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The human gut is inhabited by thousands of microbial species, most of which are still uncharacterized. Gut microbes have
adapted to each other’s presence as well as to the host and engage in complex cross feeding. Constraint-based modeling has been
successfully applied to predicting microbe-microbe interactions, such as commensalism, mutualism, and competition. Here, we
apply a constraint-based approach to model pairwise interactions between 11 representative gut microbes. Microbe-microbe
interactions were computationally modeled in conjunction with human small intestinal enterocytes, and the microbe pairs were
subjected to three diets with various levels of carbohydrate, fat, and protein in normoxic or anoxic environments. Each microbe
engaged in species-specific commensal, parasitic, mutualistic, or competitive interactions. For instance, Streptococcus thermo-
philus efficiently outcompeted microbes with which it was paired, in agreement with the domination of streptococci in the small
intestinal microbiota. Under anoxic conditions, the probiotic organism Lactobacillus plantarum displayed mutualistic behavior
toward six other species, which, surprisingly, were almost entirely abolished under normoxic conditions. This finding suggests
that the anoxic conditions in the large intestine drive mutualistic cross feeding, leading to the evolvement of an ecosystem more
complex than that of the small intestinal microbiota. Moreover, we predict that the presence of the small intestinal enterocyte
induces competition over host-derived nutrients. The presented framework can readily be expanded to a larger gut microbial
community. This modeling approach will be of great value for subsequent studies aiming to predict conditions favoring desir-
able microbes or suppressing pathogens.

The human intestine is inhabited by a complex ecosystem con-
sisting of thousands of microbial species. Its collective genome

(the microbiome) contains more than 150 times as many genes as
our own genome (1). The community of gut microbes has co-
evolved with humans and has adapted to the competitive condi-
tions in the intestine. Gut microbes differ in their metabolic po-
tential to exploit various environmental conditions and to persist
in the intestine (2). They respond differently to the availability of
dietary nutrients (3). Moreover, the gut microbiota has to contend
with a steep oxygen gradient, which ranges from a partial O2 pres-
sure of approximately 80 mm Hg to nearly anoxic conditions (4).
The diverse physiology of the small intestine creates a wide range
of local oxygen microenvironments that favor particular groups of
bacteria (4). Furthermore, metabolic interaction patterns between
microbes affect microbial growth. Generally, six types of species-
species interactions can be distinguished (5) (Fig. 1a). In the case
of neutralism, two organisms do not depend on each other for
growth. If shared resources become scarce, this condition leads to
competition (5). In the gut, competition over fermentable carbo-
hydrates typically arises (6). If only one species is negatively af-
fected by the competition, this is known as amensalism (5). Com-
mensalism is observed when one organism (the giver) provides
something to another (the consumer) while not benefitting itself.
In such a case, the microbe grows on the waste products of the
other microbe (5). If the giver pays a fitness price for the interac-
tion, this interaction can be considered parasitism or predation
(5). Finally, an interaction in which both organisms convey mu-
tual benefit to each other is considered mutualism, cooperation,
or syntrophy (5).

Established tools for studying microbe-microbe interactions
include in vitro model communities that contain selected repre-
sentative species (6–8). A typical example of mutualistic cross

feeding in the gut is the interaction between Roseburia intestinalis,
which converts xylan and acetate to butyrate and hydrogen, and
Blautia hydrogenotrophica, which consumes hydrogen and pro-
vides acetate to R. intestinalis in return (8). An example of com-
mensalism is the interaction between Bifidobacterium adolescentis
and Eubacterium hallii. Unlike the latter organism, B. adolescentis
is able to use starch and fructooligosaccharides. Its metabolic
products, acetate and lactate, are then utilized by E. hallii (7).
Another established experimental model is gnotobiotic animal
models, which are germfree animals colonized with selected rep-
resentative microbes. For example, a gnotobiotic mouse model
revealed the interplay of the Bacteroidetes representative Bacte-
roides thetaiotaomicron and the Firmicutes Eubacterium rectale in
the mouse gut (9). Other gnotobiotic mouse models investigated
the interaction between B. thetaiotaomicron and the Archaea rep-
resentative Methanobrevibacter smithii (10) and between B.
thetaiotaomicron and two acetogens (11). M. smithii used the for-
mate produced by B. thetaiotaomicron for methanogenesis (10).
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The acetogen Blautia hydrogenotrophica removed the hydrogen
produced by B. thetaiotaomicron, thereby enabling the latter to
reoxidize NADH (11). However, due to the complexity of the gut
ecosystem, in vitro and gnotobiotic mouse models are limited in
scope. In silico models, which can resolve complex interactions at
the molecular level, are useful tools that can complement in vitro
and in vivo models (12).

Computational models can successfully predict interspecies
interactions, such as competition and mutualism. For example,
the reverse ecology approach investigates the genome-scale meta-
bolic network of an organism under the assumption that selection
pressure from the environment and the presence of other species
is reflected in its metabolism (13). In this approach, a seed set,
which is the set of compounds that the metabolic network can
extract from its environment, is determined. For example, intra-
cellular parasites have smaller seed sets than free-living bacteria
(13). Recently, the seed set approach was applied to 154 gut mi-
crobes and their competitive potential was predicted (14). Inter-
species competition correlated with co-occurrence, indicating

that habitat filtering drives microbiome assembly (14). Another
method that can successfully predict microbe-microbe interac-
tions in silico is constraint-based modeling (15–21). While con-
straint-based models operate under the steady-state assumption
and do not account for kinetic parameters, their advantage is that
the predictions are based on manually curated, genome-scale net-
works at the biochemical level and are therefore mechanistic.
Mechanisms behind a community’s behavior can be proposed in
silico and subsequently validated experimentally (16). For exam-
ple, in an in silico bioremediation model, added acetate and Fe(III)
were predicted to be major factors influencing competition, which
led to the proposal of a long-term bioremediation strategy (21,
22). The applications of constraint-based multispecies modeling
to the complex ecosystem residing in the human gut are particu-
larly promising (16). For instance, constraint-based models of an
ex-germfree mouse colonized with a single gut symbiont (23) and
of a human gut containing up to 11 microbes, including commen-
sals, probiotics, and pathogens, in different combinations have
been constructed and analyzed (24). In the latter study, the model

