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Abstract

Background: We present a genome-wide messenger RNA (mRNA) sequencing technique that converts small
amounts of RNA from many samples into molecular phenotypes. It encompasses all steps from sample preparation
to sequence analysis and is applicable to baseline profiling or perturbation measurements.

Results: Multiplex sequencing of transcript 3′ ends identifies differential transcript abundance independent of
gene annotation. We show that increasing biological replicate number while maintaining the total amount of
sequencing identifies more differentially abundant transcripts.

Conclusions: This method can be implemented on polyadenylated RNA from any organism with an annotated
reference genome and in any laboratory with access to Illumina sequencing.
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Background
Analysis of the expression of mRNA produces a molecular
readout of the biological activity in a tissue or entire or-
ganism sample, reflecting which parts of the genome are
being transcribed and how much of each transcript is
available for translation into protein or to perform a regu-
latory role. Comparing mRNA expression across different
conditions, such as developmental stages or after gene
perturbation, helps to unravel the complexities of bio-
logical systems. In recent years high-throughput short tag
RNA sequencing technology (RNA-seq) has provided a
convenient tool for delving deeper into mRNA expression
[1] using the whole or part of each transcript [2–6]. More
specifically, sequence reads are converted into count data
with the aim of quantifying transcriptional differences be-
tween biological samples using polyA pull down at the 3′
end of transcripts [7–12] and cap analysis gene expression
(CAGE) at the 5′ end of transcripts [13, 14].

Many RNA-seq methods are excellent tools for in-depth
mRNA expression analysis of small numbers of samples
and provide information on the entire RNA molecule, al-
ternative splicing and the quantity of transcript. However,
they require an involved library preparation and often
complex sequence analysis [15] and are not amenable to
large-scale application with a fast turn-around. We
present a purely quantitative digital gene expression sam-
ple processing and analysis package called differential ex-
pression transcript counting technique (DeTCT) that
begins with tissue samples and produces a text table or
HTML table, comprising genomic coordinates represent-
ing the 3′ ends of genes, raw and normalised counts, and
a fold change in transcript abundance between two condi-
tions with an associated p-value. Our simplified library
preparation and analysis protocol incorporates a sample
indexing system and allows processing and sequencing of
large numbers of samples and replicates. The genomic co-
ordinates can be compared to existing gene annotation,
but they also identify unannotated genomic regions show-
ing an alteration in polyA+ transcript number. To assess
the utility of the pipeline we used zebrafish mutants
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carrying loss of function alleles from the Zebrafish Muta-
tion Project (ZMP) [16] and compared morphologically
abnormal embryos with normal sibling embryos.

Results and discussion
Library preparation and sequence processing
We selected four mutant zebrafish lines from the Zebra-
fish Mutation Project (ZMP) to test the differential ex-
pression transcript counting technique (DeTCT) pipeline.
We collected morphologically normal and abnormal sib-
ling single embryos in replicates from the same clutch ob-
tained from timed single pair matings to synchronize the
developmental stage. Total RNA was extracted from sin-
gle zebrafish embryos with sufficient residual DNA to
confirm the genotype of each embryo by KASP genotyp-
ing [17]. Libraries were prepared from 300 ng of total
RNA. Several features make our libraries different to
standard RNA-seq methods [15]. We have simplified the
library preparation by reducing the number of steps, but
have added several useful modifications (Fig. 1 and
Additional file 1). The DNaseI digestion has been com-
bined with the RNA fragmentation step and is followed by
the first anchored polyA pulldown enrichment. While the
RNA molecules are immobilised on magnetic beads RNA
to RNA ligation introduces part of Illumina adapter
sequence 2. After elution we perform a second round of
3′ end enrichment with an anchored oligo dT reverse
transcription primer. This primer also incorporates a
sample-specific in-read index sequence, a unique molecu-
lar identifier (UMI) sequence and part of Illumina adapter
1. After reverse transcription through the captured RNA
molecules and the partial Illumina adapter 2 sequence,
Illumina adapters are completed during a final li-
brary amplification step. The replicate libraries for
each allele were pooled and sequenced on one lane
equivalent (zmp_ph40, 45 and 46) or two lane equivalents
(zmp_ph35) by Illumina HiSeq 2500. Figure 2a shows a
sequence depth of between 373 and 233 million read pairs
per lane equivalent, with 85 % and 76 % of the sequence
mapping to the Zv9 zebrafish reference genome, respect-
ively. Figure 2a also shows a relatively even quantity of se-
quence per library with the occasional outlier. During
library preparation the sample amplification can result in
duplicate reads for the same original transcript which is
particularly relevant if an unknown amount of RNA is ac-
cidentally lost before amplification. The duplicate rate in a
library reflects library complexity and is therefore an im-
portant quality indicator for each library. Duplicate reads
caused by amplification can be identified by incorporating
random sequences as unique molecular identifiers (UMI)
into the primary sample [18–25]. We use a modified
version of Picard MarkDuplicates [26, 27] and flag
reads as potential duplicates if they share outer coor-
dinates with other mapped read pairs and have the

same UMI. Figure 2b shows that accounting for the
UMIs reduced the median duplicate rate from 43.7 %
to 1.2 % with a few libraries showing a higher dupli-
cate rate of up to 7 %. If the duplicate rate goes
above 20 % then we examine laboratory procedures for
technical issues such as RNase contamination in reagents.
This method remains an estimate of library duplication
due to the possibility of two independent molecules carry-
ing the same UMI and UMI sequence alteration during
subsequent amplification. Read 1 is used to predict a sin-
gle genomic position defining the transcript counting 3′
end (TC 3′ end). Between 66 % and 68 % of the read 2s
map to the reference genome and where they accumulate
peaks are called and reads are quantified as counts
(Fig. 2c). Read pair information attaches these count data
to the TC 3′ end and the in-read index sequence identifies
their sample origin. DESeq2 [28] is used to estimate differ-
ential transcript abundance between conditions, inde-
pendent of gene annotation. While the strand-specific TC
3′ ends can be linked to any gene annotation, here we use
the Ensembl gene build [29]. Fig. 2d shows the total num-
ber of regions called as peaks (mean 161,263), the subset
associated with a gene where DESeq2 has estimated an
adjusted p-value (i.e. where the total counts are sufficient
to potentially distinguish between conditions), genes
showing differential transcript abundance between condi-
tions with an adjusted p-value <= 0.05 and finally the sub-
set of the latter showing differential transcript abundance
with a fold change > 2. The analysis pipeline utilises a sin-
gle configuration file describing the samples, the location
of the sequence files and the conditions, and with one
command converts duplicate-marked BAM files into the
DeTCT pipeline output gene list tables. These tables show
the closest strand-specific Ensembl gene to the TC 3′ end,
the region called as a peak, the unadjusted p-value, the ad-
justed p-value, the fold change between conditions and
the count data. It is presented in tab or comma-separated
tables or as an HTML table (see Additional file 2 for an
example of a tab-separated table).

