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Abstract

Tendons mainly function as load-bearing tissues in the muscloskeletal system, transmitting loads 

from muscle to bone. Tendons are dynamic structures that respond to the magnitude, direction, 

frequency, and duration of physiologic as well as pathologic mechanical loads via complex 

interactions between cellular pathways and the highly specialized extracellular matrix. This paper 

reviews the evolution and current knowledge of mechanobiology in tendon development, 

homeostasis, disease, and repair. In addition, we review several novel mechanotransduction 

pathways that have been identified recently in other tissues and cell types, providing potential 

research opportunities in the field of tendon mechanobiology. We also highlight current methods, 

models, and technologies being used in a wide variety of mechanobiology research that could be 

investigated in the context of their potential applicability for answering some of the fundamental 

unanswered questions in this field. The article concludes with a review of the major questions and 

future goals discussed during the recent ORS/ISMMS New Frontiers in Tendon Research 

Conference held September 10–11, 2014 in New York City.

Introduction

The ability of cells to respond to externally applied forces is a fundamental biologic 

response which affects tissue development, homeostasis, disease and repair. While initial 

observations on the biologic effect of externally applied forces were described in bone by 

Julius Wolff,1 a growing body of work in the field of mechanobiology has focused on 

mechanistic components of this relationship in all connective tissues, including tendon. 
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Tendon cells are sensitive to mechanical stimuli imposed during tendon loading and can 

adapt their extracellular matrix in an anabolic or catabolic manner according to the 

magnitude, frequency, direction and duration of externally applied loads.2–4 The dynamic 

interactions between a cell and its physical microenvironment involve a complex set of 

pathways between the cell surface (e.g., ion channels, focal adhesion kinases, integrins, cilia, 

and the cytoskeleton, etc.) that interface with the nucleus to generate a biologic response. 

While physiologic loads are required to maintain tendon homeostasis,5,6 abnormal loading 

can lead to tendon injury, either through an acute traumatic injury or a more chronic, 

degenerative process (i.e., tendinopathy) resulting from an accumulation of micro-damage 

and an altered cell/matrix response.7–9 Therefore, unraveling the mechanobiology of tendon 

cells is critical to understanding both the pathophysiology in tendon disease and the 

physiologic benefits of controlled loading (i.e., rehabilitation) during tendon healing.

This review examines the evolution of tendon mechanobiological research and summarizes 

our current understanding of the role of mechanobiology in tendon health and disease. New 

areas of mechanobiology which have not yet received much attention in the tendon literature 

are also highlighted. In addition, current methods, models, and technologies being used in a 

wide variety of mechanobiology research will be discussed in the context of their potential 

applicability to tendon research. The article concludes with a review of the major questions 

and future goals discussed during the recent ORS/ISMMS New Frontiers in Tendon 

Research held September 10–11, 2014 in New York City.

Tendon Mechanobiology

Tendon primarily functions by transmitting tensile loads from muscle to bone providing 

stability and greater efficiency in the motion of the musculoskeletal system. This load 

transfer function is likely to serve as the primary mechanical stimulus for tendon cells. Such 

tensile loads are transferred to tendon cells through various matrix components and 

compartments. At the cell level, they are transduced from the exterior to intracellular 

biochemical responses by various transmembrane structures and pathways.

As with all biological systems, tendon is highly dependent on its structure and cellular 

organization for function and response to physiologic loading. The highly organized 

structural components of tendon are critical for its non-linear, viscoelastic response to 

applied cyclic tensile loads. Tendon is mainly composed of water while the solid matrix is 

predominantly composed of collagen (70–80% dry weight).10 Type I collagen is the main 

structural component of tendon, and it is arranged in a complex hierarchy that varies in 

tensile properties from nanoscale to macroscale.11 The structural arrangement and 

mechanical properties of collagen are thought to provide the main material characteristics of 

tendon. For example, the toe region results from collagen crimp formation and the high 

tensile strength is due to the ability to form covalent intramolecular and intermolecular 

cross-links that inhibit sliding between adjacent fibers and fibrils.11,12 In addition to matrix 

deformation, experimental studies have demonstrated interstitial fluid flow in response to 

cyclic tensile loading of tendons,13 but the role of this and the mechanical contribution of 

other components of tendon (elastin, glycoproteins, proteoglycans, glycolipids, and cells) 

are still under consideration.
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Within tendon, cells are organized in linear arrays aligned with and interspersed between 

collagen fibers as a 3-dimensional network of cells and their processes distributed 

throughout the tendon. These cells have flattened cell processes which extend laterally and 

form junctions with adjacent cells which are in direct contact with collagen bundles.14 