FIG 1 Overview of cogrowth outcomes predicted for the 11 microbes paired in all possible combinations. (a) Description of all possible outcomes of coculturing
of two microbes; (b) outcomes predicted for 55 microbe pairs subjected to 12 scenarios (600 cogrowth predictions in total); (c) depiction of the 600 pairs from
panel b resolved at the species level; (d) depiction of the 600 pairs from panel b resolved by diet, oxygen status, and enterocyte presence or absence.
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community of 11 microbes was shown to significantly affect the
human metabolism and to increase the secretion flux of host body
fluid metabolites by up to 100 times (24). In the present study, the
pairwise interactions between 11 microbes were systematically in-
vestigated while imposing various environmental constraints on
the pairs. The microbe pairs were subjected to three different di-
etary regimes and both anoxic and oxic conditions. Moreover, a
cell type-specific reconstruction of the human small intestinal en-
terocyte (25) was included in the modeling framework, making it
possible to model microbe-microbe interactions with and without
the human host as the background.

MATERIALS AND METHODS
Definition of scenarios. To simulate different regions of the small intes-
tine, scenarios with and without the host and with varied oxygen and
nutrient availabilities that represented the range of microenvironments in
the small intestine due to its oxygen gradient and anatomy were defined
(4) (Fig. 2a). These scenarios were oversimplifications made for modeling
purposes, but they allowed us to evaluate certain parameters that define
environmental niches found in the human gut. In vivo, an oxygen gradient
(4) rather than a binary switch between the total absence/presence of
oxygen occurs.

Assembly of the host and a representative microbial community.
We used 11 manually curated, published gut microbe reconstructions (23,
26–33) that we had refined previously (24). The reconstructed strains are

listed in Table S1 in the supplemental material, and the reconstructions
are shown in spreadsheet format in Table S2 in the supplemental material.
To simulate a small intestine environment, a manually curated and vali-
dated model of the small intestinal enterocyte, hs_sIEC611 (25), was used.
Host and microbes were joined through a separate compartment (u) sim-
ulating the intestinal lumen. This compartment served as an inlet for
nutrients derived from the simulated diet and the enterocyte; it allowed
metabolite exchange between the microbes and provided an outlet for
fermentation end products (Fig. 2). The 11 microbes were paired in every
possible combination. To simulate baseline conditions or controls, the
corresponding microbe-microbe models were used, and one microbe was
silenced by constraining the fluxes through all of the reactions to zero
(lower bound [lb] � upper bound [ub] � 0 mmol/gDW/h, where gDW is
the number of grams [dry weight]). The microbe-microbe models and
single-microbe models were then subjected to four basic scenarios, which
were defined as follows (Fig. 2). (i) The microbe models were used sepa-
rately (n � 10) and joined pairwise in all combinations (n � 45) while
simulating anoxic conditions. (ii) The microbe models were used sepa-
rately (n � 10) and joined pairwise with hs_sIEC611 in all combinations
(n � 45) while simulating anoxic conditions. (iii) The microbe models
were used separately (n � 11) and joined pairwise in all combinations
(n � 55) while allowing oxygen uptake. (iv) The microbe models were
used separately (n � 11) and joined pairwise with hs_sIEC611 in all com-
binations (n � 55) while allowing oxygen uptake.

Pairs including Helicobacter pylori, a microaerophilic bacterium, were
not subjected to scenarios (i) and (ii). Each basic scenario was performed

FIG 2 Overview of study design. (a) Diagram of the modeling framework. The four main scenarios are depicted: (i) no oxygen, without an enterocyte,
representing the near anoxic conditions at the midpoint of the lumen (4); (ii) no oxygen, with an enterocyte, representing a scenario in which the microbes were
exposed to sloughed epithelial cells (4) but were under anoxic conditions because they were far from the epithelial cell layer; (iii) with oxygen, without an
enterocyte, representing the midpoint of the lumen in the duodenum, where some oxygen swallowed with the food is present (60); (iv) with oxygen, with an
enterocyte, simulating the growth of bacteria near the epithelial cell layer with oxygen dissipating from the enterocyte (4). (b) Compositions of the simulated
dietary regimes. (c) Table of the 12 scenarios that the 55 microbe pairs were subjected to. W and WD, Western diet; HF and HFD, high-fiber diet; P and PD,
protein diet; CHO, carbohydrates derived from the enterocyte; sIEC, small intestine enterocyte.
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for three diets varying in carbohydrate, fat, and protein contents (Fig. 2b),
resulting in 12 scenarios (Fig. 2c). In total, 600 species-species interactions
and 126 single-microbe models were simulated. The growth rate of the
enterocyte was set to a maintenance rate by constraining the lower and
upper bounds on the biomass objective function of hs_sIEC611 (lb �
ub � 0.01 mmol/gDW/h). The lower bounds on the extracellular oxygen
exchange reaction were set to �10 mmol/gDW/h for scenarios (iii) and
(iv). The lower and upper bounds on the luminal oxygen exchange of the
enterocyte were fixed at zero. All models are available in Matlab format at
www.thielelab.eu.

Diet definition. To investigate the impact of diet on microbe-microbe
interactions, three diets that differed in their carbohydrate, fat, and pro-
tein contents were defined (Fig. 2). The Western diet was high in simple
sugar and fat content and low in fiber content. In contrast, the high-fiber
diet was high in fiber content but low in simple sugar and fat content. The
protein diet had twice the protein content of the other diets, and it had a
low fat content with a moderate simple sugar and fiber content. The con-
straints applied to simulate the three diets are listed in Table S3 in the
supplemental material.

