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Observation of non-Markovian micromechanical
Brownian motion
S. Gröblacher1,2, A. Trubarov2, N. Prigge3, G.D. Cole2, M. Aspelmeyer2,3 & J. Eisert3

All physical systems are to some extent open and interacting with their environment. This

insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from

decoherence in quantum technologies and is at the heart of the emergence of classical

properties in quantum physics. The precise decoherence mechanisms, however, are often

unknown for a given system. In this work, we make use of an opto-mechanical resonator to

obtain key information about spectral densities of its condensed-matter heat bath. In sharp

contrast to what is commonly assumed in high-temperature quantum Brownian motion

describing the dynamics of the mechanical degree of freedom, based on a statistical analysis

of the emitted light, it is shown that this spectral density is highly non-Ohmic, reflected

by non-Markovian dynamics, which we quantify. We conclude by elaborating on further

applications of opto-mechanical systems in open system identification.
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A
t the heart of understanding the emergence of a classical
world from quantum theory is the insight that all
macroscopic quantum systems are to some extent coupled

to an environment and hence are open systems1–4. The associated
loss of quantum coherence, that is, decoherence, is also
detrimental for quantum information-processing applications.
In contrast, properly engineered quantum noise can counteract
decoherence and can even be used in robust quantum state
generation5–7. To exploit the detailed dynamics of a quantum
system, it is therefore crucial to obtain both good knowledge and
control over its environment8–10. An explicit modelling of the
environment, however, may often not be possible. In this case,
simplifying assumptions concerning the nature of the underlying
quantum noise are being made that do not necessarily hold for
real devices. Micro- and nanomechanical resonators constitute
prominent examples. They are now emerging as promising
devices for quantum science11–17. Because of their complex
solid-state nature, the properties of their intrinsic decoherence
mechanisms have been the subject of intense research for
decades18,19.

In this work, we present a method to reconstruct the relevant
properties of the environment, that is, its spectral density, of the
centre of mass motion of a micromechanical oscillator. We
observe a clear signature of non-Markovian Brownian motion,
which is in contrast to the current paradigm to treat the thermal
environment of mechanical quantum resonators as fully
Markovian. The presented technique, inspired by methods of
system identification, can easily be transferred to other harmonic
systems that are embedded in a complex environment, for
example, electronic or nuclear spin states in a solid-state
matrix20,21. Our results also open up a route for mechanical
quantum state engineering via coupling to unorthodox reservoirs.

Results
Open quantum systems. To understand the role of the
environment on a (quantum) mechanical system, let us first
consider an isolated harmonic oscillator of bare frequency O and
mass m. In the absence of any coupling, its centre of mass
coordinate q will undergo undamped harmonic motion. In any
real physical situation, however, the macroscopic degree of
freedom of interest—here the centre of mass—will be coupled to
some extent to a thermal bath of some temperature. Irrespective
of the underlying microscopic mechanism, for example, phonon
scattering in mechanical systems22 or electronic interactions in
superconductors23, one can usually very well approximate the
interaction with the thermal environment as a linear coupling to a
bath of harmonic bosonic modes24. This is particularly true for
high temperatures where finite bath degrees of freedom no longer
significantly contribute. Such an interaction is described by

Hint¼q
X

n

cnqn ð1Þ

where qn and cn are the position and coupling strength of the nth

bath mode of mass mn and frequency on, respectively. The
dynamics of the system is fully determined by the spectral density
of the thermal bath,

IðoÞ¼
X

n

c2
n

2mnon
dðo�onÞ; ð2Þ

which governs how strongly the oscillator is coupled to specific
modes of the environment. This spectral density directly
determines the temporal correlations of the thermal driving
force. As a consequence, the centre of mass experiences a quite
drastic change in its motion: it becomes damped, in general in a
rather intricate manner, and is shifted in its frequency. This

quantum Brownian motion25,26 is one of the most paradigmatic
models of decoherence in quantum theory1,2,27,28. It is this
generic model for an unknown arbitrary spectral density that is
the basis for our analysis.

All current theoretical studies on micro- and nanomechanical
quantum systems make the explicit or implicit assumption that
the decohering quantum dynamics is Markovian: this means that
the open system dynamics is forgetful29–32. In this case the two-
point correlation function of the thermal force equals kBTd(t� t0)
and is hence uncorrelated in time. For a weakly damped mode at
high temperatures (and in contrast to the situation in spin-Bose
models33), such Markovian quantum dynamics is found for an
Ohmic spectral density

IðoÞ / o ð3Þ

over large frequency ranges. For such damped harmonic systems
in the high temperature limit, spectral densities other than Ohmic
ones lead to deviations from Markovian evolutions. This is a
widely known expectation13,26,27. In this work we precisely link
properties of spectral densities with a quantitative measure of
non-Markovianity.