Tendon cells reside within a specialized pericellular matrix,15 which may play an important 

role in mechanotransduction, similar to that of the pericellular matrix of articular cartilage.16

The deformation of tendon extracellular matrix from applied loading transmits various levels 

and combinations of tensile, compressive, and shear stresses and strains to the tendon 

cells.17 The transmission of this deformation to the localized cell or nucleus correlates to, 

but is less than the applied tendon deformation.17 Interstitial fluid flow in response to cyclic 

tensile loading of tendons13 may also lead to additional shear forces and perhaps hydrostatic 

pressure on tendon cells.18 The magnitude, frequency, and duration of these tissue forces on 

the cells depend on prior loading history (exercise, disuse, overuse) and the composition of 

the ECM (tendon type, age, sex, disease, microdamage).

The mechanobiology of tendon cells is vital for the maintenance of tissue homeostasis.2,19 

Physiologic loads required to maintain tendon homeostasis have been identified with both in 

vitro and in vivo models.5,6,9,20,21 The precise physiologic loads of individual tendons 

depend on their function, age, sex, location, and species. Further, tendon is not an isolated 

tissue, but is instead transitionally integrated into both muscle (myotendinous junction) and 

bone (enthesis). These transition sites and regional differences in each tendon due to 

anatomic location and function correspond to global and regional variations in the tissue 

composition and material properties, and strain distributions,22 and are often potential sites 

of the initiation of tendon injury23 and subsequent alterations in the cellular/matrix response.

While certain loading patterns are known to induce cellular anabolic adaptation of 

tendon,5,6,9,20,21 repetitive loading may also lead to a mechanobiological over-stimulation of 

tendon cells and initiation of a catabolic degenerative response that leads to 

tendinopathy.24,25 While many of these in vitro repetitive loading studies show increases in 

tendinopathic markers (inflammatory cytokines, degenerative enzymes), they may not 

replicate the in situ mechanobiology of tendon cells within an in vivo three-dimensional 

collageneous matrix.8 Over-stimulation of tendon through single or repetitive loading 

induces collagen fibril damage, micro-damage, or laxity,23,26–28 which in turn may result in 

paradoxical mechanobiological hypo-stimulation of tendon cells. Hypo-stimulation of 

tendon cells resulting from altered cell-matrix interactions has been demonstrated in situ to 

have similar outcomes8,29 to the pathological changes (collagen disruption, hypocellularity, 

increased MMP levels, apoptosis) reported in clinical cases of tendinopathy.8,9 While the 

precise level (magnitude, frequency, and duration) of stimulation required for normal tendon 

homeostasis remains unknown, it is likely that abnormal levels of stimulation may play a 

role in the pathogenesis of tendinopathy.8,9 In addition, the precise in vivo loading levels 

required to induce repair remain unknown. Indeed, one of the most effective treatments of 

tendinopathy in the patellar, Achilles, and even rotator cuff tendons is the use of controlled 

eccentric motion therapy.30 This eccentric loading may counteract the altered 

mechanobiological stimulation that is postulated to occur with tendinopathy.31 In this 
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regard, further understanding the in vivo loading of tendons is vital to understanding the 

mechanobiological stimuli required to induce anabolic or reduce catabolic activity.