In silico analysis. For all of the simulations, the methods implemented
in the COBRA toolbox (34) were used within Matlab (Mathworks, Inc.,
Natick, MA, USA). Tomopt (Tomlab, Inc., Seattle, WA, USA) was used as
a linear programming solver for the flux balance analysis (35). For the flux
variability analysis (36), ILOG CPLEX (IBM) was used as a linear pro-
gramming solver.

Pareto optimality analysis. Pareto optimality analysis was performed
as described previously (23). Briefly, the fluxes through the biomass ob-
jective functions of each microbe were fixed at different intervals while
optimizing the flux through the other biomass objective function. Hence,
the trade-offs in biomass production for each pair were computed. Each
Pareto frontier contained all of the possible interactions between both
microbes when optimizing for biomass production. Pareto optimality
analysis was performed for all 12 defined scenarios (Fig. 2). Each microbe
was included in 114 Pareto frontiers, with the exception of the microae-
rophile Helicobacter pylori, which participated in only 60 Pareto frontiers.
In total, 600 Pareto frontiers were computed (see Fig. S1 in the supple-
mental material).

Computation of optimal total biomass production for microbe-mi-
crobe pairs. The combined maximal growth was optimized by simulta-
neously maximizing the biomass objective functions of both microbes. As
a baseline condition, growth rates for the microbes alone were computed
for the 12 scenarios (Fig. 2). The growth rate of each microbe in each pair
for each scenario was compared with the growth rate achieved by the
microbe alone. Eight microbe behaviors could be distinguished, and these
were grouped into six basic cogrowth outcomes (Fig. 1a; Table 1).

Identification of obligate metabolic exchanges. Obligate metabolic
exchanges were defined as metabolite shuttles between microbe-microbe
pairs that occurred in every alternative steady-state solution when simu-
lating simultaneous growth. To compute alternative steady-state solu-
tions, flux variability analysis (36, 37) was used. Metabolites exchanged
between microbe pairs were determined by inspecting the internal ex-

change reactions in the model (Fig. 2a). To identify metabolite pairs that
were shuttled between microbes while being interconverted, the pathway
utilization in the microbe models was inspected for each transported me-
tabolite.

Identification of metabolic products supplied by the enterocyte. The
internal exchanges of the enterocyte and the microbe pairs in scenarios (ii)
and (iv) were inspected to identify valuable nutrients provided by the
enterocyte. This condition was fulfilled when the enterocyte secreted the
nutrient in every alternative solution and at least one microbe consumed
it at a corresponding uptake rate.

RESULTS

In this study, the potential of pairs of gut microbes to engage in
mutualistic, commensal, and competitive interactions was sys-
tematically investigated. A computational framework that could
predict interspecies behavior under various environmental condi-
tions, such as dietary input, oxygen availability, and exposure to
the host intestinal cell layer, was developed. The results revealed a
variety of trade-offs within the microbe pairs that depended on
both the metabolic potential of each microbe and the imposed
environmental conditions. Maximizing the total growth of each
pair revealed that giver-consumer interactions were the most fre-
quent. Moreover, a substantial percentage of mutualistic interac-
tions involving Lactobacillus plantarum were predicted, but these
were abolished in the presence of oxygen. Both known and non-
intuitive metabolic cross feedings in a small intestinal model com-
munity of 11 microbes were proposed.

Representativeness of the model gut microbiota community.
The model gut microbiota community consisted of 11 strains be-
longing to nine species. The 11 microbes account for three of the
four main phyla in the human gut microbiome (see Table S1 in the
supplemental material), and their metabolic functions are repre-
sentative of those detected in the gut microbiomes of 124 human
volunteers (1, 24). Moreover, they contained metabolically simi-
lar species, such as Escherichia coli MG1655 and Klebsiella pneu-
moniae, but they also had metabolically distant representatives
(24), the presence of which has been proposed to be important for
collaboration in a community (38). All metabolic reconstructions
used in this study were constructed in a manual curation effort
(23, 26–33) and account for not only the genomic annotation but
also the known biochemical and physiological traits of their target
organisms. The modeling framework can thus be expected to ac-
curately capture the metabolic capabilities of the 11 representative
gut microbes. As a result, the 11 microbes captured distinct inter-
action patterns that are typical of those detected in microbial com-
munities (Fig. 1b and c). All of the included species and strains,
except Faecalibacterium prausnitzii and K. pneumoniae, have been

TABLE 1 Description of nine possible outcomes of cogrowth per microbea

Description Type

The microbe grows slower in the presence of the other microbe, whereas the other microbe grows faster. Parasitism
The microbe grows faster in the presence of the other microbe, whereas the other microbe grows more slowly. Parasitism
The microbe’s growth is not affected, whereas the other microbe grows faster. Commensalism
The microbe grows faster in the presence of the other microbe, whereas the other microbe’s growth is not affected. Commensalism
Neither microbe affects the growth of its partner significantly. Neutralism
The microbe grows more slowly in the presence of the other microbe, whereas the other microbe’s growth is not affected. Amensalism
The microbe’s growth is not affected, whereas the other microbe grows more slowly. Amensalism
Both microbes grow more slowly when they are grown together than when they are grown separately. Competition
Both microbes achieve a significantly higher growth rate when they are grown together than when they are grown separately. Mutualism
a A difference in growth rate of at least 10% compared with the growth rate of the microbe grown separately was considered significant.
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detected in the small intestine microbiome (39); therefore, our
model community is also representative of the small intestine mi-
crobiota. Species display strain-specific differences, which were
reflected by the observed differences in the behavior of commen-
sal and pathogenic E. coli strains (Fig. 1c). It can be expected that
the use of different strains for the other species would also result in
different outcomes.