Data interpretation
The experimental rationale suggests that all transcript
counting 3′ ends (TC 3′ ends) should match the 3′ ends
of transcripts. However, gene annotation is sometimes
incomplete and occasionally both the annotation and
TC 3′ end can arise from experimental artefact. There-
fore the DeTCT output specifies the distance between
the TC 3′ end and the nearest Ensembl transcript 3′ end
on the same strand. Naturally, this assumes the tran-
script to be annotated correctly and this is not necessar-
ily true (see Additional file 3). The Ensembl transcript
ends that exactly match the TC 3′ ends can be easily fil-
tered from the results table. Non-exact matches suggest
incomplete gene annotation or novel alternative transcript
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ends and both situations can be validated by individual
inspection (see Additional file 4). Choosing a close prox-
imity filter of the coordinates, such as between -100 bases
(towards the 5′) and +100 bases (towards the 3′), reduces
the likelihood of a false positive match and using these cri-
teria we were able to detect a mean of 9664 genes per ex-
periment (Fig. 2d). In contrast a more relaxed proximity
filter, such as between -100 to +5000, identifies many

more genes (mean 12750), but also finds more false posi-
tive ends. This is discussed further in the comparison to
RNA-seq below. One cause of false positive TC 3′ ends is
oligo dT priming from polyA or degenerate polyA se-
quence within RNA molecules or possibly from residual
DNA. We identified falsely primed TC 3′ ends during the
DeTCT analysis pipeline by examining the 10 bases 3′ of
the TC 3′ end and removed those which potentially

Fig. 1 DeTCT pipeline workflow. Between nine and 11 pairs of mutant and normal zebrafish embryos were collected from one clutch and RNA
extracted. a Following DNaseI treatment and chemical fragmentation, molecules representing the 3′ end of transcripts were enriched by
pulldown using an anchored biotinylated oligo dT primer attached to streptavidin magnetic beads (orange line). An RNA oligo matching part
of the Illumina read 2 adapter (purple line) was ligated onto the 5′ end, the RNA eluted and annealed to an oligo comprising partial read 1
Illumina adapter (dark blue line) followed by 12 random bases (beige line), then an eight base indexing sequence specific to each sample
(light blue line) and finally a 14 base anchored polyT sequence (grey line). After reverse transcription the Illumina adapter sequences were
completed during library amplification. Libraries were quantified, pooled in equimolar amounts and sequenced by Illumina HiSeq 2500.
b After decoding the indexing sequence, the trimmed zebrafish sequences (read 1 in green and read 2 in red) were mapped to the reference
genome and duplicate reads were flagged. c The coordinate representing the transcript counting 3′ end (TC 3′ end) was predicted using the
base immediately 3′ of the polyT sequence in read 1 (green dashed arrow and green curved line). After calling peaks using all mapped read
2s the resulting counts were associated with their respective sample (red curved line). The count data were used to identify differential
transcript abundance between conditions using DESeq2 [28] and reported as a fold change with an adjusted p-value. The TC 3′ ends
were matched to the closest Ensembl transcript 3′ ends on the same strand (black line). Gene list tables were produced and ordered
by the lowest adjusted p-value. These gene lists were filtered for genes showing differential transcript abundance using the adjusted
p-value and the proximity of the TC 3′ end and Ensembl gene end (typically adjusted p-value <= 0.05 and within -100 and +5000 bases)
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derived from non-polyA tail priming using the criteria de-
scribed in the methods (see Additional file 4). One
zebrafish-specific example is in the mitochondrial genome
where a region rich in adenine (MT:2501-2518) in the
rRNA ENSDARG00000080337 accounts for between 15 %
to 23 % of the total counts in the four test experiments
(Additional file 1). This example escaped our current
polyA filtering method. To mitigate false positive 3′ end

calls, we have begun to prepare a list of TC 3′ ends we be-
lieve not to be true transcript TC 3′ ends. Similarly, we
are able to catalogue all the true positive TC 3′ ends we
find and build cross-experiment profiles of regularly iden-
tified TC 3′ ends. We further filtered the results file by
restricting the regions used to those with the 3′ coordin-
ate of the region not more than 150 bases upstream of the
TC 3′ end.

