA production. Using both constructed and naturally
occurring lasR mutants, we showed that Anr activity increased in
the absence of LasRI signaling. Furthermore, we identified a role
for Anr in production of HAQs in LasRI signaling-deficient strains
but not their QS-competent counterparts. We propose that in the
absence of LasRI signaling, Anr is an important regulator of
pathogenic processes and that increased expression of the Anr
regulon when LasR signaling is off may help explain the basis of
selection for lasR mutants in vivo.

MATERIALS AND METHODS
Growth conditions. All strains used in this study are listed in Table S1 in
the supplemental material. J215 is a tracheal isolate from an individual
with CF at the Dartmouth-Hitchcock Medical Center in Lebanon, NH. P.
aeruginosa and Escherichia coli were routinely cultured in lysogeny broth
(LB) at 37°C, and the medium was supplemented with gentamicin (60
�g/ml for Pseudomonas and 15 �g/ml for E. coli) and carbenicillin (300
�g/ml and 100 �g/ml) as required. For studies under low-oxygen condi-
tions, strains were grown at 30°C inside a hypoxic cabinet with an O2

controller and CO2 controller (COY Laboratory Products, Grass Lake,
MI) at 1% O2 and 5% CO2. Colony biofilms were inoculated with cells
from overnight cultures that had been washed and diluted to an optical
density at 600 nm (OD600) of 1.0. Five microliters of this suspension was
spotted onto the surface of a T-broth (10 g of tryptone and 5 g of NaCl per
liter) agar plate, allowed to dry, and then incubated for 12 to 72 h as
indicated.

Construction of in-frame deletion mutants and plasmids. Strains
and plasmids were built using a Saccharomyces cerevisiae recombination
technique described previously (39). Primers used in the construction of
plasmids are listed in Table S1 in the supplemental material. Knockout
constructs generated in this study were built using the pMQ30 allelic
replacement vector. The cgrABC expression plasmid was built using the
PBAD expression vector pMQ70, and the anr expression plasmids were
built using the Ptaq expression vector pMQ123.

Cycle sequencing of lasR, lasI, rhlR, and rhlI in J215. Target genes
were PCR amplified from J215 genomic DNA and the products were
sequenced at the Molecular Biology Core at the Geisel School of Medicine
at Dartmouth. The resulting sequences were aligned to the PAO1 genomic
sequence using the NCBI BLAST program (40).

RNA sequencing analysis. Colony biofilms of wild-type (WT) or
�anr PAO1 and J215 were grown for 12 h, then harvested in 1 ml of
phosphate-buffered saline (PBS) applied to the plate, followed by recov-
ery with an angled glass rod. Samples were pelleted by centrifugation and
stored at �80°C. RNA was isolated from pelleted cells using the RNeasy
minikit (Qiagen), followed by treatment with RQ1 DNase from Promega,
both in accordance with the manufacturers’ instructions. RNA quality
was assessed using a Bioanalyzer (Agilent Technologies). Two biological
replicates (samples from separate single colonies) were analyzed for each
strain. One microgram of total RNA was treated for rRNA and tRNA
removal using the MICROBExpress Bacterial mRNA Enrichment kit (Life
Technologies) before sequencing. Single-read RNA-Seq was performed
on the HiSeq platform at the Helmholtz Center for Infection Research
(Braunschweig, Germany). Raw reads were processed and normalized
using the CLC Genomics Workbench platform (v7.5.1) using the default
parameter setting installed by the manufacturer. All sequences were
trimmed and mapped to the PAO1 (GenBank accession number
NC_002516) reference genome from NCBI using the RNA-Seq analysis
tool, and mapped reads were quantile normalized to control for any dif-
ferences in library size. Very-low-abundance transcripts (�10 mapped
reads in all samples) were discarded from further analysis, since there is
little power to detect expression changes of genes expressed at low levels.

Western blot analysis of CupA1 and OprF. Cells grown as colony
biofilms were harvested as described for RNA extraction. Cells were pel-
leted by centrifugation and boiled in SDS loading buffer for 10 min to
generate a whole-cell lysate. Protein concentrations were determined us-
ing a bicinchoninic acid (BCA) protein assay reagent (Pierce Biotechnol-
ogy, Inc.). Proteins were separated on a 15% acrylamide gel via SDS-
PAGE for 1 h at 180 V. Proteins were transferred to a polyvinylidene
fluoride membrane, washed, and probed with polyclonal serum directed
against CupA1 as the primary antibody (41) and a peroxidase-conjugated
goat anti-rabbit antibody as the secondary antibody (Sigma-Aldrich).
Bound antibodies were visualized by SuperSignal West Pico chemilumi-
nescent substrate (Pierce). Densitometry measurements of CupA1 were
conducted using ImageJ (42).

NanoString analysis of P. aeruginosa transcripts. The NanoString
nCounter analysis system (NanoString Technologies) was used to analyze
the transcript abundance for 75 transcripts and was used with a custom-
designed codeset. Each reaction mixture contained 80 ng of RNA in 5 �l of
hybridization buffer containing reporter probes, capture probes, and 6
positive and 8 negative controls. Overnight hybridization of RNA with
reporter and capture probes was conducted at 65°C and was followed by
sample preparation using the NanoString prep station. Finally, targets
were counted on the nCounter using 255 fields of view per sample. Data
were analyzed using nSolver Analysis software v1.1. Raw counts for all
transcripts were normalized to the arithmetic mean of six positive con-
trols and to the geometric mean of three P. aeruginosa housekeeping genes
(fbp, ppiD, and rpoD).