Trade-offs in biomass production between microbe pairs.
Pareto optimality analysis was performed for each of the 12 sce-
narios (see Fig. S1 in the supplemental material). Four types of
Pareto frontiers could be distinguished (Fig. 3). In the type 1 in-
teraction (24% of the pairs), both of the microbes benefitted from
the other microbe at low growth rates of the latter (increase in
growth rate, at least 10%). Higher growth rates led to increasing
competition for growth-limiting nutrients (Fig. 3). This type of
interaction has been previously observed in a model of the mouse
and its gut symbiont B. thetaiotaomicron (23). In the rare type 2
interaction (4% of pairs), which was observed only for pairs in-
cluding L. plantarum (see Fig. S1 in the supplemental material),
mutual benefit was observed even at the highest possible growth
rates, and the microbes never entered a phase of competition.

Metabolic exchange between the two microbes was obligatory to
achieve the highest possible growth rates (Fig. 3), which may be
considered syntrophy. In the type 3 interaction, which was ob-
served in the highest number of pairs (49%), only one microbe
benefitted at low growth rates of the other microbe (Fig. 3). At
higher growth rates of the benefitting microbe, this interaction
can be described as parasitism, as it came at the expense of the
giving microbe (Fig. 3). Finally, in the type 4 interaction, compe-
tition was observed throughout the Pareto frontier, as neither mi-
crobe benefitted the other (Fig. 3; 23% of pairs). Notably, the same
species fell into different types of interactions depending on the
scenario and depending on which microbe it was paired with. For
example, E. coli MG1655 was able to engage in all four types of
interactions (see Fig. S1 in the supplemental material). Moreover,
the same pair could display various behaviors depending on the
scenario. One example is the pair of L. plantarum and K. pneu-
moniae, which displayed a type 1 interaction in three scenarios, a
type 2 interaction in five scenarios, a type 3 interaction in three
scenarios, and a type 4 interaction in one scenario (see Fig. S1.20
and S1.68 in the supplemental material). As can be expected, the
computed Pareto frontiers reflected not only the microbe’s meta-

FIG 3 The four types of Pareto frontiers computed when predicting microbe-microbe growth trade-offs and the number of pairs falling into each type for all
models, resolved by scenario. M1, microbe 1; M2, microbe 2. Points on the Pareto frontiers where total growth is maximal are indicated by diamonds. The
locations of these points differ for the individual microbe-microbe plots (and are shown in detail in Fig. S1 in the supplemental material). Note that the figure
displays extreme cases for types 3 and 4, in which the growth benefit is 0%.
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bolic potential but also the nutrient regime, oxygen availability,
and enterocyte presence or absence. For instance, type 2 interac-
tions were computed only in the absence of oxygen (Fig. 3; see also
Table S4 in the supplemental material). These results revealed a
complex interplay of microbe-microbe interactions and strong
influences of dietary nutrients, host-derived nutrients, and oxy-
gen on the possible trade-offs for each microbe pair.

Microbe-microbe interactions enabling maximal biomass
production. The Pareto frontier contains an infinite number of
steady-state flux solutions, each representing an optimal trade-off
between the growth rates of the two microbes. However, many of
these solutions may not be attained in vivo, as they result in low
biomass production overall or significantly prioritize one of the
two microbes. Under the assumption that a coculture of two bac-
teria would result in the highest possible bacterial density, the
simultaneous growth of each pair in the 12 scenarios, which cor-
responded to the point of the Pareto frontier resulting in a com-
bined optimal biomass production, was optimized. For type 1,
type 2, and type 3 interactions, this point was located at the saddle
points of the frontiers where the incline changed (see Fig. S1 in the
supplemental material). To characterize the type of behavior ob-
served at this point, the growth rate achieved for each microbe in
each pair was compared with the growth rate achieved by the
microbe alone (Fig. 2). An increase or a decrease in the growth rate
under the pairwise condition of at least 10% compared with that
of each microbe alone was considered a significant difference. The
analysis was performed in the presence and absence of the entero-
cyte model. The outcome for each microbe could be grouped into
nine types (Table 1). The most commonly observed interaction
was a giver-consumer interaction that was detrimental to the giver
(parasitism). This interaction accounted for 50% of all pairs in the
present study (Fig. 1b). This result agrees with the predictions of
Freilich et al. (19), who also found give-take relationships to be the
most common when computing pairwise interactions in an in
silico community. The least frequent interaction, neutralism, oc-
curred in only one pair (0.17%) (Fig. 1b). This indicates that most
of the microbes in our study utilized similar nutrients, causing
competitive interactions to be more frequent (11%). Because all
11 microbes are gut inhabitants and likely use carbon sources
typically found in the human diet, such an outcome was expected.
Often, only one microbe was affected by the competitive interac-
tion, indicating that the microbes differed in their ability to cope
with limited nutrient intake. Commensalism was rarely observed
(4%). Finally, the microbes in a small subset of pairs (6%) were
able to complement each other’s metabolisms to mutual benefit
(mutualism).

Microbe-microbe interactions are species specific. To iden-
tify species-specific differences in the commensal, mutualistic,
and competitive interaction profiles due to the distinct metabo-
lisms of the microbes, we resolved the computed interactions for
each microbe (Fig. 1c). Each microbe was capable of acting as a
giver and a consumer in at least one pair and scenario, though the
percentage of interactions in which it participated varied greatly.
For instance, B. thetaiotaomicron and F. prausnitzii were givers in
the majority of their interactions (Fig. 1c; see also Table S5 in the
supplemental material). In agreement with B. thetaiotaomicron’s
predicted role as a giver (only 21% of its interactions benefit-
ted the microbe itself), Bacteroides representatives, such as B.
thetaiotaomicron, are considered primary degraders, in contrast to
secondary fermenters, such as streptococci and lactobacilli (40). F.

prausnitzii benefitted from only 10% of its interactions (Fig. 1c).
This finding indicates that F. prausnitzii is easily outcompeted in
the presence of facultative anaerobes and may partially explain
why this microbe is not detected in the small intestine (39).