Fig. 2 Library features. Four sets of libraries were prepared from zebrafish embryo lines carrying a disrupted gene. Morphologically abnormal and
normal sibling embryos were collected from in-crossed lines and total RNA extracted. For each mutant line 18 to 22 samples of indexed libraries
were made and sequenced by Illumina HiSeq 2500. a The number of reads and the number mapping to the Zv9 reference genome per library
are shown. The total reads, the mean per library and the standard deviation are shown on the right. b For each library (dots) the proportion of
reads identified as duplicates using outer mapping coordinates alone are shown on the x-axis and after accounting for the unique molecule identifier
(UMI) on the y-axis. c The reads were passed through the DeTCT analysis pipeline. The number of read 2s mapped and the number of counts called
under peaks as discrete regions are shown per library sample. The total reads, the mean per library and the standard deviation are shown on the right.
d Using the gene list output from the DeTCT pipeline the chart shows the number of discrete regions identified per collection of libraries, the number
of genes with an adjusted p-value (apv) from DESeq2 (i.e. those not removed due to low mean counts), the number of genes with an
adjusted p-value <= 0.05 and the number of genes with an adjusted p-value <= 0.05 plus a fold change (FC) > 2. These analyses were
performed with a stringent (-100 to +100) or relaxed (-100 to +5000) proximity filter between the Ensembl transcript and TC 3′ end
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Assessing the DeTCT method
To assess the variation between libraries we extracted
RNA from a pool of zebrafish embryos and made 12 repli-
cate transcript counting libraries with different indexing
sequences using 1 μg each. Libraries were pooled, se-
quenced on an Illumina MiSeq and analysed using the
DeTCT pipeline. The number of normalised counts for
each genomic region called by DeTCT for each library was
determined. The regions were filtered for a maximum 100
bp distance to an Ensembl gene 3′ end, as described in
Additional file 4, and compared using a Pearson correl-
ation (Fig. 3). These 12 libraries show our method displays
good technical reproducibility (the Pearson correlations of
the unfiltered regions are shown in Additional file 5).
To examine the method’s performance in quantifying

differential transcript abundance we added ERCC spike
mix 1 (Ambion) to the total RNA prior to making the
12 technical replicate libraries described above. We
added the quantity of spike mix recommended by the
manufacturer, five times the quantity, a fifth of the quan-
tity and a tenth of the quantity, all in triplicate, to create
four conditions. After analysis through the DeTCT pipe-
line we identified 39 spikes (three spikes identified two
TC 3′ ends). The spikes with high copy number in the
mix were detected, but not those with lower copy num-
ber (Fig. 3b). The mean log2 fold changes were calcu-
lated for the spikes detected in all combinations of
condition and compared to the log2 fold change ex-
pected (Fig. 3c). We found a good correlation between
observed and expected log2 fold change. Additionally, in
three of the pairwise comparisons no false positives were
detected and in the other three only a total of six non-
ERCC regions were found to be differentially expressed,
suggesting that the method has high specificity.
Our method was designed to maximise the number of

tissue samples we can process with relatively shallow se-
quencing whilst still obtaining sufficient information to
implicate gene networks modified by the condition
change. The ability to make numerous transcript count-
ing libraries has two main advantages. Firstly, problem
libraries resulting from sample loss or showing low com-
plexity can be excluded from analysis and their removal
has little effect on the statistical power of the analysis.
Similarly, samples with incorrectly assigned condition
have less influence on the final result. Secondly, increas-
ing the number of replicates improves the statistical
power of the analysis. To assess the impact of increasing
the number of replicates whilst retaining the same total
amount of sequencing we performed a permutation test
using the zmp_ph46 data [30]. Reads were combined to
produce two samples comprising 66,000,000 mutant and
66,000,000 wild-type reads. These were randomly split
ten times into ten collections of pseudo-samples each
containing equal numbers of reads but with the number

of pairs of pseudo-samples ranging from two pairs to 11
pairs (Fig. 4). After passing these collections of pseudo-
samples through the DeTCT pipeline (see Fig. 4 for de-
tails) we identified 22,200 transcript counting 3′ ends
(TC 3′ ends) in all 100 simulations. Although this simu-
lation has removed the variance from the original bio-
logical replicates it shows that increasing the number of
libraries at the expense of read depth improves detection
of TC 3′ ends showing differential abundance, as was
previously noted [31].
Many mRNA expression pipelines use whole transcript

RNA-seq protocols and a range of analysis tools [32].
We don’t intend to replace these methods but present
an alternative method for high-throughput mRNA ex-
pression screening. However, it is useful to compare the
results of both methods. To this end we made DeTCT
libraries and standard non-directional polyA pulldown
Illumina RNA-seq libraries for two alleles. The same
three wild-type and three mutant zebrafish total RNA
samples were processed for each method, plus two or six
additional libraries using the DeTCT protocol. We se-
quenced one HiSeq 2000 lane equivalent for each allele
by each method (Table 1). Potential duplicate reads were
identified and eliminated. The UMI in DeTCT allowed a
more accurate identification of duplicates and hence
fewer reads were dismissed as duplicates. Read 2s from
the RNA-seq data that mapped to the genome were
compared to Ensembl gene annotation to produce count
data for each gene and the DeTCT pipeline was used to
extract count data linked to Ensembl transcripts from
the transcript counting reads. DESeq2 was run on both
sets of count data. Even after removing duplicate reads
there are generally more counts in the RNA-seq count
data (Table 1). This is probably due to a drop in read
quality following the oligo dT sequence in transcript
counting (TC) read 1. RNA-seq initially identifies more
genes, however, the gap between the methods is reduced
substantially when regions with a low mean count
(which are unlikely to be called significantly differentially
expressed due to lack of power) are filtered out by
DESeq2 (Table 1 row 11). The number of TC 3′ ends
(Table 1 row 9) is higher than that of DeTCT genes
(Table 1 row 8) which suggests alternative 3′ ends [6, 33]
(see Additional file 4 for an example). However, some rep-
resent false positive TC 3′ ends which escape our filter for
false oligo dT priming. To assess the genes showing differ-
ential transcript abundance the full gene list was filtered for
protein-coding genes with an adjusted p-value of <= 0.05
and an absolute fold change >= 2 (log2 fold change <-1 or
>1) between mutant and wild-type (Table 1 row 13 and
volcano plots in Additional file 6). RNA-seq identifies
more genes, but using a less stringent proximity filter be-
tween the TC 3′ end and the 3′ end of an Ensembl tran-
script increases the detection rate in DeTCT. For a direct
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Fig. 3 Technical replicate. Twelve replicate transcript counting libraries were prepared from 1 μg of a pool of wild-type zebrafish embryo total
RNA sample. Libraries were sequenced by Illumina MiSeq and analysed using the DeTCT pipeline. a The normalised counts for each region were
extracted (73,938 regions). After filtering the data for only the regions which we would use to call differential transcript abundance the counts
from all 12 libraries were compared using a Pearson correlation (see Additional file 5). Cells coloured yellow in the Pearson correlation are the
most highly correlated while those in blue are the least correlated with a colour gradient inbetween. b In addition four concentrations of ERCC
spike mix 1 were added in triplicate to the same 12 libraries prior to library construction. We added the quantity suggested by the manufacturer
(x1), five times the quantity (x5), one fifth of the quantity (x0.2) and one tenth of the quantity (x0.1). The reads were mapped to the zebrafish
reference sequence and ERCC spike reference sequence. The diagram shows the 92 ERCC spikes represented by a circle in descending order
of spike copy number in the mix on the x-axis and spike abundance on the y-axis. The blue circles show spikes identified in the DeTCT pipeline while
those in red were not found. c The DeTCT analysis pipeline was run using six libraries at a time with three replicates as one pair of conditions and in
all six possible condition combinations. The mean log2 fold change was calculated for all the spikes detected by the DeTCT analysis and plotted against
the expected log2 fold change as circles. Each circle is labelled with the conditions being compared and observed log2 fold change over the expected
log2 fold change. The numbers in brackets indicate how many spikes show differential transcript abundance
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comparison between the two methods we identified the
genes with an adjusted p-value <= 0.05 and absolute fold
change >= 2 (Table 1 row 16) for both methods and ap-
plied the less stringent proximity filter to the TC 3′ ends.
The fold change for these genes in RNA-seq and TC was
compared (Fig. 5 for lamc1sa379 and Additional file 7 for
mdn1sa1349) and showed a good correlation with r2 = 0.96
(blue circles on Fig. 5a), which suggests the two methods
are finding the same alterations in transcript abundance.
We next looked at genes which show an adjusted p-value
<= 0.05 and an absolute fold change >= 2 by one method,
but failed to meet one or both criteria by the other (red
and green circles on Fig. 5a). For both methods 14 genes
have an absolute fold change >= 2, but fail to have suffi-
cient power to call an adjusted p-value <= 0.05 by one
method. Similarly, for 38 genes where one method fails to
show an absolute fold change >= 2 the actual fold change
is just below 2 (cut off log2 fold change >= 0.8 or <= -0.8)

