Abstract
Pathways and enzymes of fatty acid synthase-mediated, long-even-chain (generally C16-C20) fatty acid synthesis are well studied, and general metabolism involved in short-chain (C4-C7) fatty acid biosynthesis is also understood. In contrast, mechanisms of medium-chain (C8-C14) fatty acid synthesis are unclear. Recent work suggests involvement of chain-elongation-terminating thioesterases in medium-chain fatty acid formation in oilseeds and animals. We have shown that iso- and anteiso-branched and straight, odd- and even-length, short-chain fatty acids esterified in plant-trichome-gland-produced sucrose esters are synthesized by using carbon skeletons provided by modified branched-chain amino acid metabolism/catabolism. The principal enzymes involved are those catalyzing leucine biosynthesis in all organisms and those leading to short-chain alcohols in mutant yeasts and alkyl acids in Clostridium species (products often serving as mammalian pheromones). Here we provide evidence that C10-C12 straight medium-chain and C10-C12 branched medium-chain acyl acids of tomato, C6-C8 straight-chain acyl acids of Petunia, and C6 and C8 branched acyl acids of Nicotiana glutinosa are formed by alpha-ketoacid elongation without participation of fatty acid synthase-mediated reactions or -independent thioesterases. This different metabolism suggests greater integration of amino acid and fatty acid metabolism than previously considered and provides other avenues to study and manipulate not only straight even-length but also odd- and even-length straight and branched medium-chain fatty acid biosynthesis.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Davies M. E. Acetolactate and Acetoin Synthesis in Ripening Peas. Plant Physiol. 1964 Jan;39(1):53–59. doi: 10.1104/pp.39.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerbling H., Gerhardt B. Oxidative decarboxylation of branched-chain 2-oxo Fatty acids by higher plant peroxisomes. Plant Physiol. 1988 Sep;88(1):13–15. doi: 10.1104/pp.88.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo Z., Severson R. F., Wagner G. J. Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes. Arch Biochem Biophys. 1994 Jan;308(1):103–108. doi: 10.1006/abbi.1994.1015. [DOI] [PubMed] [Google Scholar]
- HOLZER H., BEAUCAMP K. [Detection and characterization of alpha-lactylthiamine pyrophosphate ("active pyruvate") and alpha-hydroxyethylthiamine pyrophosphate ("active acetaldehyde") as intermediate products of pyruvate decarboxylation by pyruvate decarboxylase from brewer's yeast]. Biochim Biophys Acta. 1961 Jan 15;46:225–243. doi: 10.1016/0006-3002(61)90747-8. [DOI] [PubMed] [Google Scholar]
- INGRAHAM J. L., GUYMON J. F. The formation of higher aliphatic alcohols by mutant strains of Saccharomyces cerevisiae. Arch Biochem Biophys. 1960 May;88:157–166. doi: 10.1016/0003-9861(60)90211-3. [DOI] [PubMed] [Google Scholar]
- Kandra G., Severson R., Wagner G. J. Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes. Eur J Biochem. 1990 Mar 10;188(2):385–391. doi: 10.1111/j.1432-1033.1990.tb15415.x. [DOI] [PubMed] [Google Scholar]
- Kandra L., Wagner G. J. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes. Plant Physiol. 1990 Nov;94(3):906–912. doi: 10.1104/pp.94.3.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda T. Biosynthesis of long-chain hydrocarbons. I. Incorporation of L-valine, L-threonine, L-isoleucine, and L-leucine into specific branched-chain hydrocarbons in tobacco. Biochemistry. 1967 Jul;6(7):2023–2032. doi: 10.1021/bi00859a021. [DOI] [PubMed] [Google Scholar]
- Ohlrogge J. B. Design of New Plant Products: Engineering of Fatty Acid Metabolism. Plant Physiol. 1994 Mar;104(3):821–826. doi: 10.1104/pp.104.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner G. J. Secreting glandular trichomes: more than just hairs. Plant Physiol. 1991 Jul;96(3):675–679. doi: 10.1104/pp.96.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters D. S., Steffens J. C. Branched Chain Amino Acid Metabolism in the Biosynthesis of Lycopersicon pennellii Glucose Esters. Plant Physiol. 1990 Aug;93(4):1544–1551. doi: 10.1104/pp.93.4.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]