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Abstract

Objective—We present a proof of concept for a novel method of predicting the onset of 

pathological tremor using non-invasively measured surface electromyogram (sEMG) and 

acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and 

Essential tremor (ET).

Approach—The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-

linear time series (entropy and recurrence rate) parameters extracted from the non-invasively 

recorded sEMG and acceleration signals.

Main results—The resulting algorithm is shown to successfully predict tremor onset for all 91 

trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor 

achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for 

all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results 

are shown to significantly differ from a random prediction outcome.

Significance—The tremor prediction algorithm can be potentially used for designing the next 

generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation 

(DBS), used for suppressing pathological tremor in such patients. Such a system is based on 

alternating ON and OFF DBS periods, an incoming tremor being predicted during the time 

intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds 

before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as 

well as the tremor-free DBS OFF interval should be maximized in order to minimize the current 

injected in the brain and battery usage.
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1. Introduction

Parkinson’s disease (PD) and Essential tremor (ET) are the two most common progressive 

neurological movement disorders. No cure is available at present for either of the diseases. 

The main symptoms in PD include tremor, rigidity, imbalance, and slowness of movement. 

PD tremor is generally a mild resting tremor with slow, regular oscillations of 4–6 Hz. It 

might also be present during posture or voluntary movements (postural/action tremor) which 

is typically in the 7–11 Hz frequency range. Dopamine replacement therapy, using the 

dopamine precursor levodopa is the mainstay of therapy in early stage PD. However, for 

advanced PD patients a surgical procedure called deep brain stimulation (DBS) can provide 

significant benefit for all motor symptoms while reducing or eliminating dyskinesias and 

improving quality of life [1, 2]. The Food and Drug Administration (FDA) approved DBS 

for PD in 2001.

ET is characterized by a tremor of 4–12 Hz, that is present only when the affected muscle is 

exerting effort (postural/kinetic tremor)[3]. Treatments that give relief and improve quality 

of life in ET patients include drug therapies such as propranolol and primidone as well as 

surgical procedures, such as thalamotomy (an irreversible lesion in a small part of the 

thalamus) [4] and deep brain stimulation (DBS) [5]. The FDA approved DBS as a treatment 

for ET in 1997.

DBS uses a surgically-implanted battery-operated medical device that delivers high 

frequency electrical stimulation (HFS) through implanted electrodes to target areas in the 

brain that control movement [6]. A DBS system consists of three components: the lead, the 

extension, and the neurostimulator. The lead contains 4 thin insulated electrodes whose tips 

are positioned within the targeted brain area (electrodes 0, 1, 2, 3). The neurostimulator, 

similar to a cardiac pacemaker, is implanted under the skin below the collarbone or over the 

abdomen. The extension is an insulated wire that is passed under the skin and connects the 

lead to the neurostimulator. The preferred targets in the brain for placement of a DBS lead 

are the internal segment of globus pallidus (GPi) and the subthalamic nucleus (STN) for PD 

patients, and the ventral intermediate nucleus (VIM) of the thalamus for ET patients.

The only FDA approved DBS system for PD/ET is manufactured by Medtronic, Inc. Their 

Activa system operates open-loop. The clinician chooses the optimal electrode combination 

and sets the stimulation parameters (pulse amplitude, duration and frequency), based on 

subjective and objective clinical observations to ensure that the patient receives maximal 

benefit and minimal side effects. DBS is provided continuously over time and the 

stimulation parameters remain constant over time until the next visit of the patient to the 

clinician. Thus, the current DBS technology is neither adaptive to the patients’ needs nor to 

the patients’ disease progression over time.

In order to adapt to the patients’ condition, current DBS systems must be redesigned so as to 

include a closed-loop feedback control where the patients’ symptoms are continuously 

monitored and the stimulation is adapted in response to its variations. To design a closed-

loop DBS system, it is necessary to find a suitable physiological signal that can be easily 

measured and has predictive information on tremor reappearance once DBS is OFF. One 
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such feedback signal could be the actual neuronal brain activity measured from individual 

neurons (micro-recording) represented by the cell firing, or a group of neurons (macro-

recording) represented by the local field potential, at the site where the DBS electrodes are 

implanted. However, the measurement of these signals by means of DBS electrodes (during 

DBS OFF times) require changes to the current FDA approved DBS electrode and pulse 

generator system. It would also require decoding brain activity and simultaneous sensing-

stimulation protocols. Alternatively, muscular and kinematic signals measured by means of 

surface-electromyogram (sEMG) and acceleration (acc) can be recorded non-invasively 

from the patients’ symptomatic extremities. These signals are known to carry predictive 

information on tremor reappearance [7, 8] and can thus be potentially used for closed-loop 

ON-OFF control of DBS.

The design of a closed-loop DBS controller has been a highly pursued field over the past 

decade because of the fact that although the current paradigm is highly successful, it is not 

adaptive to the patients’ condition. Some of the significant work towards this goal [9] 

include optimizing the stimulation pattern, such as phase resetting and delayed feedback [10, 

11, 12], using a pulse train with random frequency [13] and use of local field potentials as 

feedback for the design of a closed loop DBS system [14] . However the results of these 

efforts are solely based on computational models and if tested on human subjects, would 

require measurement of neuronal signals from the implant site in the brain, which has the 

drawbacks discussed earlier. In a study on two parkinsonian (MPTP treated) non-human 

primates [15], the authors showed that cortico-pallidal closed-loop DBS has a significantly 

greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-

loop DBS. In all the trials, the stimulus was applied through two electrodes located within 

the GPi in response to an action potential in GPi or primary motor cortex (M1). Hence this 

system involves multiple electrodes instead of the usual clinically used one electrode.

Our approach consists of updating the existing FDA approved DBS system by using external 

non-invasively measured signals, such as sEMG and acc, as feedback signals to predict re-

emergence of tremor when DBS is OFF. Since this does not modify the actual stimulation 

generator and the implanted electrodes, it can be implemented as an add-on subsystem for 

the FDA-approved DBS systems. A schematic of such a system is shown in figure 1 in 

which, the signal acquisition, processing and ON/OFF command generation can be 

integrated in a microchip housed inside the sensor assembly of figure 1 [16] mounted non-

invasively over the measurement site as a wrist-band type housing (protected under patent 

application 8391986 approved in December 2012). The control ON/OFF command is sent 

via radio frequency (RF) link to the switch assembly which, in turn, switches DBS ON and 

OFF via an elecrtromagnetic (EM) induction coupling to the EM inductor coil commonly 

used in all present implanted pulse generator (IPG) devices (for receiving ON-OFF manual 

commands from physician or patient, from a manual switching device such as Medtronic 

therapy controller Model 7438).

In this paper, we explore the possibility of an external signal based closed loop ON-OFF 

type DBS system by designing a tremor prediction algorithm which can be implemented in 

the signal processing unit of such a system as outlined in figure 1. Such a tremor predictor 

must achieve the following objectives:
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• Goal 1: Tremor onset should be predicted just a few seconds before it is actually 

detected so that the patient does not experience any discomfort due to tremor.

• Goal 2: Voluntary movement and posture initiation in the absence of tremor should 

not be predicted as tremor.