suggesting further genes where the two methods give com-
parable fold change results. We then applied the stringent
TC 3′ end proximity filter to the same data which led to
the removal of 39 genes (Fig. 5b). Examining the TC 3′
end of these 39 genes showed they fell into two groups, ei-
ther true TC 3′ ends or false TC 3′ ends assumed to be
derived from experimental artefact (Fig. 5c). Where both
methods gave an adjusted p-value <= 0.05 and an absolute
fold change >= 2 all 14 were shown to be true ends (note
that in two cases the closest TC 3′ end was found to be
false, but a true TC 3′ end was found downstream). By
contrast, in the gene sets only called by one method 11/25
TC 3′ ends lost to more stringent filtering were false posi-
tives. Together this analysis shows the removal of 39 genes
by increasing the stringency of the DeTCT proximity filter
resulted in losing 28 true positives (14 were only found by
one method), but prevented calling 11 false positive TC 3′
ends.

Fig. 4 Sample number. The 11 mutant and 11 wild-type zmp_ph46 BAM files were downsampled and merged to create two BAM files, one from
the mutant samples and one from the wild-type samples. The real index sequences in each BAM file were then replaced with fake index sequences in
order to simulate assigning the reads at random to between 2 to 11 different pseudo-samples. Each of these 10 permutations was repeated 10 times,
to give 100 simulations in total (shown on the x-axis), each of which was run through the DeTCT pipeline. The chart shows the average total number
of counts for each pseudo-sample (diamonds on the left y-axis) and the number of (transcript counting 3′ end) TC 3′ ends with a relaxed Ensembl
transcript proximity filter showing differential transcript abundance (circles on the right y-axis) with the mean above each group of ten
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Conclusion
We present a quantitative mRNA transcript profiling
package that starts with tissue samples and produces a
gene list by counting the 3′ end of any polyadenylated
transcripts using Illumina sequencing. Unlike whole
transcript RNA-seq each transcript is counted only once
giving a more representative estimate of transcript abun-
dance [24]. Short, rare transcripts are as likely to be rep-
resented in the sequence as long, rare transcripts.
Assaying only the 3′ end of transcripts is also more resili-
ent to degraded RNA samples, particularly if cells or tissues
are compromised by a treatment. Differential transcript
abundance is identified based on genome sequence and is
independent of gene annotation. This highlights regions
containing novel transcripts as well as previously unde-
scribed alternative transcript 3′ ends, which are implicated
in biological processes related to the condition. Each alter-
native transcript 3′ end is represented by discrete count
data and has the potential to add layers of functional anno-
tation to sequence at the 3′ ends of gene models.
Our streamlined library preparation reduces material loss

and allows us to produce large numbers of libraries. Work-
ing with more replicates not only provides more power to
the differential expression calculation but also lessens the
impact of occasional sample loss or failure. This allows us
to measure transcriptional changes even in rare tissues
within the whole organism. The addition of a unique mo-
lecular identifier (UMI) helps us to assess the quality of
each library preparation and we can remove any which
underperform from the analysis. Simultaneously processing

a large number of samples allows us to ask complex ques-
tions, such as what is the impact of different concentrations
of a compound at varying stages of embryonic develop-
ment? Similarly, we could screen large numbers of muta-
genised individuals following an infection challenge to
identify variation in infection response and inflammation.
In both cases relatively shallow sequencing of each sample
will result in reduced sensitivity, but can highlight a critical
combination of conditions to explore further using deeper
sequencing of selected libraries to increase the number of
transcripts detected or by an alternative method such as
RNA-seq. We are also able to assay large numbers of wild-
type samples producing a gene profile baseline that can be
refined with data from each individual biological replicate.
For precious or difficult to obtain RNA samples conven-
tional full transcript RNA-seq methods are more suited,
but for rapid assessment of many samples with a desire to
implicate a molecular process, transcript counting is the
better option. The gene lists provided by DeTCT are the
link between a living organism and the array of gene ontol-
ogy, gene expression and gene interaction network data in
the public domain. We believe the power of the differential
expression transcript counting technique (DeTCT) lies in
effectively and efficiently bridging this gap.