In many solid-state systems, the Markov approximation has
been found to be both theoretically plausible and experimentally
valid to extraordinarily high precision3. Various loss mechanisms
in mechanical resonators, however, are known to exhibit a
strong frequency dependence18,22, which challenges the general
validity of this approximation even for simple mechanical
quantum devices. We introduce a straightforward test to
directly characterize the spectral properties of the environment
in the vicinity of the mechanical mode. Because of the complex
solid-state architecture of these resonators, computing the
spectral density from first principles seems a tedious, if not
impossible, task with the exception of well-isolated loss
mechanisms. Instead of making a priori assumptions about the
dynamics, our approach is rather in the spirit of open system
identification: we measure the properties that give rise to a
quantitative estimate on the Markovian nature of the dynamics.

Experimental set-up. Our approach relies on monitoring the
mechanical motion with high sensitivity. We achieve this by
weakly coupling the mechanics to an optical cavity field whose
phase response encodes the mechanical motion34. We then make
use of the fact that the shape of the bath spectral density affects
the amplitude response of the mechanical resonator on thermal
driving. Specifically, the experimentally accessible spectrum of the
cavity output light for high temperatures is given by

SdYout oð Þ � c
I oð Þ

o ðOð1Þ2�o2Þ2þðgð1ÞoÞ2
� � ; ð4Þ

for a suitable constant c40 (for details, see Supplementary
Note 2). Here dYout is the optical phase quadrature, which can be
made a direct measure of the mechanical position quadrature q
and which is obtained by optical homodyne readout, O(N) is the
renormalized mechanical frequency and g(N) is the effective
asymptotic mechanical damping constant. The opto-mechanical
device can hence be seen as an ultrasensitive black box measuring
the spectral density.

We demonstrate our analysis on a micromechanical resonator
as shown in Fig. 1b. The device consists of a 1-mm-thick layer of
Si3N4 and is 150 mm long and 50 mm wide. The 50-mm diameter,
high-reflectivity (R499.991%) mirror pad in its centre allows to
use this resonator as a mechanically moving end mirror in a
Fabry–Pérot cavity, as has been fabricated to explore the regime
of cavity opto-mechanical coupling35,36 (for details on the
fabrication process see ref. 37). In our case, the cavity finesse is

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8606

2 NATURE COMMUNICATIONS | 6:7606 | DOI: 10.1038/ncomms8606 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


intentionally kept low at F¼ 2,300 by choosing a high-
transmittivity input mirror for this experiment. This results in
an amplitude cavity decay rate of k¼ 1.3 MHz (cavity length:
25 mm). By using a signal beam of 100 mW, we realize a
sufficiently weak opto-mechanical coupling gE40 kHzook, such
that the cavity field phase quadrature adiabatically follows the
mechanical motion and hence dYout is a reliable measure
of q. The fundamental mechanical resonance frequency is
O¼ 2p� 914 kHz, with a mechanical quality Q-factor of B215
at room temperature. Optical homodyne detection of the
outgoing cavity field finally yields the temporal phase
quadrature fluctuations dYout(t), which are digitized to calculate
the noise power spectrum SdYout(o) (see Fig. 1a). All experiments
have been performed in vacuum (background pressure
o10� 3 mbar) to prevent the influence of fluidic damping. At
the mentioned parameters for our experiment, we achieve a
displacement sensitivity of B3�10� 15m=

ffiffiffiffiffiffi
Hz
p

as is shown in
Fig. 2. To exclude the possible influence of spurious background
noise we have also characterized the noise power spectrum of the
cavity field without a mechanical resonator. In our configuration
this is possible because of the specific design of the chip
comprising the micromechanical device, which holds several non-
suspended mirror pads that can be accessed by translating the
chip. The resulting noise power spectrum is flat and hence cavity
noise cannot contribute to any non-Brownian spectral signal (see
Fig. 2). Another possible spectral dependence could arise from the
presence of higher-order mechanical modes, which are not taken
into account in equation 4. A finite element analysis of our
mechanical system reveals the next mechanical mode at
O(1)¼ 2p� 1.2 MHz. As can be seen from Fig. 2, the spectral
overlap in the vicinity of O is many orders of magnitude below
the measured signal and hence negligible.

Spectral densities and non-Markovian dynamics. After
characterizing the resonator, the final task to perform bath
spectroscopy now reduces to assessing the statistical significance
of a single assumption: namely that the spectral density is locally,
that is, in the vicinity of an estimate of O, well described by

IðoÞ¼Cok; ð5Þ

for some C40 and kAR, for oA[omin,omax]. A value of k¼ 1
corresponds to an Ohmic environment, k41 to a supra-Ohmic,
and ko1 to a sub-Ohmic environment. This is the common
classification of spectral densities26. For a slowly varying spectral
density, however, what largely determines the long-time
dynamics is the slope of the spectral density in the vicinity
of O. Indeed, for this analysis to be valid, we do not have to make
a global model for the spectral density—information that is
experimentally inaccessible anyway—but merely for the local
frequency dependence. We accompany this analysis with an
analytical assessment in notes 2 and 3 of the Supplementary
Material.

