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Molluscs, comprising one of the most successful phyla, lack clear evidence of adaptive immunity and yet thrive in the oceans,
which are rich in viruses. There are thought to be nearly 120,000 species of Mollusca, most living in marine habitats. Despite the
extraordinary abundance of viruses in oceans, molluscs often have very long life spans (10 to 100 years). Thus, their innate im-
munity must be highly effective at countering viral infections. Antiviral compounds are a crucial component of molluscan de-
fenses against viruses and have diverse mechanisms of action against a wide variety of viruses, including many that are human
pathogens. Antiviral compounds found in abalone, oyster, mussels, and other cultured molluscs are available in large supply,
providing good opportunities for future research and development. However, most members of the phylum Mollusca have not
been examined for the presence of antiviral compounds. The enormous diversity and adaptations of molluscs imply a potential
source of novel antiviral compounds for future drug discovery.

Mollusca is the second-most-diverse phylum, with nearly
85,000 described species (1, 2) and a total world estimate of

120,000 to 200,000 species (3). Molluscs are characterized into
eight classes, including Gastropoda, Bivalvia, Scaphopoda,
Cephalopoda, Polyplacophora, Monoplacophora, Caudofoveata,
and Solenogastres, which can be found in a wide range of ecolog-
ical niches from marine (52,525 described species) and freshwater
(7,000) to terrestrial (24,000) habitats (1, 2). In the food chain,
molluscs may be herbivores, carnivores, detritivores, scavengers,
filtered feeders, or symbiotic photo- and chemoautotrophs (4).
The enormous and very successful adaptation and radiation of
molluscs suggest that they possess highly efficient pathways to
counter infectious diseases.

Their resistance to infectious disease is especially striking in
oceans, where viruses are hyperabundant: in marine environ-
ments, virus numbers commonly reach 107 particles per milliliter,
outnumbering bacteria and archaea by a factor of 10 (5–7). Viral
infections are common, with an estimate of 1023 infections (of
bacteria) occurring every second in the world’s oceans (7). Despite
living under such virus-rich conditions, many molluscs achieve
extraordinary life spans; for example, individual examples of the
ocean quahog, Arctica icelandica, an edible clam from the north
Atlantic, reportedly attain ages of over 400 years (8).

To combat viral infection, molluscs, like other marine inverte-
brates, are generally believed to rely on innate immunity since
there is as yet no clear evidence of adaptive antiviral immunity
(9–11). While a system for somatic diversification of fibrinogen-
related proteins (FREPs) has been linked to the resistance of
Biomphalaria snails to the trematode parasites schistosomes (12),
it is unknown if FREPs play any role in antiviral defense. The
innate immune system in molluscs is provided by physical barriers
(e.g., shell, skin, and epithelium), as well as by a variety of immune
mechanisms that include antimicrobial compounds (13). Antimi-
crobial compounds are constitutively expressed or rapidly in-
duced to counter invading microorganisms (14, 15).

To date, over 1,120 secondary metabolites have been isolated
from just over 270 species of marine mollusc (�0.3% of named
mollusc species) (4, 16). Less than 50% of these molluscan natural
products have been examined to date to ascertain if they might be

pharmacologically useful; however, of those tested, a wide range
have been reported to possess such properties, including antican-
cer, antimicrobial, neurotoxic, and specific receptor binding ac-
tivities (4, 16). In the last couple of decades, the discovery and
development of novel anticancer agents have been the main fo-
cuses for researchers of marine natural products and several mol-
luscan lead compounds have entered final-stage clinical trials
(17). By comparison, only 6% of molluscan natural products have
been tested for antimicrobial activity (16), and of these, only a few
have been examined for antiviral activity.