Identification of J215 pqsA::TnMar, pqsB::TnMar, and pqsH::TnMar
mutants. Overnight cultures of E. coli S17-1 �pir carrying the pBT20
plasmid and J215 recipient strain were subcultured and grown to an
OD600 of 1.0, at which point 1 ml of each culture was washed and sus-
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pended in 1 ml LB, and the J215 culture was incubated at 42°C for 10 min.
Five hundred microliters from each culture was combined, pelleted, and
suspended in 40 �l of LB. This mixture was spotted on LB agar and incu-
bated at 30°C for 22 h. The entire colony was collected, suspended in 100
�l of LB, spread on LB agar containing gentamicin (60 �g/ml) and nali-
dixic acid (40 �g/ml), and incubated at 30°C and 1% O2. After 3 days,
colonies that failed to produce an iridescent sheen were identified and
analyzed by arbitrarily primed PCR as previously described (43). Re-
turned sequences were mapped using the Pseudomonas Genome Database
BLAST function (44). These three mutants were among those identified.

S. aureus inhibition assays. P. aeruginosa strains to be tested were
grown overnight in LB at 37°C, then washed, and suspended to an OD600

of 1.0. This suspension (5 �l) was spotted on Whatman paper discs on
T-broth agar and incubated for 24 h at the desired oxygen concentration.
S. aureus strain 8325-4 was grown with shaking overnight at 37°C in tryp-
tic soy broth, then washed, and suspended to an OD600 of 0.1. S. aureus
suspension (100 �l) was spread on tryptic soy agar plates using glass
beads. Whatman paper discs with P. aeruginosa biofilms were transferred
to the plates, and the zone of inhibition was observed after an additional
16 h of incubation.

Statistical analyses. Fold change values and significance statistics be-
tween RNA-Seq samples were calculated using the “Empirical analysis of
DGE” algorithm in the CLC Genomics Workbench, which is a reimple-
mentation of the “Exact Test” from the EdgeR Bioconductor package (45,
46) and which was conducted between all pairs, with a total count filter
cutoff of 5.0. For the comparison between LasR-regulated transcripts in
PAO1 and J215 (see Fig. S1 in the supplemental material), significance was
determined using a Wilcoxon rank sum test, with a P value of �0.05
considered significant. Differences in expression of LasR and Anr-regu-
lated transcripts in lasR mutants (see Fig. 3) were evaluated with a paired
t test, and a P value of �0.05 was considered significant. In NanoString
experiments (see Fig. 5), significance was determined with ratio paired t
test, and a P value of �0.05 was considered significant.

RNA sequencing data accession number. The raw and processed
RNA-Seq data have been deposited into NCBI Gene Expression Omnibus
under accession number GSE68534.

RESULTS
Profiling of the Anr regulon in two P. aeruginosa strains grown
as colony biofilms in 1% oxygen. We sought to define the Anr
regulon under conditions that relate to those in the mucus plugs
that form in CF airways and in clinically relevant biofilms (e.g.,
low oxygen and high cell density) in two P. aeruginosa strains
(PAO1 and a clinical isolate, J215) and their �anr derivatives.
PAO1 is a commonly used laboratory strain with intact quorum
sensing. Clinical isolate J215 had colony morphology characteris-
tics of lasR loss-of-function mutants, including the lack of pyocy-
anin production and the presence of an iridescent colony sheen
(33). J215 has a lasRG588T allele that encodes LasR E196D, a vari-
ant shown previously to lead to decreased LasR activity or LasR
loss of function (32). Other synonymous mutations in lasI, rhlR,
and rhlI, as well as nonsynonymous mutations in rhlI, were iden-
tified (see Table S2 in the supplemental material).

For the RNA-Seq analysis, RNA was harvested from P. aerugi-
nosa strains PAO1 and J215 grown in colony biofilms at 30°C in
1% O2 and 5% CO2 on T-broth agar for 12 h. We have shown
previously that Anr activity is high under these conditions (17). It
is important to note that the culture medium was not amended
with nitrate or other compounds that can support energy genera-
tion by denitrification. The wild type (WT) and corresponding
�anr derivative in each background grew similarly, with 1.0E8 �
0.29E8 CFU and 1.1E8 � 0.27E8 CFU per colony for WT and �anr
PAO1, respectively, and 5.7E7 � 0.2E7 and 9.0E7 � 1.7E7 CFU

per colony for WT and �anr J215, respectively. Consistent with
the lasRG588T allele encoding a loss-of-function LasR variant, we
saw that 67 of 72 LasR-regulated transcripts were expressed at a
significantly lower level in J215 than in PAO1 (P � 0.5) (see Fig. S1
in the supplemental material).