The starting point of this analysis is equation 4. From the
homodyne measurement, samples of statistically independent
subsets of time series are formed, and data sets are obtained as
Fourier transforms thereof. For each of these independently
distributed Fourier transforms, one identifies the optimal k in
equation 4 with I(o)¼Cok that minimizes the least square
deviation within a suitable frequency interval [omin, omax]
centred around O. Here omin¼ 885 kHz and omax¼ 945 kHz are
chosen; however, the results are largely independent of that
choice. Interestingly, it is the comparably low mechanical
Q-factor that allows for the assessment of a relatively large
frequency interval. For each individual data set, several different
values of the power k are compatible with the data, which is an
unsurprising finding in the light of the presence of noise in the
data. Given the large data set that is available, however, one can
arrive at an estimate of the optimal coefficient k with large
statistical significance.

The main experimental result is shown in Fig. 3 (see also
Supplementary Note 6). The histogram over all optimal
power estimates yields k¼ � 2.30±1.05, which is a clear
deviation from k¼ 1 for a locally Ohmic bath density, hence
signifying a remarkably strong departure from Markovianity.
It is well known that an Ohmic spectral density leads in the
weak coupling and high-temperature regimes to Markovian
dynamics13,27. To further strengthen our analysis, we further
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Figure 1 | Sketch of the experiment. (a) The experimental set-up consists

of a 1,064-nm Nd:YAG laser, which is split into a signal beam and a local

oscillator (LO). The signal is phase-modulated with an electro-optical

modulator (EOM) for Pound–Drever–Hall locking of the opto-mechanical

cavity. In order to readout the phase of the signal beam acquired from the

motion of the mechanical resonator, it is beaten with a strong LO on a

beamsplitter and detected on two photodiodes. The phase f between

the LO and the signal is stabilized with the help of a mirror mounted

on a piezo-ceramic actuator in order to only detect the phase quadrature

of the signal field. The opto-mechanical cavity is kept at a pressure of

o10� 3 mbar to avoid residual-gas damping of the mechanical motion.

(b) Scanning electron microscope picture of the tested device.

Frequency (Hz)
6x105 8x105 1×106

10–26

10–27

10–34

10–28

10–29

10–30

10–31

10–32

10–33

N
oi

se
 p

ow
er

 s
pe

ct
ru

m
 (

m
2  

H
z–1

)

1.2×106 1.4×106

Figure 2 | Noise power spectra. Depicted are the spectra obtained with the

mechanics being part of the set-up (black; with a fit in red), with no

mechanics (yellow), with no cavity (blue), a spectrum reflecting a

sub-Ohmic spectral density I(o)po� 2 (turquoise), the simulated sum

(red dashed) and the simulated modes (green dotted). In our simulation

we have assumed the mechanical Qs of the higher-order modes to be

similar to the fundamental mode, which is in good agreement with

typical experimental values. Note that for clarity the measurements

of the additional noise (yellow and blue) are not to scale.
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make this link quantitative. We show that a deviation from a local
Ohmic spectral density—which is precisely what is observed—
leads to quantifiable non-Markovian dynamics.

Quantifying non-Markovian harmonic dynamics. Formally,
open system dynamics is precisely Markovian if the time evolu-
tion is captured by _rðtÞ ¼ LðrðtÞÞ, with L being a Liouvillian. In
order for it to give rise to a valid quantum channel and hence to
quantum dynamics, it has to take the so-called Lindblad form,

LðrÞ ¼
X

j

LjrLyj �
1
2
fLyj Lj; rg

� �
: ð6Þ

Obviously, any conceivable dynamics that is not generated by
Hamiltonian evolution will only be approximately Markovian.
This approximation can, however, be exceedingly good. The
channels resulting from Markovian dynamics are infinitely divi-
sible29,38. For harmonic systems, the exact master equation
governing time evolution is of the form

_rðtÞ ¼� i HRðtÞ; r½ � � igðtÞ x; p; rðtÞf g½ �
�MDppðtÞ x; x; rðtÞ½ �½ � �DxpðtÞ x; p; rðtÞ½ �½ �;

ð7Þ

with a time-dependent Hamiltonian HR and time-dependent
coefficients Dpp and Dxp (refs 13,26,27). Note the absence of a
memory kernel when written in this form, which is implicit in the
coefficients.