A surprisingly high number of mutualistic interactions was
predicted for L. plantarum (Fig. 1c). In fact, 31 of the 37 (84%)
predicted mutualistic pairs included this bacterium (Fig. 4). In
contrast, Streptococcus thermophilus, Lactococcus lactis, and H. py-
lori were mainly consumers and as such received one-sided bene-
fits from other microbes. S. thermophilus showed a particularly
strong ability to benefit from other microbes, acting as a consumer
in 77% of its interactions (Fig. 1c). In only 4% of pairs, S. thermo-
philus played a benefactor role (giver or mutualism) (Fig. 1c),
indicating that the microbe would benefit greatly from the mod-
eled microbial community to the detriment of the other microbes.
Consistently, S. thermophilus grew poorly by itself, but in the pres-
ence of other microbes it achieved the second highest growth rates
overall after L. plantarum (see Table S5 in the supplemental ma-
terial). Our results suggest that S. thermophilus was poorly adapted
to grow individually under certain conditions (especially on the
high-fiber diet), but it was able to use metabolic end products and
simple sugars liberated by other microbes efficiently. K. pneu-
moniae, Salmonella enterica subsp. Typhimurium, and the E. coli
strains engaged in significant competitive interactions (Fig. 1c), in
agreement with the fact that proteobacteria compete over similar
carbon sources (41). In fact, 56 to 58% of the interactions pre-
dicted for the E. coli strains were competitive (Fig. 1c), and the E.
coli strains were almost exclusively competitive when paired
among themselves (Fig. 4). In more than half of the competitive
interactions that they participated in, the E. coli strains were un-
affected, but the competing microbe had a decreased growth rate
(Fig. 1c). This result suggests that E. coli can cope well with com-
petition for dietary nutrients. In agreement with this observation,
E. coli strains are commonly detected in the small intestine (39).
One possible explanation for these differences in pairwise interac-
tions is metabolic distance, which was previously determined for
the 11 microbes (24). However, the metabolic distance for the 11
microbes correlated poorly with giver-consumer interactions and
competitive interactions (see the Supplemental Results section in
the supplemental material).

Environmental constraints affect the predicted microbe be-
havior. The availability of nutrients (e.g., carbohydrates) and ox-
ygen is well-known to influence the gut microbiota (3, 42). The
models were used to interrogate how microbe-microbe interac-
tions differed in the defined 12 scenarios that placed the 55 spe-
cies-species pairs in different metabolic environments (Fig. 2).
Microbe-microbe interactions for the three diets were generally
comparable, except that fewer giver-consumer pairs and more
mutualistic pairs were predicted on the protein diet (Fig. 1d).
Resolving the microbe behavior by diet on the species level, how-
ever, revealed significant species-specific differences (see Fig. S5a
to c in the supplemental material). For instance, B. thetaiotaomi-
cron provided benefits to the other microbes in significantly more
pairs on the high-fiber diet (see Fig. S5b in the supplemental ma-
terial). These relationships were due to the microbe’s well-known
fiber-degrading capabilities (43), which enabled it to provide oth-
erwise inaccessible plant polysaccharides to the other microbes.
Accordingly, the plant polysaccharide content was highest in the
high-fiber diet (see Table S3 in the supplemental material). In
particular, the presence of B. thetaiotaomicron increased the
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FIG 4 Overview of the interactions predicted for all pairs in 12 scenarios. M1, microbe 1; M2, microbe 2; sIEC, small intestine enterocyte; WD, Western diet;
HFD, high-fiber diet; PD, protein diet; NG, no growth due to H. pylori being unable to grow without oxygen; K. pneu, K. pneumoniae; S. typh, S. enterica subsp.
Typhimurium; EC, E. coli.
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growth rate of S. thermophilus by up to 31-fold, demonstrating
that it liberated simple sugars from fiber in the diet that were
usable by S. thermophilus (see Table S5 in the supplemental mate-
rial).

An anoxic environment is mutualism inducing. The pre-
dicted microbe-microbe interactions with and without oxygen
differed significantly (Fig. 1d and 4). Allowing oxygen uptake
caused a decrease in mutually beneficial interactions and an in-
crease in giver-consumer interactions (Fig. 1d and 4). In fact, all
but one of the mutualistic interactions observed without oxygen
were abolished in the presence of oxygen (Fig. 4; see also Fig. S6a
and b in the supplemental material). Of the five cases of mutual-
istic interactions predicted in the presence of oxygen, four in-
volved the strict microaerophile H. pylori (Fig. 4). As can be ex-
pected, all of the microbes except Lactococcus lactis showed growth
rate increases of at least 10% and a growth rate up to 11-fold
higher in the presence of oxygen than in the absence of oxygen (see
Table S5 in the supplemental material). These results highlight
that in the presence of oxygen, most microbes were able to effi-
ciently extract energy from the supplied dietary nutrients and did
not rely on metabolites secreted by other microbes. In the absence
of oxygen, however, the microbes were forced to cooperate to
achieve optimal growth by exchanging metabolites with each
other. Accordingly, mutualistic pairs switched to parasitic giver-
consumer interactions in the presence of oxygen (Fig. 4).

Obligate metabolic exchanges reoccur in microbe-microbe
pairs. To identify the mechanisms behind the observed oxygen-
dependent microbe-microbe interactions, the pathway usage in
the computed alternative solutions was inspected for all of the
pairs in the 12 scenarios. Obligate metabolic interactions, which
we defined as cross-feeding cycles occurring in every alternative
solution and therefore required for optimal growth, were identi-
fied. Certain obligate metabolic interactions reoccurred in multi-
ple pairs and/or scenarios (see Table S6 in the supplemental ma-
terial). These interactions included well-known cross feedings
occurring in the gut microbiota, such as the conversion of acetate
to butyrate (44) and of ethanol to acetaldehyde (45), as well as
nonintuitive exchanges, such as threonine/glycine interconver-
sion (see Table S6 in the supplemental material). Up to three of
these interactions were observed in each pair and scenario (see Fig.
S3 in the supplemental material); however, there was no clear
correlation between the sum of the cross-feeding interactions and
the pair’s ability to engage in mutual benefit. For example, the pair
of L. lactis and K. pneumoniae displayed 24 metabolic interactions
in total in the 12 scenarios yet showed no commensal or mutual-
istic behavior (see Fig. S3 in the supplemental material). Further-
more, the highest computed number of cross-feeding behaviors
(three) was observed only for the pair of F. prausnitzii and E. coli
MG1655 in 7 out of 12 scenarios, but only two of these cases
resulted in mutual benefit (see Fig. S3 in the supplemental mate-
rial). In conclusion, the number of reoccurring exchanges per pair
alone could not entirely explain the behavior of the pairs.