Deletion of anr had considerable effects on transcription in
both PAO1 and J215. Two hundred fifty-nine genes were signifi-
cantly different (P � 0.05), more than 2-fold, between the WT and
the anr mutant in both backgrounds (see Data set S1 in the sup-
plemental material). A summary of the major genes and pathways
transcriptionally affected by the loss of anr is presented in Fig. 1.
Below, we first describe Anr regulation of known Anr-regulated
transcripts, many of which are involved in metabolism when ox-
ygen is limiting. In addition, we describe the discovery that loss of
Anr influences expression of pathways involved in the production
of secreted molecules and factors.

Differential expression of known Anr-regulated pathways in
colonies grown in the absence of nitrate at 1% oxygen. Many of
the genes differentially regulated in both strains are known to be
under the control of Anr and encode proteins involved in the
metabolic response to a low-oxygen environment. For example,
Anr impacted the expression of terminal oxidases involved in aer-
obic respiration. Anr was required for induction of the cbb3-2-
oxidase (ccoN2O2Q2P2) and repression of the cyanide-insensitive
oxidase (cioAB, PA3928) (47). Levels of ccoN2O2Q2P2 transcript
were 12- to 60-fold lower and levels of cioAB were 2- to 8-fold
higher in anr mutants from both strains. Transcripts for both the
cbb3-1 (ccoN1O1P1) and cytochrome bo3 (cyoABC) oxidases were
higher in the anr mutants in both PAO1 and J215 (2- to 3-fold and
2- to 6-fold, respectively). In contrast, the loss of anr did not affect
expression of the aa3 oxidase encoded by coxAB-coIII. Together,
these data confirm that Anr participates in the control of the ad-
aptation of respiration under low-oxygen conditions. Anr also
controlled expression of genes involved in heme biosynthesis.
Both hemF and hemN, are known to be controlled by Anr/Dnr (23,
48) and were expressed between 2- and 5-fold lower in the anr
mutants. Because high-affinity cytochromes require heme as a
cofactor, Anr may mediate their coordinated expression. The di-
heme cytochrome c551 peroxidase precursor, encoded by ccpR, is
appreciated to be regulated by Anr (23), and it was reduced �20-
fold in both strains.

Transcripts involved in arginine fermentation (arcDABC)
were 6- to 23-fold higher in WT strains than in the anr mutants.
Our data additionally showed Anr-dependent expression of mul-
tiple genes involved in other fermentation pathways, including
those for two putative alcohol dehydrogenases that are Anr regu-
lated, adhA (39-fold and 65-fold lower in the �anr mutants of
PAO1 and J215, respectively) and PA2119 (6- and 4-fold lower in
the �anr mutants) (23, 49), as well as a phosphate acetyltrans-
ferase pta (5- and 3-fold lower) and an acetate kinase ackA (4- and
3-fold lower) gene. Studies have established a role for P. aerugi-
nosa fermentation pathways and universal stress response pro-
teins in long-term survival within anaerobic biofilms (50, 51). In
line with previous work, we found that Anr-dependent expression
of the stress response genes uspK, uspL, uspN, and uspO was lower
in both �anr mutants than in their parental strains.

Despite the absence of added nitrate, nitrite or nitric oxide,
genes involved in denitrification (dnr, narK1K2GHJ, narXL,
nirSMCFLGHJEN, nirQ, norCBD, and nosRZDFLY, as well as co-
operonic hypothetical protein genes) were expressed in the WT
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strains and were much lower in the �anr derivatives (up to �150-
fold reduced). Interestingly, the nar genes responsible for the ini-
tial reduction of nitrate to nitrite were more highly expressed in
PAO1 than in J215 (Fig. 1).

Anr also regulates the production of OprG and of CupA fim-
briae; it is not yet known if these factors influence metabolism
when oxygen is limiting. The gene that encodes outer membrane
protein OprG was reduced 18- and 35-fold in the anr mutants
from PAO1 and J215, respectively, consistent with previous re-
ports (52). The chaperone usher pili, including the CupA fimbrial
appendages, are expressed on the cell surface and have been im-
plicated in biofilm formation and disease (37, 38, 53, 54). Anr
positively regulates the expression of CupA-encoding genes
through the activity of a trimeric regulator encoded by the 3-gene
operon cgrABC (55, 56). The cupA1-5 transcripts were regulated
by Anr in both PAO1 and J215. We also noted that expression of
the cupA1-5 genes in J215 was 2- to 29-fold higher than in PAO1
(Fig. 1).

Loss of Anr impacts the expression of genes involved in iron
acquisition and quorum sensing. A notable signature from our
data sets reflected a change in expression levels of iron acquisition
and storage pathways upon the loss of Anr. The pchDCBA and
pchEFHI pyochelin biosynthesis and transport genes showed
lower expression in the anr mutant than in the WT for both PAO1
and J215 (between 2- and 14-fold); the pyochelin outer membrane
receptor gene fptA had a similar expression pattern. We also saw
decreased expression of feoB and bfrA, which encode a ferrous iron
transporter and bacterioferritin, respectively. Genes encoding the
other siderophore produced by P. aeruginosa, pyoverdine, were
not differentially expressed in PAO1 but showed slightly higher
expression in the J215 �anr mutant than in the wild type (pvdA,

pvdN, pvdM, and pvdS were induced 2- to 5-fold). However, the
transcript encoding ExbB1, involved in pyoverdine uptake, was
more than 5-fold lower in the anr mutants from both strains, and
exbD1, also involved in pyoverdine uptake, was 16-fold lower in
J215 �anr than in the wild type but not differentially expressed in
PAO1.