There are several closely related meaningful ways to quantify
Markovianity of a process29–31, all essentially deriving from
infinite divisibility of the dynamical map (physically originating
from short bath correlation times). In precisely this spirit, we
capture non-Markovianity by the extent to which the right hand
side of equation 7 deviates from a valid Lindblad generator
(a rigorous treatment is presented in Supplementary Note 3). The
measure taken is

x¼ min 0; lim
t!1

� lminð�ðtÞÞ
�ðtÞk k

� �
; ð8Þ

�ðtÞ ¼ 2MDppðtÞ DxpðtÞþ igðtÞ
DxpðtÞ� igðtÞ 0

� �
: ð9Þ

For an Ohmic spectral density with high frequency cutoff, we find
that Dxp(N) is very close to zero; in fact, x is of the order of 10� 15

for all other parameters chosen as in the experiment. However, our
result for the slope at I(O) gives a lower bound of x41.1� 10� 6.
This shows that the dynamics sharply deviates from a Markovian

one. In other words, our analysis unambiguously shows that the
heat bath of the micromechanical oscillator is not consistent with
Markovian damping of a quantum harmonic oscillator in the high
temperature limit.

Discussion
While we do not expect effects of finite-dimensional bath
components resulting, for example, from two-level fluctuators,
to measurably influence the result39–41, we cannot rigorously
exclude such contributions. We can yet strictly and
unambiguously falsify the common assumption of a harmonic
Ohmic heat bath. Our specific situation is rather described by
highly sub-Ohmic damping. We strongly emphasize that our
analysis does not rely on any assumption about the resonator
geometry. We may, however, still speculate as to why this strongly
sub-Ohmic damping is being found. It seems plausible that
the specific geometry of the slab used contributes to this
non-orthodox decoherence. Indeed, sub-Ohmic spectral
densities have been computed in a phononic mode analysis of
low-dimensional slabs18. However, we also expect intrinsic
decoherence mechanisms to be relevant.

It is known that in non-Ohmic baths the coefficients of the
master equation governing the dynamics are becoming strongly
time-dependent26. This means that, while the steady-state
properties of a mechanical system may be modified only in a
mild way—the deviations of the measured spectrum from
Equation 4 for Ohmic spectral densities are small—one should
expect larger deviations for predictions in time-dependent
situations42. It has been pointed out recently that such non-
Markovian quantum noise can significantly influence the ability
to generate quantum entanglement43. Indeed, intricate memory
effects come into play in case of non-Markovian dynamics, giving
rise to a picture of decoherence beyond basic rate equations.

Finally, our findings complement related research in
mechanical engineering. It is known that damping due to internal
materials losses can be vastly different from a purely velocity-
dependent damping term as typically assumed for a simple
harmonic oscillator. Specific models for such non-viscous damping,
a prominent model being that of ‘structural’ or frequency-
independent damping44, have been extensively studied in the
context of both gravitational wave detection44–46 and
measurements of the gravitational constant47,48, where thermal
noise in the DC tail of a mechanical resonance poses limits on the
achievable sensitivity. In turn, while the accurate measurement of
internal friction and the analysis of their origin remains a
challenging task, broadband thermal noise measurements have
become an important input for the design and engineering of high-
Q micro- and nanomechanical resonators49. This is also important
for macroscopic systems such as end mirrors for optical reference
cavities or gravitational wave detectors.

Our approach adds two new aspects: first, our analysis provides
a direct link to ‘Markovianity’29–31 as a statistical property of the
environment of a quantum harmonical oscillator. Second, we
exploit the enhancement of the thermal noise in the vicinity of the
mechanical resonance, instead of probing thermal noise over a
broad frequency band. This provides a local estimate of the
thermal bath characteristics, which is the relevant property for
non-Brownian dynamics. In a next step, combining this method
with a sweep in resonance frequency50 could provide direct, full
broadband mechanical spectroscopy of the thermal bath spectral
density, in a ‘tomographic approach’. Our system identification
approach is also model-independent, that is, we do not make any
prior assumptions on the underlying nature of the dissipation
or on the specific shape of the thermal noise spectral density
(other than assuming harmonicity). Although the current study is
performed at room temperature, in the ‘classical’ regime, it can be
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the spectral density by I(o)¼Cok, showing a statistically significant

deviation from the Ohmic situation of k¼ 1.
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directly applied to other mechanical resonators that operate close
to or in the quantum regime17,51–53.

In summary, we have introduced a versatile method to directly
probe the spectral density of the heat bath of a micromechanical
resonator. We demonstrate that the common assumption of
Markovian Brownian motion does not hold. This opens the way
towards systematic studies of individual dissipation channels such
as two-level fluctuators39,40. In combination with the possibility
to geometrically modify the phonon spectrum18,54–57, this would
allow for full reservoir engineering of quantum harmonic
oscillators. We hope that the present work stimulates such
further experimental analysis of unorthodox decoherence
phenomena opening up alongside technological development.
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