This will produce a novel non-invasive add-on system to the existing DBS device, that will 

turn the stimulation ON for a fixed time interval (optimized for each patient), switch it OFF 

and track a set of parameters calculated from the sEMG and acc in real time. It will 

automatically turn DBS back ON before the tremor re-appears such that the tremor-free 

DBS-OFF duration is maximized. We chose to use tremor as an indicator for turning DBS 

ON because it is the only symptom in ET and the symptom that re-appears the fastest after 

switching DBS OFF in PD patients with dominant tremor [17].

Our algorithm uses a set of parameters extracted from sEMG and acc signals to predict 

tremor onsets. It is to be noted that our objective is to predict tremor and not detect it. 

Hence, we require more than basic spectral parameters which can predict tremor before it 

actually occurs. At the same time, we also need to avoid movements being predicted as 

tremor. We show that the designed prediction algorithm successfully predicts tremor (Goal 

1) during DBS-OFF period for all the trials considered (with data collected from human 

subjects). At the same time it does not predict too early (Goal 2) for 85.7% of the ET trials 

and 80.2% of the PD trials.

Previously, we have shown that the lower frequency bands of the sEMG signal, 

reconstructed by using a discrete wavelet transform, contains predictive information about 

tremor re-appearance in an ET patient with DBS implants, after the stimulation is switched 

OFF [8]. We also showed that by using a combination of two types of entropy measures, 

tremor onset could be successfully predicted from sEMG recordings from an ET patient 

[18]. While both [8] and [18] are concerned with ET patients only, the present work also 

covers PD patients. Furthermore, in our previous work [8],[18] we did not have acceleration 

data, we did not describe the prediction algorithm in full detail and used only simple 

preprocessing (wavelet coefficient [8], wavelet entropy and approximate entropy [18]). An 

extended Kalman filter approach was used in [19] to estimate the amplitude and phase of 

pathological tremor. The objective was to design a real time tremor detection algorithm in an 

ET patient using sEMG and acc. Although this work was for tremor compensation using 

functional electrical stimulation of the muscles, it has the same flavor as our work. This 

approach was able to suppress tremor by 57% and was tested in only one ET patient. 

Limited number of parameters in the above mentioned work are not enough to predict 

tremor for a wider patient population with different pathologies and varying extents of 

tremor. Hence we extend our previous work by employing additional parameters, as 

described in section 2.4. This not only extends our previous prediction algorithm to PD but 

also allows for improving performance in ET. To the best of our knowledge, this is the first 

study with a considerable number of patients with varying degrees of tremor, tested for such 

an application.
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2. Methods

2.1. Subjects

Eight patients were recruited for this study. Four PD and two ET patients were recruited 

from the Movement Disorder Clinic at Rush University Medical Center and two ET patients 

from the University of Illinois at Chicago hospital. Patient details are listed in table 1. 

Informed consents for this study’s protocol approved by the IRB of respective institutes 

were obtained from all patients. The four PD patients had DBS electrodes (Medtronic DBS 

lead model 3389) stereotactically implanted in the STN while the four ET patients had the 

electrodes placed in the VIM of the thalamus. All patients had significant tremor in one or 

both arms and their symptoms were well controlled by a combination of stimulation and 

medication. All of them have their stimulation on for the entire day as well as at night while 

sleeping.

2.2. Experimental setup

All PD patients and three ET patients had one recording session each and one ET patient had 

two recording sessions (one for each arm) in the Neural Control of Movement Laboratory 

(NCML) at the University of Illinois at Chicago. On the testing day, the patients were on 

their usual medication and a series of sEMG recordings were obtained from the extensor 

digitorum communis (EDC) and the flexor digitorum profundus (FDP) of the forearm with 

worst tremor. For one ET patient, sEMG was recorded from both forearms (over two 

recording sessions). The EDC is the muscle that produces extension at the wrist and fingers, 

and muscle activity in the FDP results in wrist and finger flexion. Electrode placement was 

determined by muscle palpation during active wrist and finger extension and flexion. 

Correct placement was confirmed by inspecting sEMG output on a digital oscilloscope. The 

recording setup was as in [20, 21]. The sEMG signal was amplified (gain set to 1,000) and 

bandpass filtered between 20Hz and 450Hz (Delsys Inc., Boston, MA). The high pass filter 

at 20 Hz is an in-built feature of the sEMG sensor in order to reject low frequency noise and 

movement artifacts. This setting however, does not filter out the tremor signal since the 

tremor bursts are at 5–12 Hz which can be easily recovered by an envelop detection. Along 

with sEMG, acc data were recorded with a calibrated Coulbourn type V94–41 miniature 

solid-state piezoresistive accelerometer. It was taped to the hand (2 cm proximal to the 

middle of the first metacarpophalangeal joint). The accelerometer resolution was 0.01g. 

Both sEMG and acc were sampled at fs = 1000Hz.

In the beginning of the experiment, the patient was comfortably seated in an upright position 

on a chair. A table with an adjustable height was positioned by the side of the chair and 

served as the supportive surface for the subject’s forearm. The height of the table was 

adjusted to be level with the subject’s hand when the wrist and fingers were extended 

parallel with the floor. The table served as the visual target to enable the subject to maintain 

the wrist in a neutral position. sEMG and acc were measured with the patients in the 

following 3 states:

R: Resting, with the forearm and hand muscles completely relaxed and the hand 

dangling unsupported over the edge of the supportive surface as in figure 2(left).
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P: Posture, by maintaining the wrist and hand in a neutral, extended position while 

keeping it level with the table surface as in figure 2(right).

A: Action, performing some voluntary action/movement, such as reaching for the 

opposite shoulder and/or extension and flexion of the wrist.

2.3. Experimental protocol

Two types of trials were recorded for each patient in R, P and A:

i. Baseline data: At the start of a recording session, 3 baseline trials each of 30 

seconds were recorded with the patient in R, P and A, with DBS ON.

ii. Experimental data: After that DBS was switched OFF for sometime and then a 

total of 15 to 32 experimental trials were recorded in R, P and A. Each 

experimental trial was of 50–100 seconds in duration and consisted of an interval 

with DBS ON (20–50 seconds) followed immediately by the rest of the trial 

interval with DBS OFF. During DBS-OFF periods, the first instant when tremor 

visibly re-appeared was noted. This was also verified using a threshold of 0.15 – 

0.2mm/s2 on the acceleration data for states R and P.

PD patients were tested under all 3 conditions (R, P, A) whereas ET patients only performed 

P and A since none of the ET patients had resting tremor. In P and A, the posture holding/

movement was initiated either before or after switching the stimulation OFF.

2.4. sEMG and acc data preprocessing

For final analysis, only the extensor sEMG was used as by visual inspection of the data it 

had a higher signal to noise ratio (SNR) than the flexor sEMG especially in the R and P 

state. During A, extensor sEMG bursts precede flexor bursts, hence any predictive 

information is expected to be obtained from the extensor sEMG before the flexor sEMG. 