Transfer of Load to Cells

Mechanical signals, including tension, compression, hydrostatic pressure, and fluid shear 

stress, are transduced by cells to stimulate biochemical pathways and effect cellular 

processes, such as differentiation, proliferation, tissue development, and skeletal 

maintenance (Figure 1).2,32 This transduction may occur through a number of mechanisms 

and signaling pathways, including the primary cilium, activation of cell receptors and ion 

channels, alterations in second messengers, such as intracellular Ca2+ or adenosine 

triphosphate (ATP), cytoskeletal rearrangement,33 changes in gene and protein expression, 

and perhaps Hippo signaling mediated by YAP/TAZ.34

The deformability of a tenocyte is determined by a number of factors, which together 

determine the elastic stiffness of the cell. These factors include residual tensile “pre-stress” 

in the cytoskeleton, which is influenced by the stiffness of the matrix, attachment of the cell 

to the matrix (matrix-integrin linkage), cell-cell connections and contractility (α-smooth 

muscle actin).35 A growing body of evidence supports the idea that tensile pre-stress in the 

cytoskeleton influences cellular response to mechanical stimulation and, therefore, to 

biochemical signals. Evidence also suggests that biochemical mediators modulate the 

mechanical properties of cells and their surrounding matrix, which in turn regulates cellular 

mechanosensitivity and responses to mechanical stimulation.16,35,36

Matrix linkages through integrins to the cytoskeleton and to the nucleus transduce externally 

applied strain directly to the cell.19 Tenocytes alter expression of integrins in response to 

tensile strain37 and applied strain may elicit kinetic responses from cells much faster than 

those derived from chemical ligand application.38 A proposed mechanosensory protein 

complex beneath the plasma membrane comprised of integrin and actin binding partners 

represent a physical link in activation pathway(s) to transduce strain or shear stress2. The 

pathways that link to the deformation sensors often involve transient changes in intracellular 

concentration of calcium ([Ca2+]i), which results in the activation of downstream pathways, 

such as PGE2 release as well as alterations in the expression of matrix genes.39,40

Surprisingly, the primary cilium, which is present in most cells including tenocytes,41 has 

been shown to respond to shear stress deformation in osteoblasts and endothelial cells. In 

tendon, primary cilia are aligned parallel to the collagen fibers along the long axis of the 

tendon41 and deflect in response to tensile loading.42 Primary cilia length within the tendon 

depends on location and the mechanical environment.43 Stress deprivation may increase the 

length of the cilia, an effect that can be reversed by mechanical loading.43,44 Together these 

data suggest an important role for the primary cilium in response to changes in mechanical 

environment within tendon.

Cells in both the epitenon and internal compartments of tendon are physically connected to 

each other by gap junctions,14 even within monolayer and 3D culture.45 The gap junctional 

complex is composed of two connexons, each of which contain six transmembrane proteins 

called connexins (Cx), of which Cx 26, 32, and 43 are most commonly identified in tendon. 
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Within a syncytium, or cellular network, cells are connected by the gap junctions, Cx43 and 

Cx32, but between syncytia are connected by only Cx43.14 Cx43 co-localization with actin 

increases with substrate strain.46 Tenocytes are coupled and respond to mechanical 

stimulation of a target cell plasma membrane by increasing [Ca2+]i and propagating a 

calcium wave to adjacent cells for up to 4–7 cell diameters.47,48 Cx43 gap junctions undergo 

expression and permeability changes in response to mechanical load in tendon cells.47,49 

Thus, gap junctions are dynamic structures that may play an important role in tenocyte 

mechanobiology.

Cellular Responses to Load

Cells in mechanically active tissues detect, process, and relay load signals to surrounding 

cells in a feedback loop designed to provide tissue homeostasis.2,50 Tendon cells respond to 

load by activating ion channels, increasing [Ca2+]i, releasing ATP, altering their 

cytoplasmic filament organization and content (especially actin), and altering their protein 

expression and secreting MMPs.2,39,47,51–53 Mechanical loading causes the release of ATP 

in almost every cell type examined to date, including tenocytes.24,54 Cells in vitro, including 

tenocytes, generally secrete ATP on the order of 10–150 pM on average and up to nM levels 

in some cells.54

Tenocytes express purinoceptors and respond to ATP and other nucleotides and 

nucleosides.24,54 However, high doses of ATP can temporally desensitize tenocytes to a 

mechanical stimulus. A brief mechanostimulus such as substrate strain can temporally (5 

minutes later) augment a response to a subsequent mechanostimulus such as a membrane 

deformation. The effect of secreted ATP is modulated by ecto-NTPases which appear to act 

principally at the cell surface in tendon.54 ATP can also modulate collagen gel contraction in 

MC3T3-E1 cells in vitro in 3D gel linear constructs and in bioartificial tendons.55 Therefore, 

ATP is an important modulator of mechanical load responses in tendon cells.