The co-occurrence of metabolic exchanges involving NAD�/
NADH interconversion drives mutualism. To identify the ex-
change co-occurrence patterns that induced mutualism, the
above-described types of computed exchange strategies were plot-
ted by interaction (see Fig. S4 in the supplemental material). As
was expected, mutualistic pairs displayed more metabolic ex-
changes on average than giver-consumer or competitive pairs
(1.97 exchanges on average per pair compared with 0.67 to 0.84

exchanges per pair for giver-consumer pairs and 0.25 to 0.30 ex-
changes per pair for competitive pairs) (see Fig. S4 in the supple-
mental material). Mutualistic behavior was linked to exchange
co-occurrences, with on average 1.1 exchange strategies co-occur-
ring per mutualistic pair (see Table S7 in the supplemental mate-
rial). In 29 of the 37 mutualistic pairs, all of which included
L. plantarum, pyruvate/D-lactate and acetaldehyde/ethanol ex-
changes co-occurred, indicating that pairwise reoccurring meta-
bolic exchanges were linked to mutualism. Both exchanges in-
volved the interconversion between NAD� and NADH, which is
required to maintain the flux through glycolysis (Fig. 5a). These
predictions indicate that the mutually beneficial behavior in many
pairs involving L. plantarum was due to an improved ability to
maintain the redox balance via D-lactate dehydrogenase and alco-
hol dehydrogenase (Fig. 5a). When oxygen uptake was allowed,
the bacteria instead regenerated NAD� from NADH via cyto-
chrome oxidase and NADH dehydrogenase, eliminating the need
to cooperate to maintain their NAD�/NADH balance (Fig. 5b). In
conclusion, certain pairs were able to optimize the redox balance
to each other’s benefit by complementing each other’s metabo-
lism. These pairs typically involved L. plantarum and a metaboli-
cally distant partner (B. thetaiotaomicron or a representative of the
gammaproteobacteria) (Fig. 4), suggesting that parallel pathways
in bacteria with otherwise distinct metabolisms were mutualism
inducing.

We then examined exchange co-occurrences that benefit only
one partner in pairs (giver-consumer pairs). The most frequent
exchange co-occurrence in parasitic giver-consumer pairs was fu-
marate/succinate and glutamate/citrate exchange (co-occurring
in 26 out of 299 pairs, or 9%) (see Table S7 in the supplemental
material). In all 26 pairs, F. prausnitzii acted as a giver to the
benefit of a representative of the gammaproteobacteria. Fuma-
rate/succinate exchange enabled the representative of the gamma-
proteobacteria to regenerate NAD� via fumarate reductase and a
quinone-dependent NADH dehydrogenase (Fig. 5c). Glutamate/
citrate exchange caused citrate transfer from giver to consumer,
thereby enabling the consumer to convert 2 units of NADH to
NAD� (Fig. 5c). Finally, we predicted that acetate/butyrate ex-
change was specific for the pair of F. prausnitzii and E. coli
MG1655 (Fig. 5d). The latter utilized the butyrate produced by F.
prausnitzii as a carbon source, thereby gaining a significant growth
advantage in seven scenarios (Fig. 4; see also Table S5 in the sup-
plemental material). In two scenarios (protein diet without oxy-
gen), this strategy caused the usually one-sided giver-consumer
interaction between F. prausnitzii and E. coli MG1655 to switch to
mutualism (Fig. 4). Thus, under certain nutrient regimes, E. coli
MG1655 was able to assist F. prausnitzii through acetate produc-
tion and in return benefitted from F. prausnitzii’s waste product,
butyrate. In contrast to commensal E. coli, the O157:H7 (entero-
hemorrhagic E. coli [EHEC]) strains were unable to utilize bu-
tyrate due to the lack of acetyl coenzyme A (acetyl-CoA):butyrate-
CoA transferase (encoded by the genome of strain MG1655; NCBI
gene identifiers b2221 and b2222).

In summary, we predicted that the co-occurrences of specific
metabolite exchange strategies could explain most cases of mutu-
alism as well as specific cases of giver-consumer interactions.
These co-occurring metabolite strategies involved reactions that
maintained the NAD�/NADH balance. In mutualistic pairs, both
microbes were able to regenerate NAD� from NADH through
cross feeding. In one-sided giver-consumer interactions (parasit-
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ism), only one microbe was able to exploit metabolite exchange to
maintain its NAD�/NADH balance. Competing pairs were unable
to balance the availability of redox equivalents, causing the forced
cogrowth to be a burden on one or both microbes. In the specific
pair of F. prausnitzii and E. coli MG1655, cross feeding of acetate
and butyrate was able to induce mutualism only under anoxic,
high-protein-intake conditions (Fig. 4).

The small intestinal enterocyte induces competition between
microbes through secretion of carbon sources. It is well-known
that intestinal microbes feed on host-derived carbohydrates (43,
46). Therefore, the host background can be expected to influence
the pairwise interactions. In the presence of the enterocyte, the
number of competitive interactions affecting only one microbe
(amensalism) was higher. The number of competitive interactions
affecting both microbes was comparable with and without the
presence of the enterocyte (Fig. 1d). Species losing more fre-
quently in amensalism-type interactions in the presence of the
enterocyte included F. prausnitzii, L. lactis, H. pylori, and K. pneu-
moniae. In contrast, L. plantarum, S. thermophilus, and E. coli
MG1655 were rarely outcompeted in the presence of the entero-
cyte (see Fig. S7a and b in the supplemental material). When
joined separately with the enterocyte, the growth rates of all of the
microbes increased by at least 10% and up to 13-fold under most

nutrient conditions, demonstrating that the microbes can utilize
enterocyte-derived nutrients (see Table S5 in the supplemental
material). Thus, exposing the pairs to the enterocyte opened up a
source of energy and carbon apart from the simulated diet that can
explain the predicted differences in interactions induced by the
enterocyte.