Our analysis also revealed a role for Anr in regulating expres-
sion of multiple pathways related to quorum sensing. Among
these were hcnABC, involved in production of hydrogen cyanide.
The hcn operon is regulated by both LasR and Anr (57), and while
transcripts from this operon were much lower in J215 than in
PAO1, we observed a reduction of expression in both �anr mu-
tants (Fig. 1). Our data set also showed a strong role for Anr in
regulation of the small RNA PhrS, which is part of the Pseudomo-
nas quinoline system and has been shown to be controlled by Anr
previously (58). PhrS levels were reduced 200-fold in PAO1 and
100-fold in J215. The role for Anr in regulating other LasR-con-
trolled transcripts is discussed further below.

In both strains, a very strong feature of the RNA-Seq data set
was the upregulation of genes involved in degradation of aromatic
compounds in the anr mutants. Such transcripts included antABC
and catBCA, which were expressed between 50- and 150-fold
higher in �anr strains. AntR, the positive regulator of antABC, was
expressed at approximately 10-fold-higher levels. Anr also re-
pressed the gene for the hypothetical protein adjacent to catA,
PA2506.The ant and cat gene products degrade anthranilate,
which is a precursor to the QS molecule HHQ (59). The list of
additional genes that were differentially expressed upon the loss of
Anr in both strains includes numerous genes that encode
hypothetical proteins (see Data set S1 in the supplemental mate-
rial).

FIG 1 Heat map showing levels of transcripts regulated by Anr in PAO1 and J215. RNA from wild-type (WT) PAO1 and J215, and their �anr derivatives, from
duplicate colony biofilms grown for 12 h in 1% O2 was sequenced. Total reads for each transcript were quantile normalized, log2 transformed, and Z-scored by
row. Data for transcripts significantly affected (	2-fold) are shown. Paired columns represent biological replicates. Columns 1 and 2, WT PAO1; columns 3 and
4, PAO1 �anr; columns 5 and 6, WT J215; columns 7 and 8, J215 �anr.
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Anr-dependent regulation of CupA is greater in the absence
of LasR. Visual inspection of transcripts strongly regulated by Anr
(e.g., ccoN2O2Q2P2, arcDABC, and cupA1-A5) suggested a larger
difference in expression between the WT and the �anr mutant for
J215 compared to PAO1. To test this, we performed a Western
blot analysis of Anr-regulated CupA fimbriae using an anti-
CupA1 antibody (41). We found that CupA protein was strikingly
more abundant in colony biofilms formed by J215 than in those
formed by PAO1 (Fig. 2A). Levels of outer membrane porin OprF,
used as a reference protein, were similar in both strains. CupA1
protein production was completely absent in anr mutants for both
strains and was restored in J215 �anr upon complementation
with anr at the native locus (Fig. 2A). Consistent with published
data showing that Anr regulates CupA production through its
control of cgrABC expression (55), we found that an isogenic
�cgrC mutant produced no detectable CupA1 (Fig. 2A). A
�cupA2 mutant is also shown for comparison. While only minute
amounts of CupA1 were found in PAO1 colonies grown at 1%
oxygen, CupA1 levels were strongly increased by cgrABC overex-
pression from a plasmid, indicating that the lack of CupA1 in
PAO1 was likely due to a regulatory difference rather than another
type of defect in CupA production itself (see Fig. S2A in the sup-
plemental material).

We sought to further characterize the connection between Anr
activity and CupA levels in biofilms grown in low oxygen in order
to evaluate CupA as an indicator of Anr activity. We found that
CupA1 levels were higher in colonies grown at 1% oxygen than in
those grown at atmospheric oxygen levels (21%), indicating that
increased Anr activity stimulated CupA production (Fig. 2B). The
CupA1 produced in 21% oxygen is likely due to depletion of ox-
ygen by cell respiration, a process that is well characterized in P.
aeruginosa biofilms and colonies (12, 13). A direct relationship
between Anr activity and CupA production was confirmed upon
expression of an oxygen-resistant allele of Anr, D149A, in 21%
oxygen. Activity of this Anr variant strongly induced CupA (see
Fig. S2B in the supplemental material). We also explored the pos-

sibility that lower CupA levels in the Anr background were due to
altered levels of the bacterial second messenger cyclic di-GMP,
which positively regulates CupA fimbria production in small-col-
ony variants of a Pseudomonas clinical isolate (41). Deletion of
PA2133, a putative phosphodiesterase within the Anr-regulated
cupA operon (Fig. 1), did not affect the amount of CupA1 pro-
duced (see Fig. S2C). In addition, we found that overexpression of
two constitutively active variants of the Pseudomonas fluorescens
diguanylate cyclase gcbC in J215 did not affect CupA1 production
(see Fig. S2D). Together, these data suggest that decreased CupA
production upon loss of Anr is consistent with Anr regulation of
cgrABC influencing CupA production in this setting, and not
likely due solely to changes in other regulatory signals, such as
cyclic di-GMP.