Cellular Responses Post- Injury

After injury, inflammation can occur with influx of white cells, expression of cytokines and 

metalloproteinases and swelling.56 However, most experts in the field believe that 

tendinopathies do not involve a classic inflammatory pathway, but rather involve a local 

“molecular” inflammation caused by resident cells that express MMPs, COX 2, and make 

PGE2.56–59 Tendon rupture results in bleeding, clotting and release of PDGF, TGF-β, ATP 

and ADP from platelets, release of hormones such as epinephrine and norepinephrine from 

blood vessels and/or nerves, and activation of IGF-I from plasma and tendon matrix and 

TGF-β from matrix at the wound site.58,59 Cell migration from the epitenon into the wound 

site occurs followed by cell division then matrix synthesis. Passive or active motion speeds 

recovery and promotes increased range of motion, but the mechanisms by which this 

phenomenon occurs remain conjectural.60

Mechanical loading stimulates the production of IL-1β and ATP in tenocytes and ligament 

cells,24,58 and these mediators modulate the pre-stress cytoskeletal state and therefore 

phenotype in cells.35,36,55 Substrate stiffness can regulate tenocyte expression of MMPs.49 

IL-1β is well known as a potent proinflammatory factor which is often found at a site of 
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tendon injury. IL-1β treatment increases the secretion and expression of metalloproteinases 

(MMPs)-1, -2, -3, -9, and -13 in tenocytes53,58 and accelerates the degeneration of the 

matrix. IL-1β also differentially regulates the expression of type I collagen and elastin and 

decreases the Young’s modulus of human tenocyte-populated bioartificial tendons 

(BATs).36 This increased elasticity prevents BATs from mechanical load-induced rupture.36 

Therefore, IL-1β may act as a regulator in modulating the mechanical properties of ECM in 

response to mechanical stimulation.

Tenocyte Biomarkers and Mechanobiology

A more specific list of markers for tenocytes include collagen type I, II, III, decorin, TGFβ 

1, 2, 3, BMP 2, 7, Mohawk, Scleraxis, tenomodulin, and specific cell surface markers 

(CD29, CD44, CD73, CD90, CD105).61–64 Tenomodulin is not tenocyte specific but is 

produced by tenocytes and is likely both in the cytoplasm and nucleus.65 Titin is a more 

muscle-specific protein present in the Z band of the sarcomere and acts as a shock cord, 

returning the sarcomere back to its resting level, but is present in tenocytes and a titin 

fragment migrates to the nucleus after mechanical stimulation.66

New Techniques for Studying Tendon Mechanobiology

A variety of technologies have been used to investigate dynamic in vivo forces and strains in 

various tendons at different length scales. The use of confocal microscopic and dual photon 

imaging combined with staining protocols has greatly enhanced our knowledge of complex 

regional variations in tendon, and non-linear cellular and matrix response of tendon to in situ 

loading. Several invasive implantable sensors and non-invasive systems have been 

developed to evaluate in vivo strain and forces applied to the tendon under various dynamic 

loading regimes,67,68 as well as measurements of regional differences within the tendon.26,69 