This was also verified by considering parameters calculated from the flexor sEMG, whose 

addition did not improve the algorithm’s performance. The raw extensor sEMG signal 

(indicated as x(τ)) was first smoothed by calculating its power over windows of 50ms 

(equivalent to 50 samples) duration that slid over every sample. The smoothed sEMG signal 

will be denoted as xs(τ). The sEMG was smoothed to extract the lower frequency tremor 

bursts by averaging out the higher frequency oscillations inside the sEMG bursts. This is 

equivalent to rectification and low pass filtering. A set of parameters were calculated using 

windows of 1s (equivalent to 1000 samples) of xs(τ) with an overlap of 0.75s thus producing 

a sample every 0.25s after an initial delay of 1.05 s for the first parameter sample. Following 

is a description of all the parameters that were calculated for PD and/or ET dataset:

2.4.1. Spectral parameters

Fourier analysis: Let Pk be the power of a 1 second window of xs(τ) at frequency bands 

centered around fk, k ∈ {1, …, N } calculated by using a 512 point Fourier transform, where 

(fN − f1) is the bandwidth of xs(t). Then the mean frequency ( ) was calculated as:
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(1)

It represents the expected value of the frequency distribution over the spectrum range 

considered. Since  depends on the distribution of power at the different frequency 

points considered, in presence of tremor or just before tremor starts, we would expect that 

this average frequency ( ) would have a lower value than the one in the absence of 

any tremor.

Let (fB − f1) be the bandwidth of interest with B < N . Let j★ be the index of frequency with 

maximum power in this bandwidth of interest:

(2)

Power ( ) at peak frequency ( ) were calculated as:

(3)

(4)

Since, the smoothed sEMG signal had most of its power concentrated in the (0–40) Hz range 

and we are interested in the 3–18 Hz range (encompassing the typical tremor frequency 

range), only frequency components in the (2–40) Hz band were considered, that is N = 37 

and B = 16 in equation (3). We omit the 0–2 Hz band to account for the DC value and very 

low frequency movement artifacts.  is the frequency in the 3–18 Hz range with the 

largest power, while  is the power at . We are interested in the low 

frequency contents of the smoothed sEMG signal as tremor components are expected to lie 

in this band [22]. Note that  in equation (3) is normalized by the power of the 

recorded data signal outside the main signal bandwidth of interest. This is so because the 

power at  must be compared over different trials/recordings, which might have 

significantly different power outside the range of interest. In a way, the quantity in equation 

(3) can be interpreted as a ratio between the maximum power in the bandwidth of interest 

(3–18 Hz) and the total power in the frequency band that we are not interested in (18–40 

Hz).

Wavelet Analysis: xs(τ) was decomposed into M = 10 frequency bands using a Daubechies4 

discrete wavelet transform (DWT). Let xj(τ) represent xs(τ) in the j-th frequency band, j ∈ 

{1, …, M}. Mean power in the j-th wavelet band,  is defined as:
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(5)

 captures the average signal content in the j-th frequency band over each window of 

duration ΔT = 1s. The mean power in the (8–16) Hz band was computed using equation (5) 

which will be referred to as . This particular band was considered because it was seen to 

contain the most predictive information [8] which can distinguish between tremor and 

voluntary movement. Moreover this band also overlaps with the typical action/postural 

tremor frequency band.

2.4.2. Entropy parameters

Wavelet Entropy: The (Shannon) entropy is a measure of unpredictability and is often used 

to quantify the amount of order/disorder in a signal. In information theory, the entropy of a 

discrete random variable (RV) X is defined as [23]:

(6)

where pi = ℙ[X = xi], i ∈ {1, …, K}, is the probability mass function and K is the number of 

possible outcomes for X. Based on equation (6), the Wavelet Entropy, Hwt(τ) of xs(τ), is 

calculated as [24]:

(7)

where,

(8)

x̄j(t) represents the normalized power of xj(t) and hence can be treated as a probability mass 

function whose (Shannon) entropy is estimated by Hwt(τ). This parameter was calculated 

only for PD sEMG. For each window of xs(τ), the wavelet entropy was calculated as the 

average of Hwt(τ) over the time window.

Sample Entropy: Sample Entropy is calculated as the negative logarithm of an estimate of 

the conditional probability that a data series of a given length that match point-wise within a 

given tolerance also match when the length is increased by one. The computation of the 

sample entropy, denoted as SpEn(U, m, r), for a given time series U = {x(i), i ∈ {1, …, L}} 

of length L involves two input parameters m and r, which are the pattern length and the 

similarity criterion, respectively. SpEn(U, m, r) is evaluated as follows. Let xm(i) = [x(i), …, 

x(i + m − 1)] for i ∈ {1, …, L − m + 1} be a set of length m vector sequences constructed 

from U. The ℓ∞ distance between two such sequences x(i) and x(j) is
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Let:

(9)

for i, j ∈ {1, …, L − m}, i = ≠ j and let:

(10)

SpEn(U, m, r) is then defined as:

(11)

where Am(r)/Bm(r) is the conditional probability that two sequences that are similar for m 

points remain similar within a tolerance r at the next point. A lower SpEn(U, m, r) value 

reflects a higher degree of regularity.

Each window of xs(τ) was used to calculate sample entropy SpEn(U, m, r) according to 

equation (11) with U = xs(τ), m = 2, r = 0.15σ, where σ is the standard deviation (std) of the 

signal window considered. Since the number of samples in the 1s window (L = 1000) should 

be 10m – 30m [25], m = 2 was chosen. For m = 2, values of r range from 0.1 to 0.25 times the 

std [26].

2.4.3. Recurrence quantification parameters—Recurrence Quantification Analysis 

(RQA) [27] involves the computation of a recurrence matrix (RM) with elements, Ri,j, (i, j) 

∈ {1, …, P }, P = L − (E − 1)τ, for U = {x(i), i ∈ {1, …, L}} of length L involves the 

following parameters: The embedding dimension E, a time delay τ, a norm || · || (which 

could be minimum norm, maximum norm, and Euclidean norm), and radius r. RM is then 

calculated as:

(12)

(13)

(14)

where, Θ is the Heaviside function and xi is a vector of length m constructed as:
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From Ri,j, the recurrence rate R is calculated as:

(15)

Each window of xs(τ) was used to calculate R according to equation (15) with E = 5, τ = 3, r 

= 0.33. These values were chosen based on guidelines for parameter selection outlined in the 

“crptool” MATLAB toolbox [28]. E was estimated using the nearest-neighbor methodology, 

that is the minimum embedding dimension value which maximizes system information; t 

was estimated by finding the first minimum in the mutual information function and r was 

chosen such that R < 1 [27].

The acc signal was used to calculate the mean frequency (  in equation (1)) and power 

(  in equation (3) at peak frequency (  in equation (4)) and used for tremor 

prediction in PD.

2.5. Tremor Prediction Algorithm

For both PD and ET, DBS is ON for a fixed time during each DBS ON-OFF cycle. This 

fixed stimulation duration for each patient can be estimated as the DBS-ON duration that 

maximizes the average ratio of the delay in tremor re-appearance to the total DBS ON-OFF 

duration [8]. This ratio, Rdt is described later in section 2.7. In practice, an optimum DBS-

ON period can be estimated either during a patient’s clinic visit or during programming of 

the DBS device. When DBS switches OFF after this fixed ON duration, the prediction 

algorithm starts operating. Figure 3(a) shows an overall block diagram of the signal flow for 

the entire prediction process. The smoothed sEMG and acc are used as inputs to the entire 

algorithm block as shown in Figure 3(a). In ET, the smoothed sEMG and acc are first used 

to classify which state (P/A) the patient is in just before and immediately after DBS is OFF 

and based on the classifier outcome, a set of parameters calculated from the smoothed 

sEMG are tracked until one of them meets a prediction criterion or the DBS OFF interval 

exceeds a preset value, when DBS is switched ON. In PD, both smoothed sEMG and acc are 

used to calculate a set of parameters which are tracked. Whenever one of the parameters 

satisfies its corresponding prediction criterion or the DBS OFF interval exceeds the preset 

value, DBS is turned back ON. Following is a detailed description of the algorithm steps.