Methods
Sequence data submission
[EMBL:E-ERAD-244, EMBL:E_ERAD-121, EMBL:E-
ERAD-91, EMBL:E-ERAD-384].

Table 1 Comparison of RNA-seq and transcript counting

lamc1sa379 mdn1sa1349

Library protocol RNA-seq TC RNA-seq TC

Number of libraries x6 x12 x6 x8

1 Number of read 2s mapped 146M 84M 119M 97M

2 Reads removed as duplicates 31.4 % 11.7 % 25.3 % 9.8 %

3 Counts (map to ENSG or called as peaks) 67M 52M 61M 61M

4 Number of counts matching MT transcripts 2.25M 5.51M 1.23M 3.73M

5 Proximity TC 3′ end and Ensembl transcript in bases NA −100 to 5000 −100 to +100 NA −100 to 5000 −100 to +100

6 Number of counts calling genes (no MT) 65M 21M 14M 60M 24M 19M

7 [Number of counts used to call transcripts] - 27M 16M - 31M 20M

8 Number of genes detected (no MT) 27732 14544 9906 28455 17138 11419

9 [Number of transcripts detected] - 21220 10574 - 25034 12144

10 Protein-coding genes with pval obtained 24256 13763 9542 25012 16220 10967

11 Protein-coding genes with adj pval obtained 15883 12139 8555 22034 14886 10184

12 And with an adj pval <=0.05 1468 227 162 9529 2649 2013

13 And fold change >=2 235 141 103 2255 1534 1121

14 Genes identified by RNA-seq and TC

15 Genes from row 10 identified by both 11114 11114 14791 14791

16 And with an adj pval <=0.05 and FC >2 131 126 1443 1427
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Sample collection
Breeding zebrafish (Danio rerio) were maintained at 28.5 °C
on 14h light/10h dark cycle. Fertilised eggs were obtained
from pairs of heterozygous fish carrying nonsense muta-
tions in transcripts of specific genes [16] by natural spawn-
ing. They were then grown in incubators at 28 °C (except
samples prefixed with zmp_ph9 which were grown at 32 °
C), separated into morphologically abnormal and morpho-
logically normal sibling embryos at the correct develop-
mental stage and snap frozen in dry ice or liquid nitrogen.
Over the course of the protocol development we have re-
fined the RNA extraction protocol to allow increased sam-
ple throughput. RNA was extracted for samples prefixed
lamc1sa379, mdn1sa1349, zmp_ph35 and zmp_ph40 by lysis
in Trizol (Invitrogen). The lysate was mixed with 0.2 vol-
umes of chloroform and processed in Phase Lock Gel heavy
2 ml tubes (5 Prime) according to the manufacturer’s in-
structions. For lamc1sa379 and mdn1sa1349 the aqueous

phase was transferred to an RNase free 1.5ml tube
(Ambion) and precipitated using 0.5 ml isopropyl alcohol
per 1 ml Trizol reagent used. The samples were then spun
at 2–8 °C for 10 min at 12,000 rpm. The supernatant was
discarded and the pellet was washed twice with 75 % etha-
nol. The pellet was then dried at room temperature for 10
min and dissolved in 30 μl of RNAse free water. RNA was
quantified using a Nanodrop. For samples zmp_ph35 and
zmp_ph40 the aqueous phase from the phase lock column
was collected, mixed with equal volumes of 70 % ethanol
and applied to an RNeasy MinElute column (Qiagen). The
columns were spun for 15 s at 8000 x g at room
temperature in a centrifuge. The columns were then
washed with 500 μl of RPE buffer (Qiagen) followed by 500
μl of 80 % ethanol. After drying the columns at full speed
in a centrifuge, RNA was eluted from them in 16 μl of
nuclease free water. RNA was quantified using Qubit
RNA HS assay (Invitrogen). For samples zmp_ph45

Fig. 5 Comparing RNA-seq and transcript counting. The genes identified as showing differential transcript abundance in experiment lamc1sa379

with an adjusted p-value <= 0.05 and an absolute fold change of >= 2 by one or both methods at the less stringent proximity filter between the
transcript counting 3′ end (TC 3′ end) and the Ensembl transcript end (Table 1 row 16) were plotted with their log2 fold change from
RNA-seq against the log2 fold change from TC. Genes with an adjusted p-value <= 0.05 and absolute fold change >= 2 in both RNA-seq
and TC are shown as blue circles. Genes which fail on one or both criteria in RNA-seq but not in TC are shown as green circles and vice versa
as red circles. a The log2 fold changes of genes with the TC 3′ end and Ensembl transcript proximity filter between -100 and +5000. The
arrows highlight examples of genes which are not seen in graph B. b The log2 fold changes of genes with the proximity filter between -100
and +100. c A table showing the number of genes represented by each circle colour. The fourth and fifth columns show the genes which are lost
during the more stringent proximity filtering and whether these are considered true positives or false positives after examining the TC 3′ end. Note
that for two genes where the RNA-seq and TC data correlated, the closest TC 3′ end was found to be false, but a true end was identified further
downstream and indicated by square brackets. The number in curly brackets indicates genes with a true TC 3′ end and an absolute fold change
>2 but which fail to show an adjusted p-value <= 0.05 in TC
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and zmp_ph46 the embryos were lysed in 100 μl of
RLT buffer (Qiagen) containing 1 μl of 14.3M beta
mercaptoethanol (Sigma) in 2ml RNAse free tubes.
The lysate was mixed with 1.8 volumes of Agencourt
RNAClean XP (Beckman Coulter) beads, mixed by
pipetting and allowed to bind for 10 min. The tubes
were then applied to a magnetic rack (Invitrogen)
until the solution turned clear and the supernatant
was removed without disturbing the beads. While still
on the magnet, the beads were washed three times
with 70 % ethanol and air dried for 10 mins. The
beads were re-suspended in 50 μl of RNAse free
water by pipetting. The RNA was then eluted from
the beads by applying the tubes to the magnetic rack.
RNA was quantified using Qubit RNA HS assay
(Invitrogen).