Recent modifications to non-invasive imaging techniques in conjunction with computational 

image analysis have been used to determine in vivo loading forces and strains with greater 

resolution than previously including ultrasound tissue characterization,26 

acoustoelastography,70 and magnetic resonance imaging.71 Reduced-orientation dipolar 

anisotropy fiber imaging has improved magnetic resonance contrast between supraspinatus 

tendon, infraspinatus tendon and rotator cable, and can identify individual layers of the 

multi-layered rotator cuff with correlation to the histopathology and anatomy of the intact 

rotator cuff. This technique takes advantage of the ‘magic angle effect’ to improve contrast 

between layers of complex tissues such as the rotator cuff, but its use in abnormal structures 

has not yet been reported.72 Shear-wave elastography is an advance on tendon elastography 

and measures shear-wave velocity generated by the ultrasound pulse to evaluate viscoelastic 

properties of tendon.73

Several new imaging technologies have recently been applied to other aligned soft tissues, 

and may be adapted for future static and dynamic tendon mechanobiology studies. Diffusion 

tensor imaging is valuable in investigation of fiber architecture in nerves, brain and muscle, 

and describes direction of anisotropic diffusion of water molecules within each voxel.74 

Optical coherence micro-elastography is an optical coherence tomography technique to 

measure tissue deformation in response to static or dynamic loading and provide microscale 

real-time high resolution mechanical contrast imaging.75,76 Second harmonic generation 
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microscopy has recently been combined with a numerical model to quantify the underlying 

collagen structure and predict fibril diameter in normal and osteoarthritic cartilage, results 

which were confirmed by atomic force microscopy.77 At the level of interactions between 

cell and extracellular matrix niche, Förster resonance energy transfer (FRET) between two 

fluorophores separated by an elastic tension sensor module inserted into vinculin is proving 

invaluable in investigation of intracellular focal adhesion dynamics in cell-matrix 

interactions,78 while effects of cell-matrix interactions on extracellular matrix tension can be 

evaluated in a variety of ways, including using FRET technology in fibronectin.79 Other 

new approaches used to study mechanobiology in fields such as neuroscience have recently 

been reviewed, including atomic force microscopy based approaches, optical or magnetic 

trapping at the cellular or subcellular level, various patterning, microfluidic and deformable 

membrane technologies and magnetic resonance elastography.80 The recent identification of 

type VI collagen, fibrillin-1 and elastin in the pericellular matrix of tendon, and its 

disorganization in degenerative tendon 15 suggests that atomic force microscopy techniques 

used to evaluate the integrity of the pericellular matrix of cartilage may also be valuable in 

studying tendon development or tendinopathies.16,81 At the genomic level, the CRISPR/

Cas9 system has been used to label and image specific genomic loci,82 a targeted genome 

imaging technique which may be extremely useful in evaluating the genomic effects of 

tendon mechanobiology once systems biology approaches have identified putative targets.

Various experimental and computational models have sought to understand the complex 

overall behavior of the tendon.83 Future challenges identified included the need to model 

cellular anabolism and catabolism for extracellular matrix components, the need to model 

the micromechanical and pericellular tendon environment, and the need to model the effects 

of microscale events on complex macroscale tendon structure and properties.83 Recent 

efforts are addressing these needs. For example, a three-level multiscale approach has been 

used to model macroscale mechanical behavior of collagenous tissues and account for 

nanoscale intermolecular cross-links and collagen mechanics, geometric nonlinearities, local 

stress and strain fields at the pericellular microscale.84 The volumetric loss that tendon 

undergoes during loading, measured by large Poisson’s ratios measured during tensile 

testing has been accounted for using continuum based hyperelestic constitutive modeling to 

describe both the stress-strain relationship of tendons under tensile load and the large strain-

dependent Poisson’s ratios observed though modeling fluid movement.85 While many 

techniques and models have been developed, much work remains to apply them to critical 

questions in the field of tendon mechanobiology.

Recent Advances in Mechanical Signal Transduction

As reviewed above, a great deal of work has been done on the mechanisms involved in the 

transduction of mechanical loads to an intracellular response by tendon cells.86 As the 

picture emerges, it is clear that cells in tendon are similar in many respects to those in other 

connective tissues such as cartilage,87 meniscus,88 or intervertebral disc,89 do not simply 

utilize a single mechanotransduction pathway, but rather have a number of interacting 

mechanisms that perform different mechanotransduction roles in the tissue. In this regard, a 

more thorough understanding of the specific mechanisms of mechanotransduction as well as 

the downstream pathways they activate will hopefully lead to new approaches for treating 
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tendinopathies or enhancing tendon repair. In the past decade, major advances have been 

made in several broad areas of cell mechanics and mechanotransduction. Here we focus on 

several recent areas that have advanced rapidly but have only received limited attention in 

tendon.