To identify these enterocyte-derived energy and carbon
sources, the metabolites exchanged between the enterocyte and
each microbe pair were inspected (see Table S8 in the supplemen-
tal material). It must be noted that the simulation setup is not
entirely realistic because it assumes that the enterocyte is working
for the microbes’ benefit. However, it still provides valuable in-
sight into the abilities of the 11 microbes to utilize enterocyte-
derived nutrients to their advantage. The enterocyte provided sig-
nificant glucose to the microbes by performing gluconeogenesis,
which is accounted for in hs_sIEC611 (25). Glucose was partially
derived from the starch fraction of the diet, which can be degraded
only by the human host (46) and by B. thetaiotaomicron (43).
Thus, the enterocyte provided extra glucose, in addition to the
dietary glucose, to the microbes (see Table S8a in the supplemen-
tal material), resulting in competition over the glucose provided
by the enterocyte. L. lactis and K. pneumoniae were frequently
deprived of glucose when paired with another microbe (see Table

FIG 5 Simplified depiction of the cross feeding observed in selected cases of microbe-microbe interaction. (a) Example of a mutualistic pair under anoxic
conditions, in which the microbes benefit from each other through pyruvate/D-lactate exchange and acetaldehyde/ethanol exchange. MK7(red),
menaquinol 7; MK7(ox), menaquinone 7; FAD, flavin adenine dinucleotide. (b) Altered behavior observed in the pair from panel a after allowing oxygen
uptake, which abolishes the mutualistic behavior. (ex), extracellular. (c) Example of the cross feeding predicted for a typical giver-consumer pair. (d)
Depiction of the specific cross feeding between F. prausnitzii, which converts acetate to butyrate, and E. coli MG1655, which utilizes butyrate as a carbon source
and produces acetate.
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S8a in the supplemental material), explaining why they were
largely losing in amensalism-type interactions in the presence of
the enterocyte. In contrast, S. thermophilus consistently consumed
glucose at a high uptake rate, depriving the microbes it was paired
with of this carbon source (see Table S8a in the supplemental
material). This result indicates that S. thermophilus was able to
outcompete other bacteria through its efficient use of glycolysis.
Another carbon source derived from the enterocyte was glycerol,
which was, however, not produced in every enterocyte-associated
scenario. Glycerol could not be consumed by B. thetaiotaomicron,
F. prausnitzii, S. thermophilus, or H. pylori (see Table S8b in the
supplemental material) but was consumed at high rates by K.
pneumoniae, S. Typhimurium, and the E. coli strains, and thus, it
constituted another source of competition in pairings with these
bacteria (Fig. 4; see also Table S8b). This finding, rather than met-
abolic closeness, may explain why competition was the dominant
interaction predicted for pairs of Gammaproteobacteria (Fig. 4).
In conclusion, the enterocyte induced competition by secreting
glucose and, to a lesser extent, by secreting glycerol.

DISCUSSION

The pairwise interactions of 11 gut microbes spanning three
phyla, including commensals, probiotics, opportunistic patho-
gens, and pathogens, were systematically investigated under vari-
ous environmental constraints. Our main findings were as fol-
lows: (i) the trade-off between the growth rates in the microbe
pairs varied significantly depending on the participating microbes
and was influenced by the nutrient environment; (ii) the potential
to engage in giver-consumer, mutualistic, or competitive interac-
tions was species specific; (iii) allowing oxygen uptake abolished
most mutualistic interactions between microbes; (iv) the NAD�/
NADH balance drove mutualism in pairs involving L. plantarum;
and (v) the enterocyte induced competition by secreting a carbon
source that could be used by the microbes. In summary, both the
distinct metabolisms of the 11 microbes and the imposed environ-
mental constraints significantly influenced the pairwise interac-
tion patterns and resulted in a variety of cogrowth outcomes.

Both the participating microbes and the nutrient environment
were predicted to alter the trade-offs between two microbes. In
fact, many microbe pairs produced drastically different trade-offs
depending on the scenario (see Fig. S1 in the supplemental mate-
rial). The in silico prediction of potential outcomes of gut micro-
bial coculture has useful applications. One of the defense mecha-
nisms against pathogens is exclusion through competition. For
instance, commensal proteobacteria can outcompete closely re-
lated pathogens, such as S. Typhimurium (41). Using metabolic
modeling, gut microbes could be screened for species that are
particularly efficient at outcompeting persistent pathogens, such
as Clostridium difficile. Such predictions could subsequently be
experimentally validated. In addition, mutualistic microbe-mi-
crobe interactions could be predicted in silico. For example, mu-
tualistic partners that improve the growth of poorly growing ben-
eficial microbes could be identified. Multistrain and multispecies
probiotics have, in some cases, been found to be more effective
than monostrain probiotics; however, the development of such
probiotic mixtures is expensive (47). The presented metabolic
modeling framework, which can incorporate any reconstructed
species, could predict optimal combinations of probiotics to pro-
mote community survival in the gut. Moreover, nutrient condi-
tions supporting the optimal growth of microbe pairs could be

predicted. Although the presented framework currently limits Pa-
reto optimality analysis to two biomass functions, it is possible to
compute the trade-offs for three or more competing objectives
using constraint-based methods (48), which may lead to novel
insights into multispecies interactions.