2.5.1. Prediction Algorithm for ET—For ET patients, the prediction involves two steps:

a. Classification of patient’s state (P/A): This is done based on the sEMG and acc 

signal power by setting some thresholds, [ηc1, ηc2, ηc3, ηc4, ηc5, λ] as shown in 

figure 3. The basic premise is that the power of sEMG and acc signals is greater 

while performing an active motion than during holding a posture, which in turn is 

higher than at rest. Additionally, there will be an abrupt change in these signals 

when there is a change in state. In particular, the following steps are done:
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i. If the power of sEMG (xs(t)) over 2s just before and 1.5s immediately after 

DBS is switched OFF is less than ηc1, then go to ii). Else the state is A.

ii. Calculate the power of acc (indicated with Pac) over 1.5s immediately after 

DBS is switched OFF. If Pac ∈ [ηc2, ηc3], the state is P. If Pac < ηc2, go to 

iii) else go to v).

iii. The sEMG and acc are tracked until acc(tvm) > λ where tvm is the time 

instant when acc exceeds threshold λ.

iv. Calculate power of sEMG(xs(t)) over intervals [tvm, tvm+0.5] and [tvm+0.5, 

tvm+1] which are denoted as P1 and P2 respectively. If either P2 < ηc4, or if 

P2 > ηc4 and P1 < ηc5, state is P. If P2 > ηc4 and P1 > ηc5, state is A.

v. Over the 1.5s interval after DBS is switched OFF, find if at any instant, {tvm: 

acc(tvm) > 2λ}. If there is such an instant then go to iv) else the state is A.

b. Based on the classifier output, proceed as follows: If holding a posture (state P), the 

parameter ( ) is tracked. If performing an action/movement (state A), 

the parameter ( ) is tracked as shown in figure 3(b). Here I is the 

indicator function, w1 and w2 are weights and can either be 0 or 1.  are the 

set of parameters as described in table 2 and are a subset of the parameters 

introduced in the sEMG and acc data preprocessing (section 2.4). Whenever, one of 

the parameters in  (for P) or  (for A) meets its corresponding prediction 

criterion or the DBS-OFF time exceeds a preset value, the stimulation is turned 

ON. The two sets of parameters and their corresponding prediction criterion are 

listed in table 2 and is described in section 2.5.4. A default preset value is a safety 

measure to ensure that the stimulation turns ON after sometime in case the 

algorithm does not predict any tremor event. This value can be decided based on 

the average time the tremor takes to come back for a particular patient.

2.5.2. Prediction Algorithm for PD—For PD, the prediction is done similarly to that 

proposed for ET. The main difference is that there is no preceding classification step as in 

ET and a set of parameters extracted from the acc signal is also used in the prediction. 

Omission of a state classification is to avoid confusion between rest tremor and change in 

state from R to P/A. Moreover, we would also have to determine three sets of parameters for 

the three states in PD thus complicating the algorithm further. Hence for the PD cases, 1s 

after stimulation is turned OFF, (Iw=1 × SPD) is tracked; whenever a prediction criterion is 

met or the DBS OFF time exceeds a preset value the stimulation is turned ON. The set of 

parameters SPD and their corresponding prediction criterion are tabulated in table 3.

2.5.3. Algorithm parameters and threshold values—All the trials recorded from 

each patient were divided into two groups: a) training trials consisted of the baseline trial 

data (30s DBS-ON condition in R, P and A) and around 40% of the total experimental trial 

data (consists of recordings with DBS-ON followed by DBS-OFF) as in section 2.3, b) 

testing trials consisted of experimental trials that were not used for training. The algorithm 

was tested using just the testing trials as well as all experimental trials.

Basu et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2015 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For each patient the threshold values for the classification (ET) and those for parameters 

used in the prediction algorithm were chosen as follows: The threshold values for the state 

classification in ET were chosen by comparing the sEMG power and acc magnitude in all 3 

states during DBS-ON and DBS-OFF intervals of the training trials. All parameter values as 

described in section 2.4, were first calculated for the sEMG and acc signals recorded during 

the training trials. The calculated parameters for intervals of no tremor (entire baseline data 

duration and tremor-free intervals of the rest of the training trials) were compared with those 

in the DBS-OFF intervals of the training trials when tremor started to build up. Based on the 

difference between the parameter values with and without tremor, a threshold was decided 

for each parameter such that each of the training trial produced a desired prediction output 

(TP or TN defined in section 2.6). For parameters with two thresholds, the second one was 

estimated based on difference in the parameters in state R and during movement initiation. 

Only those parameters were included in the set as in table 5, which produced desired output 

for the maximum number of training trials using the same threshold.

2.5.4. Prediction Criterion—Tables 2 and 3 list the prediction criterion that each 

parameter should meet in order for a tremor to be predicted. Following is a brief description 

of the criteria and the underlying logic:

i. Sample entropy and power in the 8–16 Hz wavelet band (SpEn, ): At each time 

instant i, the algorithm searches for the most recent local maximum and minimum 

of sample entropy. If the maximum precedes the minimum and each of them or 

their difference lie between thresholds, ηh1, ηl1 and ηh2, ηl2, then the algorithm 

checks if simultaneously over this entire period the power in the 8–16 Hz wavelet 

band exceeds a threshold, η4 and predicts a tremor if all the 3 conditions are 

satisfied. This criterion relies on the fact that during a tremor buildup, the sEMG 

will increasingly become more synchronized, hence leading to a decrease in the 

sample entropy and an increase in the 8–16 Hz sEMG signal power.

ii. Wavelet entropy (Hwt): This parameter is used only for PD dataset. The algorithm 

predicts a tremor if the wavelet entropy value at that time instant and the one 

immediately preceding it lie within the thresholds hh, hl. The underlying logic is 

similar to that for sample entropy.

iii. Recurrence rate (R): At each time instant i, the algorithm searches for the most 

recent local maximum and minimum of recurrence rate. If the minimum precedes 

the maximum and the increase between these values lies between thresholds, ρl, ρh, 

a tremor is predicted. This criterion is based on the increase in sEMG recurrence 

during tremor buildup.

iv. Power at peak frequency ( ): The algorithm 

predicts a tremor if at that instant, the frequency of the sEMG or acc signal, that has 

the maximum power lies between certain thresholds and the power exceeds a 

threshold as listed in tables 2, 3. The frequency range defined by the thresholds is 

the typical tremor frequency. This criterion checks if the spectral component of the 

sEMG/acc which has the maximum power is the tremor frequency band as well as 

if this power exceeds a certain value.
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v. Mean frequency ( ): This parameter is used only for predicting ET kinetic 

tremor. The instant when the mean frequency value lies in between thresholds fh, fl, 

a tremor is predicted. It is based on the fact that mean frequency was observed to 

lie in a certain frequency band before tremor starts.

Use of a lower threshold for entropy and spectral parameters and an upper threshold for R 

help reduce false predictions due to voluntary movements. This is based on the assumption 

that a movement initiation causes a higher degree of synchronization and hence a greater 

magnitude of decrease/increase in parameter values than tremor. It was also seen that the 8–

16 Hz band carried more tremor information than movement artifact. On the other hand, 

both tremor and movement cause an increase in the lower frequency band (1–8 Hz) power. 