The Role of Ion Channels in Mechanobiology

The discovery of the Transient Receptor Potential (TRP) superfamily of ion channels has 

revolutionized our understanding of the mechanisms by which many cell types sense and 

respond to a diverse array of stimuli, including mechanical loading, pain, itch, heat, cold, 

osmolarity, and others. These channels are classified into seven subfamilies by sequence 

homology - TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPN (no 

mechanoreceptor), TRPA (ankyrin), TRPP (polycystin), and TRPML (mucolipin). TRP 

channels are generally activated by specific chemical agonists as well as physical factors, 

and in many cases, are believed to serve as integrators of various physical and chemical 

stimulants. For example, TRPV1, which is noxious heat-pain receptor, is well known as the 

“chili-pepper receptor” and is activated chemically by capsaicin.90 TRPM8 responds to cold 

temperatures, but is also chemically activated by menthol.91

The TRPV family has been of particular interest to investigators studying connective tissues, 

and several recent studies have shown important roles for these channels in musculoskeletal 

transduction.92 For example, TRPV4, which was identified as an osmotically-sensitive 

channel in C. Elegans,93 has been shown to control the anabolic response of articular 

chondrocytes to mechanical loading,94,95 and Trpv4 knock-out mice develop early-onset 

osteoarthritis.96 Furthermore, TRPV4 within the trigeminal ganglion is an important 

mediator of inflammation-mediated nociception in the joint.97 TRPV4, TRPV6, and TRPC1 

all have been shown to regulate osteoclastogenesis and bone remodeling,98–100 suggesting 

that tendon attachment to bone may also be influenced by the activity of TRP channels. The 

roles of these channels, and other recently identified mechanosensitive ion channels such as 

the PIEZOs,101 in tendon inflammatory response or mechanotransduction remains to be 

determined, and they provide novel and important targets for the study of tendon 

mechanobiology.

The Hippo Pathway and YAP/TAZ in Mechanobiology

Another recent area of rapid advancement in mechanobiology has been in the Hippo 

network, a major conserved pathway that functions as a growth suppressor to regulate organ 

size and prevent tumor formation. In particular, two transcriptional coactivators in this 

network - Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding 

motif (TAZ) – were recently identified as regulators of the transcriptional and phenotypic 

changes caused by changes in the biophysical environment of cells.102,103 Indeed, growing 

evidence suggests that this network serves to integrate biophysical signals into multiple 

signaling pathways, including TGFβ/BMP, Wnt, IGF, and AKT.104 At the cellular level, the 

YAP/TAZ pathway has been implicated in sensing cell tension, substrate rigidity, cell 

geometry, and other mechanobiological phenomena.105 To date, little or no work has been 

reported on this pathway in regulating tendon mechanobiology, and it thus provides an 

important potential area of investigation.
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Conclusions

• While emerging technologies and techniques will likely be extremely valuable in 

improving our understanding of tendon mechanobiology, an integrated, 

collaborative multi-disciplinary multi-scale approach is likely to yield the greatest 

advances in the field.

• It is now becoming apparent that connective tissue cells coordinate multiple 

interacting mechanisms of mechanical signal transduction. A more thorough 

understanding of these pathways and their interactions will hopefully lead to new 

therapeutic approaches and rehabilitation methods for the prevention or treatment 

of tendon disease.

Major Questions

How do mechanical factors determine cell fate?—Mechanical factors (matrix 

stiffness, loading stimuli) are thought to play a role in determining cell fate during 

development106 and in post-natal tissue, where complete loss of load can lead to apoptosis 

and initiation of myofibroblastic cells in tendon.29,107 However, the precise 

mechanobiological mechanisms (Figure 1) involved in the role of mechanical factors 

determining cell fate are under continued investigation.

