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Abstract
In this paper, we present a probabilistic reasoning method capable of generating predictions of the progression of clinical findings

(CFs) reported in the narrative portion of electronic medical records. This method benefits from a probabilistic knowledge

representation made possible by a graphical model. The knowledge encoded in the graphical model considers not only the CFs

extracted from the clinical narratives, but also their chronological ordering (CO) made possible by a temporal inference technique

described in this paper. Our experiments indicate that the predictions about the progression of CFs achieve high performance

given the COs induced from patient records.

Introduction
The narrative clinical notes in electronic medical records (EMRs) mention clinical findings (CFs) related to patients, and thus

are a very important source of information which captures the progression of the patients’ overall clinical picture. An additional

important aspect of the information available from clinical narratives is provided by temporal information, which enables temporal

inference related to CFs. The clinical information about CFs, and their associated temporal information, is not structured; thus,

it is available only when automatic extraction techniques based on natural language processing are employed. As extraction

techniques become available, they make possible the development of prediction methods that can evaluate the likelihood that

a certain patient develops a new condition or clinical risk factor. These predictions can be used in the clinical management of

the patients, being essential in personalized medicine as they inform individual diagnostic and treatment decision making.

Automated extraction techniques that are able to identify CFs as well as their temporal information were developed in the recent

2014 Informatics for Integrating Biology and the Bedside (i2b2) Challenges addressing Language Processing for Clinical Data1.

This task made possible the development of multiple approaches which were able to recognize CFs related to coronary artery

disease (CAD). These CFs include diagnoses of related diseases, such as CAD itself, and diabetes, as well as certain risk factors,

such as hypertension, hyperlipidemia, and obesity. As information about these risk factors related to CAD along with associated

temporal information can now be identified automatically from the narrative portion of EMRs, we are in a position to be able

to (1) perform temporal inference, which enables and informs (2) prediction techniques based on state-of-the-art probabilistic

knowledge representation and reasoning.

Our contributions in this paper are as follows. First, we have used the annotations provided by the 2014 i2b2/UTHealth shared

task that tackled the recognition of CFs for CAD in order to perform temporal inference which resulted in chronological orderings

(COs) of the CFs. Second, we have produced a probabilistic knowledge representation which captures information about (a)

clinical findings (CFs), (b) the COs that resulted from temporal inference, and (c) the statistical inter-dependencies which model

all possible progressions of CFs over time . Third, we have used the probabilistic graphical model to perform predictions about

the progressions of CFs relying on probabilistic inference. Fourth, we performed detailed experiments evaluating the predictions

against the COs we inferred from the 2014 i2b2/UTHealth dataset. These experiments validate the accuracy of our prediction

model and show that it produces state-of-the-art results, especially when compared with other methods of prediction currently used.

Related Work
Clinical prediction rules have been developed to reduce the uncertainty inherent in medical practice by defining how to use CFs to

make predictions [1]. However, these rules do not capture the temporal aspects of the change in CFs, and thus cannot predict their

progression. A vast literature on mining association rules from patient records (PRs) has been published [2, 3], but it has been

documented that these methods often produce many superfluous rules, and even those that are useful for prediction do not rely on

any form of temporal inference. In consequence, they capture only a small portion of the medical knowledge that can be inferred

from PRs, and only produce predictions that do not consider temporal information. Most prediction models for Coronary Artery

Disease (CAD) rely on statistical methods based on Cox regression, as illustrated by the GRACE postdischarge prediction model

[4]. As reported in [5], the results of this prediction model on development and validation patient cohorts were promising but

may be further improved by probabilistically modelling the statistical inter-dependencies between risk factors and co-morbidities.

The model presented in this paper is, to our knowledge, the first prediction model that uses an undirected probabilistic graphical

model capable of representing such inter-dependencies and enabling the prediction of progressions of CFs. Although Bayesian

networks have been used for many years in predictive medicine [6, 7], they operate on an underlying causal assumption: that

1Information regarding the i2b2/UTHealth shared task is available at https://www.i2b2.org/NLP/HeartDisease/
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the probabilistic influence between two random variables is represented by conditional probabilities. The model presented in this

paper leverages an alternative class probabilistic graphical models, known as Markov networks, which only assume correlation

between random variables (represented by joint probabilities) and allow for bi-directional influence. Because we are interested

in predicting the likely progression of CFs for any patient, we rely both on the temporal information and on the bi-directional

influence between any pair of CFs discovered in the PRs, thus Markov networks are ideal for our probabilistic representation.