The loss of LasR signaling causes an Anr-dependent increase
in CupA fimbriae. The observation that CupA1 levels were higher
in J215 than in PAO1 suggested a connection between the loss
of LasR/N-3-oxo-dodecanoyl-homoserine lactone (3OC12HSL)
quorum sensing and increased Anr activity. In order to test this
model further, we measured production of CupA fimbriae in
strain PAO1, strain PA14 (another laboratory strain), and their
respective �lasR derivatives. In both instances the lasR mutant
had higher levels of CupA fimbriae than the wild-type parental
strain (10-fold higher in PAO1 �lasR than in the PAO1 wild type
and 4-fold higher in PA14 �lasR than in the PA14 wild type) (Fig.
2C). We also measured CupA production in a pair of genetically
related CF clinical strains isolated from the same subject (28).
Previous genomic analyses revealed that one isolate, NC-
AMT0101-2, has a functional allele of lasR, while NC-AMT0101-1
had acquired a lasR mutation. The lasR-defective clinical isolate
produced 7.5-fold more CupA fimbriae than the parental strain
(Fig. 2D), and in both NC-AMT0101-1 and NC-AMT0101-2, de-
letion of anr abolished CupA1 production (Fig. 2D). Taken to-
gether, these results suggest that lasR mutants have higher levels of
Anr activity and that this leads to higher production of CupA
fimbriae.

FIG 2 CupA fimbria production is higher in J215 than in PAO1 and is regulated by oxygen, Anr, and LasR. Levels of CupA1 and OprF, a reference protein, were
determined by Western blotting of whole-cell lysates from 48-h colony biofilms grown on T-broth agar. (A) The wild type (WT) and mutant derivatives of strains
PAO1 and J215 grown in 1% O2. (B) Comparison of CupA1 production in WT and �anr J215 after growth at 21% and 1% O2. (C) PAO1 and PA14 wild types
compared to their corresponding lasR mutant derivatives, after growth in 1% O2. A PA14 lasR anr double mutant is also shown. (D) A lasR-negative clinical
isolate (lasR� C.I.; NC-AMT0101-1), a lasR loss-of-function mutant isolated from a CF airway infection, and its lasR� C.I. parental strain (NC-AMT0101-2) (28)
are shown along with their isogenic �anr derivatives after growth at 1% O2.
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Anr is repressed by LasR/3OC12HSL. To further test the hy-
pothesis that QS signaling is inversely correlated with Anr activity,
we used a multiplex method for the simultaneous analysis of mul-
tiple transcripts with the nCounter NanoString technology.
NanoString mRNA quantitation uses fluorescent probes to cap-
ture and count specific mRNA targets (60), and we developed a
NanoString codeset that included a number of QS and Anr-regu-
lated transcripts. The genes directly controlled by Anr in our code-
set were arcA, arcD, adhA, ccoN2, ccoP2, dnr, narG, nirS, norC,
cgrA, and PA1673. The QS-controlled genes were lasI, lasB, rhlI,
rhlA, pqsA, pqsE, pqsH, phzA2, phzC, phzH, and phzM. We ana-
lyzed mRNA levels of these transcripts in PAO1 and PA14 and
their lasR mutant derivatives, the paired clinical isolates NC-
AMT0101-2 and NC-AMT0101-1 (described above), and another
set of genetically related clinical isolates with and without func-
tional LasR (AMT0047-2 and AMT0047-3, respectively) (28). We
observed that nearly all Anr-regulated genes were more highly
expressed in the lasR mutants than in their cognate lasR-intact
strains (Fig. 3). For example, expression of Anr-regulated ccoN2
was 4- to 12-fold higher in the lasR mutants and PA1673 expres-
sion was 5- to 25-fold higher in the lasR mutants. As expected,
QS-regulated transcripts were uniformly lower in the absence of
functional LasR. In addition to comparing wild-type and LasR-
defective strains, we examined Anr activity in a �lasI mutant,
which lacks the 3OC12HSL synthase, in the absence and presence
of 3OC12HSL (61). We found that complementation of the �lasI
strain with exogenous 3OC12HSL was sufficient to rescue the ex-
pression of QS-controlled genes and led to decreased expression
of Anr-regulated genes (Fig. 3). Across all five pairs of samples, 7
of 11 Anr-regulated transcripts and 8 of 11 QS-regulated tran-
scripts were significantly different (P � 0.05, paired t test). We did
observe that in both AMT0047-3 and NC-AMT0101-1 (carrying
natural lasR defective alleles) but not the other lasR or lasI mu-
tants, narG expression was reduced. There is a potential LasR
binding motif (CTCACTGTTTTAAAAG) 150 bp upstream of
narK1 translational start (the first gene in the operon containing
narG), and our data may indicate a positive role for LasR in regu-
lating expression of this operon in these strain backgrounds. This
is consistent with reduced expression of the narK1-PA3871