Can an understanding of mechanobiology lead to new drug targets for 
treating tendinopathy or enhancing regeneration?—Overall, understanding tendon 

mechanobiology may lead to better therapeutic regimens for tendinopathy. For instance, 

drugs for treating tendinopathy or enhancing regeneration either reduce the degenerative 

effects associated with the loss of matrix tension 108 or stimulate anabolic activity.

Staging and definitions of tendon health and disease – is tendinopathy a 
biological, structural, mechanical, or psychosocial outcome?—Tendinopathy is 

a progressive disease and is mostly defined by pain and functional loss. However the 

pathological signs of the disease in its various stages are beginning to be defined in terms of 

gene expression and protein synthesis.109

What is the role of other tissues (bone, muscle, nerve, vascularity, etc.) on 
tendon mechanobiology—Tendons may have global or local structural variations based 

on their anatomic location, function, and interaction with other associated tissues (bone, 

muscle, nerve, vascularity, etc.). These associated tissues are necessary for tendon 

homeostasis, but the direct or indirect role of these tissues in tendon mechanobiology is still 

a subject of current research.

Future Goals

In vitro models: Systems that simulate tendon in culture with high fidelity to 
native tendon—Investigations have demonstrated the existence of a window of induced 

loading needed to maintain cultured tendons in their native state, where too little or too 

much load can cause progressive degeneration.20 Similar tissue engineered constructs also 

require precise mechanical loading to mimic native tendon cell organization, structure, and 

Lavagnino et al. Page 9

J Orthop Res. Author manuscript; available in PMC 2015 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene expression.110 Future studies in these culture systems may help determine the window 

of tissue or cellular mechanical stimulation required to maintain tendon homeostasis.

Animal models: range of animal models (C Elegans, fruit fly, zebrafish, chick 
embryo, mouse, etc.) to study mechanobiology—Many of the recent breakthroughs 

in mechanotransduction have been made in lower organisms, showing the highly conserved 

nature of these pathways. Future studies in such model organisms may help to elucidate new 

mechanisms of mechanical signaling.

Computational models: Systems biology, bioinformatics, and finite element 
models of mechanobiology—The future use of computational approaches can help 

answer questions related to defining tendon homeostasis and subsequent alterations based on 

cellular activity. In turn, time-based descriptions of cellular activity and response can be 

incorporated into multi-scale finite element models to predict alterations in the complex 

hierarchical composition and subsequent loading of tendon.83

Cell Therapy: Develop customized (stem) cells for therapeutic applications—
Recent studies suggest that the use of the exogenous or endogenous tendon stem cell 

populations may have therapeutic effects on diseased or injured tendons.111,112 However, 

the precise administration (timing, dosage, carrier, etc.) as well as the effect of local 

conditions (biological and/or biomechanical) on their function and differentiation has yet to 

be determined.

Biomarkers: Need for imaging and biomarkers for outcomes—Although there are 

several suggested biomarkers (tenomodulin, Scleraxis, Mohawk, myostatin, tenascin-c, etc.) 

to selectively and clearly identify tendon cells throughout differentiation,65 identification of 

molecules that can uniquely identify a tendon cell may enhance mechanobiology-based 

studies in tendon development, diagnostics, and in therapy. In addition to molecular 

biomarkers, future research is needed in obtaining imaging biomarkers of tendon injury or 

disease to better understand the clinical implications of altered tendon mechanobiology.