Library preparation and sequencing
Libraries for zmp_ph35, zmp_ph40, zmp_ph45 and
zmp_ph46 were made in 96 well plates. DNA was re-
moved from 300 ng of total RNA by treatment with 2
units of RNase-Free DNase I (NEB) in 100 μl reaction
using the manufacturer’s buffer for 10 min at 37 °C and
heated to 75 °C for 90 min to fragment the RNA. For
each library 12 μl of Streptavidin magnetic beads were
washed in 1x wash/binding buffer (20 mM Tris pH 7.5,
0.5 M NaCl, 1 mM EDTA) and 1 μl of 10 μM biotinyl-
ated polyT primer (B-TAATGCGGCCGCABCBTBTCA
GTCTTTTTTTTTTTTTTVN (note the sequence 5′ of
the polyT including the NotI site is not required for this
protocol and an anchor polyT30 will suffice) was added.
The primer was bound with rotation for 5 min at room
temperature and the beads washed. After adding an
equal volume of 2x wash/binding buffer and 40 units of
RNase Inhibitor (NEB) the cold RNA was added and
allowed to bind for 20 min at room temperature with ro-
tation. The beads were washed twice in 1x wash/binding
buffer, once in cold low salt buffer (0.15 M NaCl, 20
mM Tris-HCl pH 7.5) and suspended in water. The
RNA was phosphorylated with 1 unit of T4 Polynucleo-
tide Kinase (3′ phosphatase minus) (NEB) for 30 min at
37 °C with 40 units of RNase Inhibitor and the RNA
oligo stRSSA4 (5′ Am-CUCGGCAUUCCUGCUGAAC
CGCUCUUCCGAUCU; all Illumina adapter sequences
are from [34]) ligated with 20 units of T4 RNA ligase
(NEB) in the presence of 20 % PEG 8000 (Promega) for
120 min at 37 °C. After adding an equal volume of 2x
wash/binding buffer and incubating at room temperature
for 2 min the beads were washed twice in 1x wash/binding
buffer, once in cold low salt buffer and re-suspended in
water. The RNA was eluted from the beads by heat-
ing at 80 °C for 2 min and separated on a magnet.
One of 96 indexed primers (8mer_SC_TC 1 to 96 -
ACACTCTTTCCCTACACGACGCTCTTCCGATCTN

NNNBBBBNNNNXXXXXXXXCGTTTTTTTTTTTTT
TVN - generic primer where X represents an 8 base
index as described in Additional file 1, N is A, C, G or T, B
is C, G or T and V is A, C or G) was added to each RNA
sample (1 μl of 10 μM), then heated to 70 °C and snap
chilled on ice. Reverse transcription was performed using
SuperScript II (Invitrogen) in the presence of 40 units of
RNase Inhibitor according to the manufacturer’s instruc-
tions, followed by the addition of 1 unit of Exo1 (NEB), in-
cubated at 37 °C for 30 min and then 80 °C for 20 min and
finally cleaned with the QIAgen PCR clean-up kit. Libraries
were amplified to complete the Illumina adapter sequence
using SAPCRS. 1 (5′-AATGATACGGCGACCACCGAG
ATCTACACTCTTTCCCTACACGA-3′) and SAPCRS. 2
(5′-CAAGCAGAAGACGGCATACGAGATCGGTCTCG
GCATTCCTGCTGAAC-3′) in a 50 μl reaction con-
taining 35 μl of library, 5 μl of 10X KOD buffer, 5 μl of
2mM dNTPs, 2 μl MgSO4 , 2 μl of 10 μM primer mix and
1 μl of KOD HOT start polymerase (Novagen) by incubat-
ing in a pre-heated DNA Engine Tetrad (MJ Research) at
94 °C for 2 min, then 94 °C for 15 s, 60 °C for 30 s and 68 °
C for 3 min for 20 cycles and finishing with 68 °C for 5
min. Libraries were cleaned with the QIAgen PCR clean-
up kit, quantified using a BioPhotometer (Eppendorf),
mixed in equimolar quantities, size selected with Spri
beads for an insert size of 70-270 bases and quantified by
qPCR. Sequencing was performed on an Illumina HiSeq
2500. The lamc1sa379 and mdn1sa1349 libraries were made
in 1.5 ml RNase free tubes (Ambion) using an earlier
protocol which is the same as that described above for
zmp_ph35 except 5 μg of total RNA from pools of embryos
were used for each library, total RNA was treated with
DNase for 10 min at 37 °C followed by inactivation at 75 °
C for 10 min in EDTA, then ethanol precipitated, fragmen-
ted with Ambion fragmentation reagent for 5 min at 70 °C,
pulled down with 62.5 μl of streptavidin beads, the reverse
transcription primer contained the sequence NNNNB in-
stead of NNNNBBBBNNNN, there was no ExoI digestion
step and only 15 cycles of amplification. The libraries were
sequenced on HiSeq 2000.