operon in J215 compared with that in PAO1 (Fig. 1). Expression
of norC was also decreased in AMT0047-3 compared to its paren-
tal strain, AMT0047-2. In contrast, four flagellar transcripts (flgD,
flgG, flgK, and fliC) did not vary between the pairs (Fig. 3). The
repression of Anr activity upon addition of 3OC12HSL to a �lasI
strain indicated that Anr was directly responsive to LasR signaling
and that increased Anr activity was not due to a secondary effect
common in the absence of LasR. The complete NanoString data
set from these experiments is provided in Data set S2 in the sup-
plemental material. LasR regulation of Anr is likely indirect, as
there is no evidence that LasR binds the anr promoter (62), and
anr transcript levels are not altered in transcriptional profiling
analyses of the LasR regulon (63, 64) (see Data set S2). LasRI
positively regulates 3,4-dihydroxy-2-heptylquinolone (PQS) pro-
duction (65), and PQS has been shown to inhibit denitrification
(66). To determine if increased Anr activity is due to a decrease in
PQS, we tested whether CupA1 production was greater in three
mutants in the PQS pathway in J215. There were no detectable
differences (see Fig. S2E in the supplemental material), indicating
that HAQ production does not likely effect Anr activity in J215.

Anr partially compensates for the loss of LasR signaling in
the regulation of HAQs. We showed above that mutants or
strains with lower levels of LasR activity have increased Anr activ-
ity. Our studies also showed that in LasR-defective backgrounds,
Anr plays roles that are not evident in las� laboratory strains.
When active, LasR regulates production of 4-hydroxy-2-al-
kylquinolines (HAQs), including PQS and its direct precursor
4-hydroxy-2-heptylquinoline (HHQ). The iridescent sheen that is
characteristic of lasR mutants is caused by an accumulation of
HHQ, which is due to an inability to properly induce the pqsH
product, the enzyme that converts HHQ to PQS, in the absence of
LasR (33). In contrast to the J215 WT, J215 �anr did not make
HHQ sheen when grown in 1% oxygen (Fig. 4A). These visual
phenotypes were supported by the RNA-Seq data, which showed
that three of the five transcripts in the HHQ biosynthetic operon
(pqsA, pqsC, and pqsE) were 2- to 8-fold lower in J215 �anr than in
the J215 WT. In contrast, the loss of anr had no effect on colony
morphology in PAO1 (see Fig. S3A in the supplemental material),
and pqs transcripts were not different between the PAO1 WT and

FIG 3 Abundance of Anr-controlled transcripts is higher in transcript analysis using NanoString in the absence of LasR signaling. Normalized NanoString
counts, reflecting mRNA levels, from 12-h colony biofilms grown in 1% O2 are shown. Data are provided in Data set S2 in the supplemental material. Isolate
AMT0047-3 (LasR�) evolved from AMT0047-2 (LasR�), and isolate NC-AMT0101-1 (LasR�) evolved from NC-AMT0101-2 (LasR�) (28). The PA14 �lasI
strain, lacking the 3OC12HSL synthase, was analyzed after growth in the absence or presence of purified 3OC12HSL provided at 25 �M. An equal volume of ethyl
acetate was provided as the vehicle control.
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PAO1 �anr. Interestingly, anr was not required for HHQ produc-
tion when cells were grown at 21% oxygen, a condition correlated
with lower Anr activity (see Fig. S3B). Consistent with the RNA-
Seq analysis of HAQ-related transcripts and phenotypic data, a
targeted analysis of pqsA and pqsE in J215 was performed. In the
absence of Anr, pqsA and pqsE were both reduced in the J215
background (Fig. 5A; see also Data set S3 in the supplemental
material). The cgrA, cupA1, and cupA3 transcripts, as expected
based on the data shown above, also followed this pattern. Expres-
sion of these genes was restored upon complementation with anr
at the native locus. Anr-dependent regulation of the pqs and cupA
genes was also observed in the PA14 �lasR and PA14 �lasR �anr
pair (Fig. 5B; see also Data set S3). Together, these data suggest
that Anr activity impacts HAQ production in strains with low or
absent LasR activity.

In addition to impacting pqs transcription and HHQ produc-
tion, deletion of Anr also affected production of the HHQ-derived
exoproduct 4-hydroxy-2 heptylquinoline N-oxide (HQNO),
which can slow the growth of Staphylococcus aureus and other
Gram-positive organisms by inhibiting electron transport (67,
68). We tested the role for anr in this interaction by exposing a
lawn of S. aureus to J215 biofilms and observing the zone of
growth inhibition. We saw that biofilms formed by J215 WT in-
hibited S. aureus in 1% oxygen and that this ability required anr
and pqsA (Fig. 4A). To further study Anr regulation of HAQs in
lasR mutant backgrounds, we examined the role for Anr in PA14
�lasR. (Strain PAO1 �lasR was not used because it does not over-
produce HHQ, a fact that has been previously published [33].)
Deletion of anr in a PA14 lasR mutant led to a marked decrease in
HHQ production and an inability to inhibit S. aureus at 1% oxy-
gen, while deletion of anr in a lasR intact background had no effect
on either colony morphology or S. aureus inhibition (Fig. 4B). As

with J215, anr was not required for HHQ production in PA14
�lasR at 21% oxygen (see Fig. S3B in the supplemental material).
It is important to note that Anr activity was not sufficient to main-
tain the same level of HAQ production as was seen in lasR-intact
strains; transcriptional data showed that pqs transcripts were less
abundant in J215 than in PAO1 (Fig. 1), and the zone of S. aureus
inhibition is larger in PA14 than in PA14 �lasR (Fig. 4B). How-
ever, these data indicate that Anr supports biologically active levels
of HAQ production in low-oxygen biofilms in the absence of
LasR.