Hence, the wavelet band power along with sample entropy also serves to discriminate 

voluntary movements from tremor. Thus, the lower threshold on sample entropy, wavelet 

entropy, mean and peak frequency; the upper threshold on recurrence rate and the 8–16 Hz 

wavelet band power are used to discriminate between voluntary movement and tremor.

2.6. Classification of prediction outcomes

To analyze the prediction performance, each trial is classified based on the prediction 

outcome as follows. Let Ttot be the total duration of a trial, and ton and toff be the times when 

stimulation was switched ON and OFF, respectively. Furthermore, let ttr and tpr be the times 

when tremor was detected during the DBS-OFF period and tremor was predicted using the 

algorithm, respectively as in figure 4. The trials were then classified as:

1. TD (Tremor Detected): These are trials where tremor was detected over the 

recorded interval after stimulation was OFF, i.e ttr < Ttot.

• If [(ttr > tpr) and (ttr−tpr) < max(5s, 0.4(tpr−toff))] or [(ttr < tpr) and (tpr−ttr) < 

1s], then the algorithm successfully predicts tremor and this outcome is 

classified as a true positive(TP).

• If (ttr > tpr) and (ttr − tpr) > max(5s, 0.4(tpr − toff)], then the prediction is too 

early and the outcome is classified as false positive (FP)

• If (ttr < tpr) and (tpr − ttr) > 1s, then the prediction is too late and the outcome 

is classified as false negative (FN)

The TP definition is a bit different from the classical one, in that we require 

that the prediction be at most 40% of the tremor free DBS-OFF period or 5s 

(whichever is greater) before actual tremor reappears. This allows penalizing 

too early prediction outcomes. The maximum between 40% of (tpr − toff) and 

5s is considered to account for trials where the tremor delay is very short (< 

10s) for which a prediction 5s ahead in time is good enough to be classified 

as a TP. We also allow for prediction at most 1s after detection. This will 

take care of situations when the tremor re-appears almost immediately 

(within 1–2 seconds) after stimulation is switched OFF.

2. NTD (No-Tremor Detected): These are trials where tremor was not detected over 

the recorded DBS-OFF interval, i.e ttr ≥ Ttot.
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• If the algorithm does not predict any tremor over the entire interval Ttot − 

toff, then its classified as true negative (TN)

• If the algorithm predicts tremor over the entire interval Ttot − toff, then its 

classified as false positive (FP)

2.7. Statistical analysis of prediction outcomes

For the algorithm to perform well, the total number of TP and TN must be maximized while 

minimizing FP and eliminating FN. This would achieve the maximum “tremor-free” DBS-

OFF interval. To quantify this, the following performance metrics are defined:

(16)

(17)

(18)

(19)

A in equation (16) is the accuracy of the prediction algorithm, which is the ratio of the 

correctly predicted trials to the total number of trials. For our application, we aim to have a 

high accuracy (above 80%). S in equation (17) defines the sensitivity of the prediction 

algorithm. It relates to the algorithm’s ability to correctly predict tremor in TD trials. This 

value has to be very high (as close to 100% as possible) for the application since we want to 

avoid missing any tremor event. FA in equation (18) is the false alarm rate, which expresses 

the ratio of NTD trials that are falsely predicted. This relates to the algorithm’s ability to 

correctly identify the absence of tremor when there is no tremor. We aim to have a low FA 

value so that the tremor-free DBS-OFF interval is maximized. mcc in equation (19) is the 

Matthews correlation coefficient [29], which is a measure of the quality of a binary 

classifier. It is generally regarded as a balanced measure and is used even if the classes are 

of very different sizes. It has a value in the range −1 to 1, where 1 represents a perfect 

prediction, 0 no better than random prediction and −1 indicates total disagreement between 

prediction and observation. It is related to the chi-square statistic for a 2 × 2 contingency 

table

(20)

where the χ2 statistic can be used to calculate the p-value in order to accept/reject the null 

hypothesis that the predictions were completely random. The p-value is the probability that 

X > |χ2|, where X is a random variable with a χ2 distribution with 1 degree of freedom. A p-
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value less than α indicates the the prediction outcome is significantly different from a 

random prediction with α being the significance level and is often chosen to be 5% or less.

For this application, S should be very high (over 90%) because we want to avoid missing 

any tremor event. At the same time, we also want to have high A and a low FA. This ensures 

that the algorithm not only correctly predicts tremor events, but also avoids early 

predictions. The mcc value should be close to 0.5 or higher and should produces a p-value 

that is less than 5%.

For each patient, A, S, FA in equations (16), (17), (18) and mcc in equation (19) were 

calculated for all experimental trials as well as for the testing trials. A χ2 statistic and the 

corresponding p-value was calculated only when the number of trials exceeded 10 [30]. For 

patients with NTD< 5, FA was not calculated (NC). An overall A, S, FA and mcc were 

calculated based on all experimental and testing trials in PD and in ET . Additionally, three 

ratios are calculated for each patient which are defined as:

(21)

(22)

(23)

where the summation is over all the experimental trials for each patient. Since for the NTD 

trials the exact time when tremor would come back is not known, we set ttr = Ttot and tpr = 

min(Ttot, tpr). In a practical scenario, Ttot would be the time when the stimulation switches 

ON automatically in the absence of a tremor prediction. Hence, to determine the fraction of 

time the stimulation is OFF, we can consider Ttot − toff to be the time interval when 

stimulation is OFF for NTD trials.

Furthermore, Rpt is calculated only for trials where the DBS-ON duration, , is 

the one that maximizes the ratio,  and is denoted as:

(24)

Rpd is the ratio between the predicted delay to the actual delay in tremor, hence Rpd provides 

a measure of how good the prediction is, i.e., a higher value indicates that the predicted 

delay is closer to the actual delay which is desirable. In a similar way, Rdt and Rpt provide a 

measure of the fraction of time the stimulation is OFF with an ideal predictor (which would 

predict the exact time when tremor re-appeared) and the one designed. Rdt values can be 

used to assess if a particular patient is well suited for this type of application. If Rdt is very 

low, i.e., if the stimulation is OFF for just 10% of the total time then it is better just to have 

DBS-ON continuously.  provides a measure of the fraction of total trial time that the 

stimulation would be OFF if the predictor worked only for the optimum stimulation 
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duration, . The goal of our tremor predictor is to maximize Rpd as well as  since with 

a higher , the patient will have a high percentage of “tremor-free” DBS-OFF interval. 

can be chosen as outlined in [8].

3. Results

The parameters and corresponding thresholds used in the prediction algorithm were 

determined for each patient based on training trial data as described in section 2.5.3. The 

prediction parameters used for each patient are listed in table 5 and the threshold values are 

listed in tables A1, A2 and A3. The data in figure 5(a) shows (i) the acc signal and (ii) 

smoothed sEMG which was recorded from PD1 in R, with a total recording duration, Ttot = 

80s. DBS was OFF at 31s and tremor re-appeared at 62 s which is also seen from the acc 

data (indicated by a solid black line). The sample entropy, SpEn calculated from the 

smoothed sEMG was the parameter that met the tremor prediction criterion the earliest (at 

60.75s) amongst the others considered as listed in table 5. This is shown in figure 5(a) (iii). 