DeTCT analysis pipeline
The source code for the DeTCT pipeline is available
from DeTCT github [35]. Prior to running the DeTCT
pipeline, the sequencing reads were processed with the
detag_fastq.pl script, which trimmed reads to improve
quality and rejected read pairs where the first read of the
pair did not begin with the unique molecular identifier
(UMI), followed by a sample specific index sequence
and polyT. These sequences were removed from the
read, and the index and UMI were added to the read
name. The reads were aligned to the Zv9 zebrafish refer-
ence genome [36] with BWA 0.5.10 [37] and converted
to BAM format with SAMtools [38]. The resulting BAM
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files were processed with Picard MarkDuplicates [26] to
fix mate information and add read groups. Duplicate
reads were identified using a modified version of Picard’s
MarkDuplicates called Picard-detct [26, 27], which took
into account the UMI in the read name. The final BAM
files were used as input for the DeTCT pipeline. In the
first stage, an HMM-based peak caller, HPeak [39], was
used to identify regions where read 2 of each read pair
was aligned. All the second reads in an experiment were
put into 100 bp bins, with duplicate reads and reads with
more than 2 mismatches being ignored, and these bins
were used as input to HPeak. The output is the probabil-
ity that each bin represents a peak, with adjacent bins
being merged to create regions. For each region, all the
read 2s aligned in that region were identified and then
the read 1 associated with each read 2 was determined.
Due to the library construction method, the alignment
of read 1 marks the 3′ end of a transcript. Transcript
counting 3′ ends (TC 3′ ends) were ignored if they were
supported by fewer than 3 reads or if the 10 bp sequence
downstream was significantly enriched in A bases (4 As
at the start or more than 6 As in total or matching one
of the following empirically determined patterns: AA
ABAAABBB, AAABAABABB, AAABABAABB, AABA
AAABBB, AABAAABABB, AABABAAABB, ABAAAAA
BBB, ABAAAABABB, ABAAABAABB, ABAABAAABB,
ABABAAAABB, AABAABAABB). The TC 3′ end with
the highest read count was associated with each region.
Finally, the number of read 2s aligned in each region
was determined for each sample and these counts were
used for differential expression analysis using DESeq2
[28]. All regions with a TC 3′ end were associated with
Ensembl gene annotation based on the nearest transcript
in the appropriate direction on the correct strand. The
final output was a table (in CSV, TSV or HTML formats)
containing region coordinates, associated TC 3′ end
coordinates and read counts, differential expression p-
value and adjusted p-value, gene and transcript annota-
tion, distance of TC 3′ end to nearest Ensembl 3′ end,
count data, normalised count data and log2 fold changes.

Technical replicate
Twelve transcript counting libraries were prepared using
1 μg of total RNA extracted from a pool of zebrafish em-
bryos. As recommended by the manufacturer for 1 μg of
total RNA a 1:100 dilution of spike mix 1 (Ambion) was
made and 2 μl added to the three x1 samples. We added
5 times this quantity to the x5, one fifth to the x0.2 and
one tenth to the x0.1. Sequencing was performed on an
Illumina MiSeq. The reads were aligned to the Zv9 refer-
ence genome for the technical replicate and to the Zv9
reference genome including the spike reference se-
quences for the differential abundance test. For the tech-
nical replicate the duplicate-flagged sequence was passed

through the DeTCT pipeline, the results filtered as de-
scribed in additional file 5 and the resulting normalised
count data compared by calculating Pearson’s product
moment correlation coefficient using R’s cor.test func-
tion. For the differential abundance test the DeTCT
pipeline was run on all 12 samples to get count data in
triplicate for the four conditions (x5, x1, x0.2, x0.1).
Then all six pairwise comparisons of the four conditions
were run from the DESeq2 step onwards with the rele-
vant six libraries. The mean of the log2 fold change of
the spikes was calculated and compared to the expected
log2 fold change.

Sample number
The 11 mutant and 11 wild-type zmp_ph46 BAM files
were downsampled to 6 million read pairs each using the
downsampling pipeline of the DeTCT pipeline [35] and
then merged using Picard [26] to create two BAM files,
one containing 66 million read pairs from the 11 mutant
samples and one containing 66 million read pairs from
the 11 wild-type samples. The real index sequences in
each BAM file were then replaced with fake index se-
quences using Pseudo bam files [40] in order to simulate
assigning the reads at random to between 2 to 11 different
pseudo-samples. Each of these 10 permutations was re-
peated 10 times, to give 100 simulations in total. Each
simulation was then run through the DeTCT pipeline.

Comparison of RNA-seq and transcript counting
For two different knockout alleles we made six non-
directional TruSeq PE Cluster Kit v3 RNA-seq and six
TC libraries from three wild-type and three mutant zeb-
rafish total RNA samples, plus two or six additional li-
braries using the TC protocol (Table 1). Libraries were
sequenced using paired-end 75 bp Illumina HiSeq 2000
systems, with reads trimmed to 54 bp using the DeTCT
pipeline or the FASTX-Toolkit. Read 2s were mapped to
the Zv9 reference genome with BWA 0.5.10 (row 1). Du-
plicate reads were identified (row 2) using the modified
version of Picard’s MarkDuplicates called Picard-detct
[26, 27]. RNA-seq read counts for read 2 were obtained
with htseq-count using the Ensembl 74 annotation,
whilst the DeTCT pipeline was used to extract TC read
counts (row 3). Counts mapped to the mitochondrial
genome were excluded from further analysis (row 4).
The proximity of the Transcript counting 3′ end (TC 3′
end) and an Ensembl transcript were filtered at a high
stringency (between -100 and +100 bases) or low strin-
gency (between -100 and +5000 bases) (row 5). For the
RNA-seq analysis all counts match a gene (rows 6 and
8), whereas in the TC analysis only counts where the TC
3′ end is associated with an Ensembl gene (rows 6 and
8) or transcripts (rows 8 and 10) are used and the re-
mainder represent un-annotated genes, alternative 3′
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ends or experimental artefact. In order to ensure a one
to one correspondence between RNA-seq genes and TC
genes, 28 Ensembl v74 transcripts thought to be falla-
cious were added to a blacklist [41]. Transcripts on the
blacklist were not used to assign TC 3′ ends to Ensembl
genes, ensuring a single gene was not annotated to dif-
ferent TC 3′ ends. In addition one RNA-seq read match-
ing an exon in a gene is sufficient to call a gene, whereas
multiple reads are required to call a TC 3′ end in
DeTCT. DESeq2 was run on both sets of count data.
Only protein-coding genes where a p-value was identi-
fied by DESeq2 were considered further (row 10) and
from these a subset was also awarded an adjusted p-
value (row 11). Genes showing differential transcript
abundance between mutant and wild type with an ad-
justed p-value <= 0.05 (row 12) were further filtered for
those with a fold change >= 2 (row 13). Before the com-
parison of the RNA-seq and TC methods the number of
protein-coding genes with an adjusted p-value called by
both methods (row 15) and the number showing an ad-
justed p-value <= 0.05 plus a fold change >= 2 (row 16)
were identified.