We tested a number of potential mechanisms by which Anr
could impact HAQ production in lasR mutants. RhlR has been
shown to activate HAQ production in lasR mutants under certain
conditions (69, 70), but as anr is required for the production of
HAQs in both the PA14 �lasR mutant and the PA14 �lasR �rhlR
double mutant, we conclude that Anr-dependent regulation of
HAQ production is not through RhlR (see Fig. S4A in the supple-
mental material). Sonnleitner et al. described a connection be-
tween Anr and HAQs through PhrS, a small ncRNA that activates
translation of pqsR and is induced by Anr (58). In our RNA-Seq
experiment, both PAO1 and J215 anr mutants showed a strong
reduction in phrS expression (200-fold and 100-fold, respec-

FIG 4 Anr is required for HHQ-dependent colony sheen and HQNO-depen-
dent S. aureus inhibition at 1% oxygen in lasR mutants. (A) J215; (B) PA14.
Top row, colony biofilms at 5 days on T-broth agar. Bottom row, Whatman
paper discs with 24-h biofilms grown on T-broth agar were transferred to
tryptic soy agar plates spread with a lawn of S. aureus and grown for an addi-
tional 16 h.

FIG 5 Anr is required for expression of virulence-associated pathways in lasR
mutants. NanoString data from colony biofilms grown in 1% O2 for 12 h are
shown. (A) Data represent the average number of transcript copies from 3
biological replicates. Bars represent standard deviations. Significance was de-
termined by ratio paired t test.*, P � 0.05; **, P � 0.01. (B) Heat map repre-
sentation of one of the experiments included in panel A, as well as a separate
experiment measuring PA14 �lasR and PA14 �lasR �anr. Z-scoring was done
by row.
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tively). However, a J215 �phrS mutant did not show a decrease in
the HHQ-dependent colony phenotype that is lost upon mutation
of anr (see Fig. S4B). The antABC, catBCA, and xylXYZL gene
products are involved in degradation of aromatic compounds,
including the HHQ/HQNO precursor anthranilate. These genes
were induced up to 140-fold in both �anr mutants, and we rea-
soned that overactivity of these pathways could deplete intracel-
lular anthranilate and lead to an inability to synthesize HAQs.
However, deletion of antA in J215 �anr did not restore HHQ
production, as colony biofilms from this strain remained smooth
(see Fig. S4B). Because Anr is necessary for expression of arcD,
which encodes an arginine-ornithine antiporter, and because ar-
ginine has been linked with HHQ-mediated modulation of P.
aeruginosa swarming motility (71), we hypothesized that the anr
defect may be linked to an inability to acquire or synthesize argi-
nine. However, growth on media supplemented with 0.4% argi-
nine did not restore colony sheen in J215 �anr (see Fig. S4B).
Finally, Dnr, a major downstream regulator under the control of
Anr, does not participate in Anr regulation of HAQs, as a �dnr
strain retains HHQ production, while the Anr mutant does not
(see Fig. S4B). Taken together, these data indicate that the Anr
effect on HAQ production is likely due to a confluence of factors
or through an unrecognized pathway.

Analysis of links between LasR and Anr in the P. aeruginosa
genome. In the RNA-Seq data, Anr-dependent expression of
genes in the H2-type VI secretion system was more pronounced in
J215 than in PAO1 (Fig. 1). The H2-type VI secretion system de-
livers a phospholipase with activity against bacterial membranes,
PldA, directly into target cells (72) and has been shown to contrib-
ute to P. aeruginosa virulence in eukaryotic models of infection
(73, 74). Expression of the H2-type VI secretion locus is controlled
by LasR/3OC12HSL (73, 74), and a putative Anr-binding site has
been identified at bp �174 relative to the start of transcription of
the operon (23). Further analysis confirmed that expression of
hsiB2, a gene within the H2-type VI secretion system operon, was
dependent on Anr in the absence of functional LasR (Fig. 5B).

In order to identify additional genes potentially regulated by
both QS and Anr, we cross-referenced data sets from a LasR-ChIP
experiment (62) and a microarray experiment comparing a �lasI
�rhlI strain of PAO1 grown in the presence and absence of
3OC12HSL and N-butyryl-homoserine lactone (C4HSL) (63)
against a list of all P. aeruginosa genes with a putative Anr binding
sequence in their upstream region (23). This analysis returned
hcnA, nosR, narK1, and ccpR as well as hsiA2, the first gene in the
H2-type VI secretion locus. It also returned the hypothetical genes
PA3662, PA3913 (a putative collagenase), and PA5232 (part of a
putative ABC transporter). Comparing the expression profiles of
these genes and co-operonic genes in our RNA-Seq experiment
supports the hypothesis that they are regulated by quorum sensing
and Anr, in that in J215, a strain without functional LasR, Anr is
necessary for strong expression (Fig. 1).