The tremor prediction time is shown with black dotted line. Figure 5(a) thus represents a TP 

trial since the tremor is predicted just a few seconds before it actually re-appears.

The trial shown in figure 5(b) was recorded from ET4 in P and shows a case of a FP, that is 

the algorithm predicted a tremor when there was actually no tremor for the entire recording 

interval (Ttot = 50s). DBS was OFF at 25s and the patient initiated a posture at 22s. From the 

(i) acc and (ii) smoothed sEMG signal in figure 5(b), it can be seen that there were some 

movements during the 22–34 s interval after the posture initiation, but no tremor after that. 

The prediction parameters shown in (iii),  (in blue) and  (in black) met the 

prediction criterion at 37.5 s (  and  at the same time instant), 

thus resulting in a false alarm. The y-axis of the smoothed sEMG has been enlarged to show 

the small artifact after 35s which probably caused a false alarm at 37.5s.

A trial recorded from PD1 in A is shown in figure 6(a) and consists of (i) acc, (ii) smoothed 

sEMG and (iii) the prediction parameter, recurrence rate (R) calculated from the smoothed 

sEMG. DBS was OFF at 41s and tremor re-appeared visually at 56 s (indicated by a solid 

black line). Since figure 6(a)(ii) lacks the resolution to show each sEMG action burst, 

portions of it are enlarged and shown in figure 6(b). The sEMG (left) and corresponding 

smoothed signal (right) during different intervals of the trial as in figure 6(a)(ii) are shown in 

figure 6(b): (i) when there was no tremor, (ii) when tremor was predicted and (iii) after 

tremor was detected (bottom). It can be seen that the burst with tremor (iii) and the one 

when tremor is predicted (ii) has a more regular structure than the one without it (i) which is 

captured by a greater increase in R.

A, S, FA in equations (16), (17), (18), mcc in equation (19) and the corresponding p-values 

were calculated for all experimental trials and for all testing trials corresponding to each 

patient and are listed in table 6. An overall A, S, FA and mcc based on all experimental and 

testing trials in PD and in ET are also included in table 6. The ratios, Rpd, Rpt, Rdt in 

equations (21), (23), (22); the optimum DBS-ON duration  and the corresponding 

were also calculated for each patient based on all experimental trials which are listed in table 
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7. It also lists for each patient, the average of the actual delay in tremor re-appearance (ttr − 

toff) and the predicted delay (tpr − toff), over all experimental trials with the optimum DBS-

ON duration.

4. Discussion

The aim of this study was to design an algorithm for predicting pathological tremor in 

patients with PD and ET, using non-invasively measured sEMG and acc signals from the 

tremor affected limbs. The designed algorithm achieves a 100% sensitivity for all trials 

considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD 

trials. A Pearson’s chi-square test shows that the prediction results significantly differ from a 

random prediction outcome. Following is a brief discussion about the algorithm parameters 

and prediction results.

4.1. Algorithm parameters

The set of parameters considered for predicting tremor consists of some basic spectral 

measures such as mean frequency, power at maximum frequency and the power in a 

particular frequency band as well as a few non-linear measures such as a couple of entropy 

measures and a recurrence measure. The FFT based spectral measures are commonly used 

parameters [31] for sEMG analysis. Classical spectral characteristics of sEMG have some 

diagnostic value for quantification of motor unit synchronization [32]. However, sEMG 

signals are nonlinear in nature and hence nonlinear time-series analyses of sEMG can 

potentially provide additional information on the underlying motor strategies [33]. Wavelet 

Entropy has been widely used for analyzing electroencephalogram (EEG) signals to measure 

degree of similarity between different segments of the signal [24] and for detecting different 

events such as seizures in epileptic patients [34]. It has been shown that tremor is 

characterized by an increased regularity in the corresponding sEMG signal as compared to 

sEMG without tremor which can be captured by the Approximate Entropy measure [20]. It 

has also been used for similar analysis of EEG signals [35] and heart rate signals [26]. 

Sample Entropy was developed to overcome some shortcomings of the Approximate 

Entropy statistics such as bias, relative inconsistency and dependence on the sample length 

[36]. Based on these two types of entropy measures, we used Wavelet Entropy to capture 

information relating to power shifts in different frequency bands and Sample Entropy to 

quantify the regularity and complexity of a time series signal [36]. These two measures are 

however not directly comparable. RQA has been extensively used for analysis of sEMG for 

detecting hidden characteristics that cannot be detected by linear analysis [31, 33]. Different 

variables can be extracted from a recurrence plot [37] which has been shown to correlate 

with synchronization in the signal and is more sensitive to changes in the degree of 

synchronization than linear variables such as mean/median frequency [33].

From table 5, it can be seen that the sample entropy along with the power in the (8–16 Hz) 

wavelet band are the parameters that have been used for 6 out of 8 patients which indicates 

that it has high predictive information. The recurrence rate and mean frequency are the only 

parameters used for predicting action tremor in all ET patients. Wavelet entropy (Hwt) is 

useful only in PD patients but not for ET. This might be due to the fact that parkinsonian 

tremor has a more well defined and narrow range of frequency than in ET. Although acc is 
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used in the state classification for ET, its not used in the actual prediction algorithm. acc was 

most useful for predicting rest tremor in PD. However, it is not useful in predicting action 

tremor. Hence a set of parameters from both these signals were essential to predict all three 

types of tremor, which could not have been achieved by using either of them alone.

Since PD and ET have very different pathologies with different types of tremor, it can be 

expected that we would require different parameters to predict tremor in the two disorders. 

The variance of parameters within the PD group may be higher than that in the ET group 

due to the fact that PD patients do not all exhibit the same symptoms. Some have more 

tremor while others have more rigidity than tremor. In ET patients, some have more tremor 

during holding a posture while some have more tremor while performing an active 

movement. All these factors could have contributed to the different set of parameters 

required to predict tremor.

4.2. Prediction performance based on A, S, FA

The predictor does not miss any tremor event (S = 100%) and it achieves a high accuracy (A 

> 80) for 6/8 patients as shown in table 6. Out of the 8 patients, PD1 and PD3 had high 

tremor amplitude with a lower value of Rdt, as is also reflected from the values of NTD. For 

both of them, the A and S are quite high, which is desirable. PD4 was the only PD patient 

who had long delays in tremor with 11/32 NTD trials. The lower A and relatively high FA is 

because of the fact that the algorithm predicted a tremor either in the NTD cases or predicted 

a tremor too early for the TD cases. PD2 had moderate tremor amplitude and all the FP’s 

except one are due to early prediction in the TD cases. ET3 and ET4 had almost no postural 

tremor (in state P) but had tremor while performing an active movement (state A). ET2 had 

very low amplitude tremor on the right hand. The FA could not be calculated for every 

patient because some of them had very few or no NTD trials. Hence an overall FA value 

was also calculated for ET and PD by considering all ET and PD trials respectively. It 

should be noted that for this application, we aim to achieve S as close to 100% as possible. 

Hence, for patients who have relatively higher delays in tremor re-appearance and/or lower 

tremor amplitude, the algorithm predicts early tremor events for some of the trials resulting 

in a higher value of FA. The values of A, S, FA for each patient are not very different when 

considering all the experimental trials or just the testing trials. Some of the metrics actually 

show better values when considering only the testing trials. This is because while training, 

we tried to maximize the number of training trials producing desired output using the same 

threshold values. This however does not mean that all the training trials actually had 100% 

accuracy.