MOLLUSCS MAKE ANTIVIRAL COMPOUNDS THAT ARE
ACTIVE AGAINST A VARIETY OF HUMAN VIRUSES

Molluscs make antiviral compounds that are active against a range of
human viruses, which may reflect the inability of their innate immu-
nity to tailor responses to specific viral pathogens. The antiviral prop-
erties of molluscan compounds against their own viruses are largely
untested. The lack of proliferative cell lines derived from molluscs
presents great difficulties in reproducing molluscan viruses in vitro
(18). While in vivo infection systems have been developed for some
molluscan species, such as the use of an experimental immersion
challenge system for the study of abalone herpesvirus infections in
Australian abalone (19), there a only few such models for infecting
molluscs. The extent to which the antiviral compounds discussed
here are a true reflection of molluscan antiviral immunity remains
speculative. It has been shown that antiviral activity against herpes
simplex virus 1 (HSV-1) does not correlate with higher resistance to
abalone herpesvirus (20).
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Antiviral activity, mostly against human viruses, has been re-
ported so far in at least eight gastropod species, including abalone
(Haliotis laevigata, H. rubra, and H. rufescens), periwinkle (Litto-
rina littorea), snail (Buccinulum corneum and Tegula gallina),
veined rapa whelk (Rapana venosa), and whelk (Buccinum unda-

tum), and nine bivalve species, including the clams Mercenaria
mercenaria, Mya arenaria, and Ruditapes philippinarum, cockle
(Cerastoderma edule), mussels (Mytilus galloprovincialis and Cre-
nomytilus grayanus), and (oysters Crassostrea virginica, C. gigas,
and Ostrea edulis) (21–41) (Table 1). This leaves approximately

TABLE 1 Antiviral extracts and compounds found in gastropod and bivalve molluscs, with suggested modes of actiona

Mollusc common name and
species

Antiviral extract or
compound Virus target(s) Suggested mode of action Reference(s)

Gastropod
Abalone Haliotis laevigata and

H. rubra
Lipophilic extract from the

digestive gland
HSVs Antiviral activity occuring

postentry
30

Hemolymph plasma HSV-1 Prevention of viral attachment
and entry into cells

30

Abalone H. rufescens Aqueous extract from
canned abalone

Polyomavirus, influenza A virus, and
poliovirus

Unknown 21, 22

Periwinkle Littorina littorea Peptide extract from whole
organism (littorein)

HSV-1 Unknown 34

Snail Buccinulum corneum Kelletinin A [ribityl-pentakis
(p-hydroxybenzoate)]

Human T-cell leukemia virus type 1 Inhibition of viral
transcription and DNA/
RNA synthesis (i.e., by
inhibition of virus DNA
polymerase � and reverse
transcriptases)

40, 42

Veined rapa whelk Rapana
venosa

Glycosylated functional unit
of hemocyanin/RtH2

Respiratory syncytial virus, HSV-1
and HSV-2, and EBV

Prevention of virus
attachment to cells by
interaction with specific
regions of HSV
glycoproteins

27, 32, 39, 43, 39

Snail Helix lucorum Hemocyanin extract EBV Inhibition of viral DNA
replication

44

Whelk Buccinum undatum 80% SPE fraction from the
acidic extract of whole
organism

HSV-1 Unknown 33

Bivalves
Clam Mya arenaria Water and ammonium

sulfate extract/paolin
Amphibian virus LT-1, adenovirus

type 12, HSV
Inhibition of viral infection

(LT-1) at intracellular level;
inhibition of tumors in
hamsters by adenovirus 12

24, 26

Clam Mercenaria mercenaria Partially purified
ammonium sulfate
extracts

Moloney and Friend murine
leukemia viruses

Unknown 45

Clam Ruditapes philippinarum 80% SPE fraction from the
acidic extract of whole
organism

HSV-1 Unknown 33

Cockle Cerastoderma edule 80% SPE fraction from
acidic extract of whole
organism

HSV-1 Unknown 33

Mediterranean mussel Mytilus
galloprovincialis

Mytilin White spot syndrome virus Inhibition viral transcription 29
Defensin HIV-1 Unknown 38

Mussel Crenomytilus grayanus Lectin HIV Blocking of viral entry 37
Oyster Crassostrea virginica Acetic acid extract/paolin 2 Poliovirus type 1 Unknown 41
Oyster C. gigas Hemolymph plasma and

peptide extracts from the
whole animal

HSV-1, infectious pancreatic
necrosis virus, human adenovirus,
simian rotavirus

Inhibition of viral attachment
to the cell surface

35, 36, 46–48

Oyster C. rhizophorae Hemolymph plasma and
peptide extracts from the
whole animal

HSV-1, human adenovirus, simian
rotavirus

Inhibition of viral attachment
to the cell surface

46

Oyster Ostrea edulis 80% SPE fraction from the
acidic extract of gills and
mantle

HSV-1 Unknown 33

a HIV-1, human immunodeficiency virus type 1; SPE, solid-phase-extraction.
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100,000 species of molluscs unexamined for the presence of anti-
viral compounds.