DISCUSSION

In the present study, we analyzed the transcriptomes of WT and
�anr strains in colony biofilms grown in a low-oxygen environ-
ment without nitrate. We analyzed two distinct strain back-
grounds, including one lacking activity of the QS regulator LasR,
and found that the absence of LasR correlates with higher Anr
activity. This is consistent with reports that have noted that the
metabolism of lasR mutants differs from that of WT strains, par-

ticularly in that there is increased nitrate utilization and higher
expression of the denitrification machinery (35, 36, 63). Our data
show that Anr is necessary for induction of pathways that promote
the generation of energy under low-oxygen conditions, including
genes encoding high-affinity cytochrome oxidases, the machinery
necessary for denitrification, and arginine fermentation enzymes
(18, 23). Additionally, our conditions revealed a previously unob-
served role for Anr in the control of expression of pathways related
to iron acquisition and storage, HAQ production, the catabolism
of aromatic compounds, and H2-type VI secretion (Fig. 6).

Because isolates with loss-of-function mutations in lasR are
common in CF, it is interesting to speculate that increased Anr
activity contributes to the fitness of these strains. We have shown
a role for anr in a model of pulmonary infection, and there is
evidence to suggest that Anr-regulated pathways are an important
part of the long-term adaptation of P. aeruginosa to the CF airway
(17, 18, 50, 51, 75). Additionally, our data showing that Anr activ-
ity can be reduced in a �lasI strain by addition of exogenous
3OC12HSL raise the possibility that Anr has an important role in
the regulation of virulence factors in low-cell-density environ-
ments, when the concentration of 3OC12HSL is low.

The activities of Anr and also the E. coli Anr homolog Fnr are
redox sensitive, due to the requirement of an assembled [4Fe-
4S]2� cluster for dimerization and DNA binding (76, 77). Anr is
also likely affected by iron availability, as has been shown to be the

FIG 6 Model for the role of Anr in lasR mutant biofilms. In the presence of
LasR-mediated QS (A and B), Anr is active in biofilms and is required for
production of CupA fimbriae, but absence of Anr does not affect HAQ pro-
duction, H2-type VI secretion, or expression of the operons PA5232-PA5230
(containing a putative collagenase gene) and PA3913-PA3911 (encoding a
putative ABC transporter). In the absence of lasR signaling (C and D), in-
creased Anr activity leads to increased production of CupA fimbriae, and Anr
is required for HHQ/HQNO production and H2-type VI secretion, as well as
expression of the operons described above.
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case for Fnr (78). It is possible that either of these factors is altered
by LasR activity. Future studies will determine specifically how
LasR affects Anr activity in P. aeruginosa.

The role for Anr in regulation of HAQ production may be both
direct and indirect. The antABC and catBCA aromatic compound
degradation pathways are strongly activated by intracellular an-
thranilate, suggesting that the increased expression of these path-
ways in anr mutants could reflect accumulated anthranilate due to
inactivity of the pqsABCD operon. Additionally, AntR, when
bound to anthranilate, has been shown to inhibit the activity of
PqsR, and PqsR represses antA (59). Although deletion of antA
was not sufficient to restore HHQ production in J215 �anr, it is
possible that the �anr phenotype is due to repressive effects of
AntR. Another intriguing possibility is that HAQ production is
reduced in the J215 anr mutant as a result of either an increase in
or an inability to appropriately respond to oxidative stress. Mul-
tiple genes involved in the oxidative stress response (katB, which
encodes a catalase, as well as ahpB and ahpCF, which encode hy-
droperoxide reductases) were expressed at a level 	2-fold higher
in both the PAO1 and J215 �anr mutants. Quinolines have been
shown to sensitize P. aeruginosa to oxidative stress (79), and pyo-
chelin can promote oxidative stress (80) and is regulated in re-
sponse to oxidative stress (81).

The requirement for Anr in HHQ production in LasR-defec-
tive strains is interesting in light of data which showed that HHQ,
rather than its derivative PQS, is required for infection in a murine
model (82). P. aeruginosa cannot produce PQS anaerobically, due
to the fact that PqsH (the enzyme that oxidizes HHQ to PQS)
requires oxygen as a cofactor (83), and HHQ is readily detected in
CF airway secretions (84). We believe that the relationship be-
tween Anr and HHQ in quorum sensing mutants may function-
ally compensate for effects of losing LasR, and this could help
explain the ability for P. aeruginosa lasR mutants to thrive in in-
fections. A recent study demonstrated equal infectivity between
WT PAO1 and a lasRI rhlRI quadruple mutant in a mouse lung
model, suggesting that homoserine lactone signaling in general
may be dispensable for infection in this context (85). Future stud-
ies will be aimed at measuring the role for Anr regulation of HHQ
production in infections.

Thus, LasR loss-of-function mutants show increased expres-
sion of metabolic pathways that are valuable in low oxygen, in-
creased production of CupA fimbriae, and functionally active lev-
els of HHQ and HQNO (Fig. 6), all of which are dependent on
Anr. We propose that Anr-regulated pathways may contribute
significantly to virulence and fitness in lasR mutant isolates, and
future studies will be aimed at measuring the specific role for
Anr-regulated pathways in lasR mutants in infections.
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