4.3. Statistics based on mcc

The mcc value was calculated for each patient, except PD3 due to an indeterminate form 

produced by TN=FN=0. For all the 7 patients, the mcc value was close to or greater than 0.5 

and the overall mcc for both PD and ET were above 0.5. This indicates 50% or higher 

correlation between predicted and actual classification for each patient(PD/ET) and for 

overall PD and ET trials. The mcc was further used to calculate the χ2 test statistics 

according to 20 in order to determine the corresponding p-value. With all experimental 

trials, each p-value (both individual and overall) was less than α = 5%, which indicates that 
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the null hypothesis that the prediction is completely random can be rejected. When 

considering the testing trials alone, the χ2 test statistics could not be calculated for all 

patients since the number of trials for PD1, ET1 and ET3 were not sufficient for a reliable 

estimate [30]. In general, for all patients the p-value increases when considering the testing 

trials alone due to a reduction in the sample size.

4.4. Overall performance

The overall S for both ET and PD is 100% which means that for all TD trials in ET and PD, 

the predictor does not miss any tremor event during the DBS-OFF interval. The overall A 

for ET is 85.7% while for PD is 80.2%, which indicates that in 85.7% of all ET trials and in 

80.2% of all PD trials, the algorithm correctly predicts tremor. Correct tremor prediction 

means that, in the TD trials, tremor is predicted not too early while in the NTD trials, tremor 

is not predicted. The overall FA for ET is 11.6% and for PD is 29.4%, which means that in 

11.6% of the ET NTD trials and in 29.4% of the PD NTD trials, the algorithm predicts 

tremor.

The performance for ET is in general better than that for PD with higher overall A and lower 

FA because of a preceding classification step that allowed to choose different parameters for 

each state. A classification in PD is more challenging due to the fact that a change in power 

in the sEMG/acc from the rest state could either be due to tremor or movement while for ET 

it is certain that there is no tremor during rest and hence an increase in power is certainly 

due to some movement initiation which might be accompanied by tremor.

4.5. Practical considerations

If the tremor prediction algorithm were implemented in practice, this would definitely be 

patient specific in terms of the degree of benefit that it would provide. It might not be 

beneficial to certain patients with severe tremor and short delays in tremor, such as PD3, 

who had the lowest value of Rdt as in table 7. For all other patients,  which means 

that with the optimal stimulation duration, , the proposed adaptive ON-OFF DBS 

controller achieves a “tremor free DBS-OFF period” that is greater than 30% of the total 

ON-OFF duration as shown by the  values in table 7. That is, with such a system, the 

battery life will be extended by a factor of . Although PD4 has 

the highest FA, the average prediction delay is 20 s for an ON-DBS period of 22–37 s and 

. This means that if this patient had a battery life of 5 years with the stimulator ON 

continuously, then with the new system, the battery would last for (1 + 0.72) × 5 = 8.6 years.

The tremor prediction algorithm requires determining an optimal set of parameters and 

setting their thresholds for each patient which requires some training and manual 

intervention. This can be easily overcome by using similar parameter set as inputs to a 

neural network [38] which can train itself at regular intervals of time as the thresholds might 

change over longer time periods due to disease progression. Initial prediction results using 

such a neural network on a subset of the PD data set has been published [39].

We acknowledge that this type of DBS controller takes into account only the tremor 

symptom while PD patients also suffer from rigidity and slowness of movement. However, 
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for most PD patients who have tremor, it is the symptom that re-appears the earliest after the 

DBS is switched OFF [17]. In many PD patients speech performance is worsened during 

simulation at the STN [40]. For such cases, it is reasonable to assume that such worsening 

will not occur during DBS-OFF periods under our proposed control. For ET patients, this 

type of DBS controller may have additional benefit beyond just extending battery life, as it 

has been shown that for some ET patients the stimulation benefits decrease over time [41]. It 

was also seen that for some such ET patients, restarting the stimulation after its temporary 

discontinuation resensitized them to stimulation [42]. Hence lesser and discontinuous 

current injection might actually help in prolonging the therapeutic effects of DBS in ET.

Electric jolts that a patient might experience during switching DBS ON can be minimized by 

using a gradual ramping of the current (which is generally used) and is of lesser concern to 

patients with bipolar stimulation than monopolar.

5. Conclusion

In this paper, we have designed an algorithm for predicting pathological tremor by using a 

set of frequency related and entropy type parameters calculated from non-invasively 

measured sEMG and acc signals. This can be used to successfully predict a tremor event 

during a DBS-OFF interval, before it occurs. Hence, this method can potentially be used for 

closed-loop on-demand ON-OFF DBS paradigm which can be added on to the existing 

system as in figure 1. The recording and processing of data and transmitting the control 

ON/OFF information to the pulse generator can be done within the sEMG/acc sensor which 

will be powered by a separate battery incorporated in the sensor electrodes on patient’s 

muscles and will not affect the IPG battery. The battery in the sensor and switching 

assembly can be easily replaced and do not require any surgical intervention. Moreover, they 

do not contribute to current injected in the brain. Thus, the proposed system will achieve 

lower current injection and reduced frequency of IPG replacement.
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Appendix A. Thresholds on parameters for classification and prediction

Table A1

Threshold for state classification in ET.

Patient# threshold

ET1 ηc1 = 0.3, ηc2 = 0.6, ηc3 = 1.2, ηc4 = 0.15, ηc5 = 0.2, λ = 0.2

ET2 ηc1 = 0.06, ηc2 = 0.5, ηc3 = 3, ηc4 = 0.4, ηc5 = 0.15, λ = 0.2

ET3 ηc1 = 0.1, ηc2 = 0.6, ηc3 = 3, ηc4 = 0.07, ηc5 = 0.01, λ = 0.1

ET4 ηc1 = 0.5, ηc2 = 1.1, ηc3 = 1.6, ηc4 = 0.1, ηc5 = 0.15, λ = 0.2

Table A2

Parameter threshold for prediction algorithm for ET.

Patient# Parameter with w1, w2 = 1 threshold

ET1

SpEn and 

 and 
R(w2)

(ηl1, ηh1) = (0.25, 0.3); (ηl2, ηh2) = (0.18, 0.22); ηp = 10;
fp = 22; (fl, fh) = (5, 10)
(ρl, ρh) = (0.3, 0.35)
(fl, fh) = (10, 11)

ET2(left)  and 

fp = 20; (fl, fh) = (4, 10)

R(w2) (ρl, ρh) = (0.3, 0.4)

ET2(right) SpEn and 
(ηl1, ηh1) = (0.45, 0.5); (ηl2, ηh2) = (0.1, 0.2); ηp = 10; (fl, fh) = (11, 12)

ET3

SpEn and 
R(w2)

(ηl1, ηh1) = (0.3, 0.4); (ηl2, ηh2) = (0.16, 0.18); ηp = 50;
(ρl, ρh) = (0.4, 0.48)

(fl, fh) = (11, 12)

ET4
SpEn and 

 and 

(ηl1, ηh1) = (0.78, 0.98); (ηl2, ηh2) = (0.38, 0.48); ηp = 20;
fp = 22; (fl, fh) = (5, 10)

R(w2) (ρl, ρh) = (0.3, 0.34)
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Table A3

Parameter threshold for prediction algorithm for PD.