STRUCTURES AND MECHANISMS OF ACTION OF
MOLLUSCAN ANTIVIRAL COMPOUNDS

To date, most characterized extracts from mollusc species with in
vitro antiviral activity have been peptides or glycopeptides, for
example, kelletinin A from Buccinulum corneum (40), glycosy-
lated functional unit RtH2 of hemocyanin from Rapana venosa
(27, 32, 39), mytilin and defensin from Mytilus galloprovincialis
(29, 38), and lectin from Crenomytilus grayanus (37). Their modes
of action are not fully characterized; however, they appear to in-
clude direct inactivation of virus and prevention of viral attach-
ment to or entry into host cells or inhibition of viral transcription
and DNA or RNA synthesis (Table 1).

Molluscs have been found to have broad antiviral activity
against viruses from different families. For example, oyster hemo-
lymph has been shown to contain compounds active against T3
coliphage (family Podoviridae) (49), herpes simplex virus type 1
(Herpesviridae), infectious pancreatic necrosis virus (Birnaviri-
dae) (35), and human adenovirus type 5 (Adenoviridae) (50). The
means by which these species have come to have antiviral mecha-
nisms that are sufficiently universal to interfere with human viral
systems remain open for speculation.

Molluscan hemocyanins, copper-containing oxygen transport
macromolecules, have also been observed to be multifunctional,
with innate immune functions, including antiviral activity, as
demonstrated against the herpesviruses herpes simplex virus
(HSV) and Epstein-Barr virus (EBV), in the abalone H. rubra (51)
and the veined whelk Rapana venosa (32, 43). These observations
were extended to include Rapana venosa activity against HSV-1
and HSV-2 (39). Hemocyanin of the land snail Helix lucorum also
has activity against EBV (44). Hemocyanin antiviral activity has
been attributed to glycosylated sites (27, 32, 51, 52). It was previ-
ously suggested that hemocyanin carbohydrate chains interact
with surface-exposed amino acid or carbohydrate residues of the
viruses through van der Waals interactions (53). Despite hemo-
cyanins having been found to be associated with arthropod anti-
viral immunity due to their increased expression upon viral infec-
tion (54, 55) and the finding that their antiviral activity is effective
against their own arthropod viruses (56, 57), the role of hemocya-
nins in molluscan immunity remains unclear. The establishment
of mollusk-derived cell lines is required to test the activity of he-
mocyanins against molluscan viruses. Further studies are needed
to determine if there is upregulation of hemocyanins in molluscs
upon viral infection in vivo.

Cavortin, the major hemolymph protein of the Pacific oyster,
C. gigas, has been shown to have activity against HSV, with this
effect exerted after entry of the virus into cells (58). This protein
has amino acid sequence similarity to the major hemolymph pro-
tein of the eastern oyster C. virginica, which is considered to have
a domain resembling superoxide dismutase, which has been
shown to have antiviral properties (59–62), but the protein re-
portedly lacks superoxide dismutase activity (63–65). The mech-
anism for antiviral activity of cavortin remains unclear.

Molluscan natural products encompass a wide variety of
chemical classes that extend well beyond the proteinaceous com-
pounds that have been tested for antiviral activity to date (e.g.,
terpenes, alkaloids, polyproprionates, fatty acid derivatives, ste-
rols, and macrolides) (4). Numerous successful antivirals are ei-

ther marine derived or analogs of marine compounds. Indeed,
vidarabine (adenine arabinoside, or “ara-A”), acyclovir, and zid-
ovudine (azidothymidine) have been commercially synthesized
with semisynthetic modifications from or are structural analogs of
the arabinosyl nucleosides isolated from the sponge Cryptotethia
crypta (66, 67). Under selective pressure, some human viruses
have become resistant to a number of commercial drugs. It is thus
always desirable to explore new antivirals with barriers for viral
resistance. The remarkable diversity and successful adaptation of
molluscs, especially in habitats with high viral loads, imply a po-
tential source of novel antiviral compounds, with diverse mecha-
nisms of action, for human therapeutic use.
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