Singular cogrowth outcomes were computed by maximizing
for total biomass production, which corresponds to maximal
community growth as the objective function. A downside of this
method is the inherent assumption that one species would sacri-
fice its own growth to increase the growth rate of another species
(49). Another alternative would be fixing the growth rates of the
included microbes at experimentally determined ratios (49). This
alternative was unsuitable for the present study because there are
no experimental cogrowth data available for the simulated pairs
under the given conditions. Species-specific differences in micro-
bial growth rates between the three diets were predicted, in agree-
ment with the fact that diet affects the gut microbiota (3). For
instance, L. plantarum consistently showed higher growth rates on
the Western diet than on the high-fiber diet, except when paired
with the fiber degrader B. thetaiotaomicron (see Table S5 in the
supplemental material). Consistently, the persistence of L. planta-
rum WCFS1 was 10 to 100 times higher in mice fed a Western diet
than in animals fed a low-fat chow (50). Moreover, E. coli
MG1655, but not the two E. coli O157:H7 strains or any of the
other species, could use butyrate as a carbon source. These predic-
tions confirm the results of Monk et al., who found that commen-
sal E. coli strains but not EHEC strains exploit butyrate as a carbon
source (51). Butyrate utilization by commensal E. coli strains may
be an adaptation to the presence of butyrate producers, such as F.
prausnitzii.

All but one of the predicted mutualistic interactions under
anoxic conditions were abolished when oxygen uptake was al-
lowed (Fig. 4). The colonic microbiota is made up mainly of strict
anaerobes (52), whereas the small intestinal microbiota is domi-
nated by facultative anaerobes, such as streptococci and E. coli
(39), due to the higher oxygen partial pressure. Notably, the co-
lonic microbiota is also more diverse and complex than the small
intestinal microbiota (39). We speculate that the lack of oxygen
availability in the large intestine may have forced the members of
the large intestinal microbiota to coevolve to maintain their redox
balance and a positive energy balance, thus leading to an ecosys-
tem that is more complex and cooperative than that of the small
intestinal microbiota.

Pyruvate/D-lactate interconversion and acetaldehyde/ethanol
interconversion induced mutualism by enabling the microbes to
balance their NAD�/NADH levels (Fig. 5a; see also Table S7 in the
supplemental material). Allowing oxygen uptake instead permit-
ted the microbes to regenerate NAD� via the electron transport
chain (Fig. 5a and b). Ethanol and acetaldehyde are known prod-
ucts of the small intestinal microbiota that can disrupt intestinal
barrier integrity (53). Moreover, ethanol consumption can pro-
mote small intestine overgrowth and increase the proteobacterial
population (53). Our model proposes a mutualism-inducing ef-
fect of ethanol conversion to acetaldehyde for pairs including L.
plantarum and representatives of the proteobacteria, which may
have implications for the proteobacterium-promoting effect of
ethanol consumption.

Exposing the microbe pairs to the small intestinal enterocyte
mainly induced one-sided competition over readily available car-
bon sources (glucose, glycerol; see Table S8 in the supplemental
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material). The clear winner in the competition for glucose was S.
thermophilus (see Table S8a in the supplemental material). Con-
sistently, streptococci dominate the small intestinal microbiota
through the efficient and rapid uptake of simple carbohydrates
(39), and carbohydrate metabolism is essential for the coloniza-
tion of the intestine by S. thermophilus (54). The losers included L.
lactis and K. pneumoniae. L. lactis cannot establish itself perma-
nently in the conventional microbiota (55), and K. pneumoniae
has not been detected in samples from the human small intestine
(39). Their limited ability to compete over host-derived carbohy-
drates may partly explain their poor adaptation to the gut ecosys-
tem. It is not clear whether the enterocyte would readily provide
microbes with glucose and glycerol in vivo. Glycerol can be trans-
ported into the lumen via facilitated transport, and the glucose
uniport between the lumen and the cytosol is reversible in the
small intestine cell model (25), indicating that export of these
metabolites is possible in principle. Furthermore, it can be ex-
pected that enterocyte-derived nutrients regularly become avail-
able through cell lysis and that small intestine microbes have
adapted to utilize these host-derived carbohydrates.

In summary, the modeling framework presented here allowed the
systematic investigation of microbe-microbe interactions. A collec-
tion of just 11 microbes was sufficient to predict all possible outcomes
of microbe-microbe coculture (Fig. 1). Constraint-based modeling
successfully predicted the effects of imposing various nutrient envi-
ronments and subjecting the microbe pairs to the presence of the
host. As more metabolic reconstructions of gut microbes become
available, future efforts will make it possible to systematically investi-
gate the metabolic cross talk in more representative synthetic gut
microbe communities. We expect that more extensive community
modeling will provide valuable insight into cross feeding among the
gut microbiota. For instance, oxygen has been proposed to play a role
in microbial dysbiosis in inflammatory bowel diseases, causing a shift
from oxygen-sensitive anaerobes, such as F. prausnitzii, to faculta-
tive anaerobes, such as E. coli (56). Such changes in gut commu-
nities caused by various environmental constraints could be mod-
eled in silico. The present study also provides a framework for
studying the effects of the host on microbe-microbe interactions.
An in vitro model capturing the microbiota and an enterocyte
layer has recently been established (57). Such in vitro data could be
put into context using our in silico modeling approach. Similarly,
microbe-microbe interactions in gnotobiotic animal models
could be predicted in silico and subsequently experimentally vali-
dated. For example, germfree mice were colonized with random
consortia of cultured bacteria (58). The outcomes of such costly
and time-intensive experiments could be predicted in advance in
silico. Moreover, using a similar setup, other environments, such
as ocean, soil communities, or entirely synthetic communities,
could be modeled to learn about the dynamics and the basic biol-
ogy behind microbe-microbe interactions. For instance, germfree
Drosophila melanogaster flies were colonized with pairwise com-
binations of five main gut bacteria (59). The experiment revealed
that certain combinations of two microbes were sufficient for the
development of a conventional host phenotype (59). The mecha-
nisms behind such microbial interspecies interactions and their
effects on the host could be predicted in silico. The in silico frame-
work presented here can readily incorporate any reconstructed
host or microbe, allowing it to be adapted to any microbial eco-
system of interest.
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