Patient# Parameter with w = 1 threshold

PD1

SpEn and 

SpEn and 
R

 and 

(ηl1, ηh1) = (0.2, 0.35); (ηl2, ηh2) = (0.11, 0.2); ηp = 15;
(ηl1, ηh1) = (0.35, 0.4); (ηl2, ηh2) = (0.14, 0.34); ηp = 15;
(ρl, ρh) = (0.2, 0.22)
fp1 = 28; (fl1, fh1) = (4, 10)

PD2 SpEn and 
Hwt

(ηl1, ηh1) = (0.2, 0.32); (ηl2, ηh2) = (0.1, 0.16); ηp = 28;
(hl, hh) = (0.31, 0.35)

PD3 Hwt

 and 

(hl, hh) = (0.32, 0.36)
fp2 = 30; (fl2, fh2) = (4, 7)

PD4
SpEn and 
Hwt

 and 

(ηl1, ηh1) = (0.25, 0.34); (ηl2, ηh2) = (0.15, 0.22); ηp = 25;
(hl, hh) = (0.275, 0.295)
fp2 = 30; (fl2, fh2) = (4, 7)
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Figure 1. 
A schematic of a closed loop ON-OFF DBS system that uses external non-invasively 

measured signals for control. The ON-OFF switch turns DBS OFF at pre-determined delay 

(optimized per each patient) and turns it ON when tremor is predicted via a command 

through the RF link from the signal processing unit. The switching assembly is non-

invasively placed above implanted pulse generator, at location where physician/patient 

presently performs manual ON-OFF switching as required. Note: EM - Electromagnetic.
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Figure 2. 
Hand position with sEMG and acc sensors during rest (R) (left) and posture (P) (right).
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Figure 3. 
(a): A block diagram showing how the two signals, sEMG and acc are used in the algorithm 

for ET (top) and PD (bottom) (b): Classification (left) and prediction (right) for the ET 

algorithm described in Section 2.5.1 and shown in (a).
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Figure 4. 
Timing points for events from DBS-ON time (ton) to tremor detection time (ttr) marked in 

bold line. There are 4 possible scenarios: 1,2 are TD trials, in 1 the tremor is predicted 

before its detection (TP/FP) and in 2 tremor is predicted after its detection (FN); 3,4 are 

NTD trials, in 3 tremor is not predicted over the entire interval TN and in 4 tremor is 

predicted FP. Notation: Ttot is the total duration of a trial, ton and toff are the times when 

DBS was switched ON and OFF respectively, ttr and tpr are the times when tremor was 

detected and predicted using the algorithm, respectively.
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Figure 5. 
(i) acceleration, (ii) smoothed extensor sEMG recorded from (a) a PD patient at rest. Sample 

entropy (bottom) calculated from the smoothed sEMG was used for predicting tremor. The 

vertical solid lines show instants of DBS-OFF (31 s) and tremor appearance (62 s), dashed 

line shows instant (60.75 s) when tremor was predicted using (iii) sample entropy. (b) an ET 

patient while holding a posture (initiated at 22s). DBS was OFF at 25s and there was no 

tremor during the entire trial of 50s.(iii)  (in blue) and  (in black)were used 

to predict tremor. The red horizontal solid lines show the thresholds for  while the 

one in dashed line shows the threshold for . The vertical dashed line shows the 

instant (37.5s) when tremor was predicted  exceeds threshold and  falls in 

the prediction range simultaneously) due to an artifact circled in blue.
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Figure 6. 
(a)(i)acceleration and (ii) smoothed extensor sEMG (middle) recorded from a PD patient 

while performing a voluntary movement initiated around 33s. (iii) Recurrence rate 

calculated from the smoothed sEMG was used for predicting tremor. The vertical solid lines 

show instants of DBS-OFF (41 s) and tremor appearance (56 s), dashed line shows instant 

(50 s) when tremor was predicted using recurrence rate. (b)an enlarged view of raw extensor 

sEMG (left), smoothed extensor sEMG (right) during the trial as in 6(a), (i) burst without 

tremor, (ii) tremor was predicted (iii) after tremor was detected visually.
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Table 2

Parameter Set for ET.

#
Parameter Set, 

Predict tremor at time t

1
SpEn and Let (i − 1) is a local min and k < i is a local max over (k − 1, i), if SpEn(k) ∈ (ηl1, ηh1) & SpEn(k) − SpEn(i − 

1) ∈ (ηl2, ηh2) & , l ∈ (k − 6, i + 4), t = max(i, l)

2 R Let (i − 1) is a local max and k < i is a local min over (k − 1, i), R(i − 1) − R(k) ∈ (ρl, ρh),t=i

3

 and If  and , t = i

#
Parameter Set, 

Predict tremor at time i

1 R Let (i − 1) is a local max and k < i is a local min over (k − 1, i), R(i − 1) − R(k) ∈ (ρl, ρh), t = i

2

If , t = i
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Table 3

Parameter Set for PD.

#
Parameter Set, 

Predict tremor at time t

1
SpEn & Let (i − 1) is a local min and k < i is a local max over (k − 1, i), if SpEn(k) ∈ (ηl1, ηh1) & (SpEn(k) − SpEn(i − 

1)) ∈ (ηl2, ηh2) & , l ∈ (k − 6, i + 4), t = max(i, l)

2 R Let (i − 1) is a local max and k < i is a local min over (k − 1, i), R(i − 1) − R(k) ∈ (ρl, ρh),t=i

3

 & If  and , t = i

4

 and If  and , t=i

5 Hwt Let Hwt(i − 1) and Hwt(i) ∈ (hl, hh), t = i
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Table 4

Description of thresholds used for state classification and tremor prediction in ET and PD.

Symbol Description

ET state classification

ηc1, ηc4, ηc5 upper thresholds on sEMG power

ηc2, ηc3 lower and upper thresholds on acc power

λ lower threshold on acc signal

ET tremor prediction

ηl1, ηh1 lower and upper thresholds for local maximum of SpEn

η2, ηh2 lower and upper thresholds for local minimum of SpEn

ηp

lower threshold for 

ρl, ρh lower and upper thresholds for increase in R

fl, fh
lower and upper thresholds for  or 

fp
lower threshold for 

PD tremor prediction

ηl1, ηh1 lower and upper thresholds for local maximum of SpEn

ηl2, ηh2 lower and upper thresholds for decrease in SpEn

ηp

lower threshold for 

ρl, ρh lower and upper thresholds for increase in R

fl1, fh1, fp1

lower and upper thresholds for , lower threshold for 

fl2, fh2, fp2

lower and upper thresholds for , lower threshold for 

hl, hh lower and upper thresholds for consecutive Hwt samples.
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Table 5

Patient specific parameter set for tremor prediction algorithm in PD and ET.

PD Patient# Parameters used for prediction

PD1

SpEn, , R,  and 

PD2
SpEn, , Hwt

PD3
Hwt,  and 

PD4
SpEn, , Hwt,  and 

ET Patient# Parameters used for prediction in P(w1 = 1) and A(w2 = 1)

ET1

P: SpEn,  and 

A: R, 

ET2(left)

P: 
A: R

ET2(right)
P: SpEn, 

A: 

ET3
P: SpEn, 

A: R, 

ET4

P: SpEn,  and 
A: R
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