Ethical statement
Zebrafish were maintained in accordance with UK Home
Office regulations, UK Animals (Scientific Procedures)
Act 1986, under project licence 70/7606, which was
reviewed by the Wellcome Trust Sanger Institute Ethical
Review Committee.

Additional files

Additional file 1: Table of libraries, ENA accession, sequence depth
and indexing sequence. (XLSX 22 kb)

Additional file 2: Example of a DeTCT output table. An example of a
DeTCT output table showing the column header and 54 rows of regions
with the adjusted p-value of <=0.05 for zmp_ph45 (allele pla2g12bsa659)
and ordered from the lowest adjusted p-value. The table is not filtered
for proximity of TC 3′ end to the nearest Ensembl gene (see column 9).
(XLSX 33 kb)

Additional file 3: TC 3′ end of unannotated transcript. Screen shots
from the forward strand of Ensembl version 75 browser are shown. A.
Region 10:40424001-40469000 configured with the following Genes and
Transcript tracks: Pooled RNA-seq (blue gene models), Pooled RNA-seq
alignments (grey bars), intron tracks for 2 cell, 1 dpf and 14 dpf (blue/
green bars) and the merged Ensembl/Havana gene model
ENSDART00000055339 (dark red). An additional transcript was identified
during the gene build using RNA-seq data (RNASEQT00000024319 –
marked by a red arrow) which was filtered from the final transcript set
[29]. B. The region at the 3′ end of ENSDART00000055339 is expanded
to show the TC 3′ end at coordinate 10:40464260 (red circle), which is
448 bases 5′ of the annotated end. RNA-seq data supports the TC 3′
end but not the final exon of the annotated transcript. C. The region
containing RNASEQT00000024319 is expanded to show the TC 3′ end
at co-ordinate 10:40428902 (red circle), which is 35,806 bases upstream
of the closest strand-specific transcript 3′ end of ENSDART00000055339
and in the initial DeTCT output tables this coordinate is associated with
the annotated transcript by the DeTCT pipeline. Filtering for proximity
between the TC 3′ end and the 3′ end of the nearest annotated transcript

at +/- 100 bases or -100 to +5000 bases removes the link between
coordinate 10:40428902 and the adjacent transcript avoiding a false
positive call. Future Ensembl gene builds will hopefully identify the missing
transcript. (PDF 50 kb)

Additional file 4: Alternative transcript counting 3′ ends in 3′ UTR.
Screenshots from the forward strand of Ensembl version 75 browser are
shown. A. Region 6:10360000-10500000 configured with the following
Genes and Transcript tracks: Pooled RNA-seq alignments (grey bars) and
the merged Ensembl/Havana gene model ENSDARG00000062687 (dark
red). B. The 9 kbp region at the 3′ end of the ENSDARG00000062687
gene model. C to F. Details of the four regions identified by the DeTCT
pipeline. Red circles indicate the genomic coordinate of the TC 3′ end.
The TC 3′ end at 6:10493860 (panel F) shows evidence of a polyadenylation
signal and no genomic polyA track supporting it being a true transcript 3′
end but is 6256 bases downstream of the Ensembl gene model 3′ end.
The TC 3′ end at 6:10489461 (panel C) may be an alternative transcript 3′
end, but could have arisen from priming off the surrounding polyA tracts.
The other two TC 3′ ends (D and E) have less evidence and may have
arisen by priming off the local polyA tracts. (PDF 68 kb)

Additional file 5: Technical replicate. Twelve replicate transcript
counting libraries were prepared from 1 μg of a pool of wild-type zebrafish
embryo total RNA sample. The libraries were sequenced by Illumina MiSeq
and analysed using the DeTCT pipeline. The normalised counts for
each region were extracted (73,938 regions). A. The coefficient of
variance was calculated for all regions and plotted against the mean
of the counts (blue, red and green circles) and the Pearson correlations
shown in part B. Regions with a low mean count (i.e. with little or no chance
of showing significant differential expression) were removed using DeSeq2
independent filter and the remaining 7,379 regions plotted on the same
graph (red and green circles) and the Pearson correlations shown in part C.
The proximity of the transcript counting 3′ ends (TC 3′ ends) was restricted
to within 100 bases of an Ensembl transcript 3′ end and the resulting
1,976 regions plotted on the same graph (green circles) and the Pearson
correlations shown in Fig. 3. The graph shows less dispersion between the
filtered regions of the 12 technical replicates compared to the unfiltered
regions. It was noted that one region mapping to the mitochondrial
MT:2501-2518 (within ENSDARG00000080337) comprised a large
proportion of counts, distorting the Pearson correlation (red arrow on A).
We believe these are derived by priming from a polyA sequence in the
mitochondrial rRNA sequence. The Pearson correlation of all regions with
this outlier removed is shown in part D and after removing regions with
low mean counts is shown in part E. Note this mitochondrial region was
removed in the Ensembl transcript proximity filter and therefore does not
appear in the Pearson correlation shown in Fig. 3. Cells coloured yellow in
the Pearson correlation are the most highly correlated while those in blue
are the least correlated. The yellow to blue gradient is specific to
each individual Pearson correlation. (PDF 165 kb)

Additional file 6: Volcano plots of RNA-seq data. Volcano plots,
plotting the adjusted p-value against the log2 fold change, are shown for
the two knockout alleles analysed by RNA-seq and TC. All transcripts
with an adjusted p-value <= 0.05 are shown. Transcripts with a fold
change >= 2 are blue and a fold change < 2 are red. TC transcripts
were passed through the relaxed proximity filter of -100 to +5000.
(PDF 127 kb)

Additional file 7: Comparing RNA-seq and transcript counting. The
same analysis as Fig. 5, but using mdn1sa1349. (PDF 97 kb)
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