Rehabilitation: More defined or controlled regimens of physical therapy 
(tendon/muscle) to treat tendinopathy—Overall, understanding how tenocytes 

respond to strain and how they mechanoregulate their response will lead to better 

rehabilitation regimens to treat tendinopathy.113
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Figure 1. 
The detection of and response to external mechanical stimuli (i.e., compression, tension, 

shear, fluid shear stress) involves multiple pathways and signaling mediators including 

changes in intracellular calcium (Ca2+ ) through the release of intracellular Ca2+ stores or 

entry of extracellular Ca2+ through channels such as the store-operated, stretch-activated or 

mechanosensitive channels and voltage independent or dependent Ca2+ channels and the 

release of ATP and, at lower levels, UTP, following the activation of ionotropic P2X and 

metabotropic, G protein-coupled P2Y receptors in an autocrine/paracrine fashion. ATP acts 

on P2Y2 receptors, the primary ATP/UTP responsive receptor in tenocytes, activating the 

Gαq-protein, driving PLC and producing IP3 and DAG. IP3 acts on IP3-sensitive Ca2+ 

channels in the ER to mobilize intracellular Ca2+, and DAG activates a PKC pathway. PKC 

and Ca2+ activate adenyl cyclase activity yielding cAMP, which stimulates cAMP-

dependent protein kinase A (PKA), which may act at Raf in the kinase cascade. Rap la,b, 

Ras-like proteins, regulate the PKA stimulation of Raf. P2 receptors may activate other 

kinases including MAPK/ERK, SAPK/JNK, p38 MAPK, and PI3K/AKT(PKB). Initial 

action of ATP is terminated quickly by membrane-bound ecto-NTPases to its metabolites: 

ADP, AMP, and adenosine. Adenosine activates G protein-coupled P1 receptors, activating 

stimulatory (Gs) or inhibitory (Gi) signaling. Polycistin-1 (PC1) is co-localized with the 

primary cilium and activated when the cilium is deformed by fluid shear stress. The shear 

stress signal is transferred from PC1 to PC2 and induces the influx of Ca2+ though PC2, 

which in turn activates intracellular ryanodine receptors through Ca2+-induced Ca2+ release. 

PECAM-1 will activate Src when cells are subjected to fluid shear stress. The signal is then 

transferred to VEGFR2 through VE-cadherin and beta-catenin. PI3K are activated by 

VEGFR2 and then integrins are activated. A matrix-integrin-mechanosensory protein 

complex-cytoskeleton machinery is linked to a kinase cascade (tyrosine or nontyrosine 

kinase cascade or the JACSTAT kinase cascade) system. A mechanosensory protein 

complex contains talin, vinculin, tensin, paxillin, Src, and focal adhesion kinase (FAK). 

Activated ERKs enter the nucleus and up-regulate transcription factor expression Gun, fos, 

myc, erg-1) and activate nuclear binding proteins such as NF-κB. A load signal may activate 

a growth factor receptor (P for phosphorylation) with or without ligand and activate the 

same or a similar sequence of kinases (PTKR, protein tyrosine kinase receptor; GF, growth 

factor; PDGF, platelet-derived growth factor). Gap junctions pass IP, which propagates a 

Ca2+ wave from cell to cell after a mechanical signal is detected. Connexin hemichannels 

can pass ATP outside the cell. In this model, a load deformation displaces matrix molecules 

tethered to clustered integrins at focal adhesions. The displacement is transduced to an 

integrin (b), to an integrin-binding protein, and then to associated proteins. AP-1, activator 
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protein-1; CREB, cAMP response element binding protein; DAG, diacylglycerol; IP3, 

inositol trisphosphate; MAPKs, mitogen-activated protein kinase; ERK, extracellular signal-

regulated protein kinase; SAPK, stress-activated protein kinase; JNK, c-Jun NH2-terminal 

kinase; MEK, MAPK/ERK kinase; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; PLC, 

phospholipase C; PKA, protein kinase A; PKC, protein kinase C; PKB, protein kinase B; 

STAT, signal transducer and activator of transcription. SHC, Src homology protein 

complex; Crk, Src homology adaptor protein that binds paxillin and C3G; GRB2, growth 

factor receptor binding adaptor protein linking receptors to the Ras pathway through FAK 

and SOS, a guanine nucleotide exchange factor; Ras, GTPase that regulates activation of 

Raf; MEK, mitogen-activated kinase; ERK, extracellularly regulated kinase; CAM is a cell 

adhesion molecule; IF, intermediate filament; YAP/TAZ, Yki transcription co-activators; 

TEAD, transcription factor.
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