Dataset
In this work we consider a dataset of 790 fully de-identified narrative patient records (PRs). These reports were provided by

the 2014 Informatics for Integrating Biology and the Bedside (i2b2) and the University of Texas Health Science Center at Houston

(UTHealth) shared-tasks on Challenges in Language Processing for Clinical Data. This dataset documents the progression of heart

disease over longitudinal PRs for 128 diabetic patients where the number of PRs for each patient varied between three to five. Each

PR was manually annotated to indicate the presence of certain clinical findings (CFs) deemed clinically relevant to heart disease

or diabetes and include both diseases and their associated risk factors. Table 1 illustrates examples of CFs annotated as well as the

criteria used for identifying them in PRs. There were 6,302 such annotations: 16,95 for DIABETES, 433 for OBESITY, 1,926 for

HYPERTENSION, 1,062 for HYPERLIPIDEMIA, and 1,186 for CAD. Each of the CFs was also annotated with a temporal signal (TS)

which indicates when the CF was inferred. Three temporal signals were used; their definitions and examples are provided in Table 2.

Clinical Finding Criteria Example

CF1= DIABETES (DBS)
(1) diagnosis of type 1 or 2 diabetes patient has h/o DMII
(2) A1c test over 6.5 7/18: A1c: 7.3
(3) two fasting blood glucose measures over 126 (8:00AM) glu: 145 . . . (8:00PM) glu: 139

CF2= CAD

(1) diagnosis of coronary artery disease (CAD) PMH: significant for CAD
(2) myocardial infarction (MI, STEMI, NSTEMI) s/p STEMI in 2004
(3) revascularization, cardiac arrest or ischemic cardiomyopathy CABG in 1999
(4) stress test showing ischemia dolbutamine stress test revleaing ischemia
(5) abnormal cardiac catherization showing coronary stenoses cath. of LAD revealed 50% lesion
(6) chest pain consistent with angina treated for stable angina

CF3= HYPERLIPIDEMIA (HLA)
(1) diagnosis of Hyperlipidemia or Hypercholesterolemia control of his hypercholersterolemia
(2) total cholesterol measure of over 240 result of latest chol. test is 250
(3) LDL measurement of over 100 mg/dL latest LDL: 135

CF4= HYPERTENSION (HTN)
(1) diagnosis of Hypertension PMH: HTN
(2) blood pressure measurement of over 140/90 mm/hg at admit, bp 140/100

CF5= OBESITY (OBY)
(1) a description of the patient as being obese 57y/o obese white male
(2) a body mass index (BMI) over 30 recommending lowering BMI (31.4 last August)
(3) a waist circumference> 40 in. for males or 35 in. for females 42in waist

Table 1: Clinical findings related to heart disease, based on risk factors annotated in the i2b2/UTHealth 2014 dataset.

Temporal Signal Definition Example

DURING finding was present at the time this PR was created today’s lab values: Chol. 247
BEFORE finding was present before the creation of this PR lab values from previous visit: LDL: 135

AFTER finding is present after the creation of this PR confirmed as diabetic

Table 2: Temporal signals associated with risk factors in the i2b2/UTHealth 2014 dataset.

Approach
We developed a probabilistic reasoning technique which is able to predict the progression of CFs for any individual patient.

To enable such predictions, we needed to encode knowledge about CFs, temporal information that allows for a chronological

ordering (CO), as well as the statistical inter-dependencies between CFs. Although we have used the i2b2/UTHealth dataset,

our method can operate on any set of PRs with any arbitrary set of CFs as long as they have been extracted with their associated

TSs. The probabilistic knowledge that we encoded relied on (1) the CFs that were extracted from the annotations available in

the data; (2) the COs that resulted from a form of temporal inference which assigned CFs to time intervals; and (3) statistical

inter-dependencies which were estimated based on the COs produced on the entire dataset. This knowledge was cast in a graphical

model on which probabilistic inference allowed us to produce predictions at any time during the health management of a patient.

To summarize, our approach consists of three steps: (1) infer COs of CFs, (2) encode knowledge in a graphical model and (3)

use probabilistic inference on the graphical model to make predictions.

Chronological Ordering of Clinical Findings
The PRs in our dataset document the clinical findings (CFs) for each patient at different times. As such, there is an implicit

temporal ordering between the PRs for an individual patient. Moreover, in each PR, temporal signals (TSs) provide additional

temporal information for each CF. For example, when encountering a clinical finding CFi associated with the TS BEFORE within

PRj, we can infer that CFi was present in the time interval beginning at the creation of PRj−1 and ending when PRj was created.

These creation times (CTs) were parsed from PRs.
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By analyzing the dataset that was created for the 2014 i2b2/UTHealth Shared Task, we noticed that the distribution of TSs

associated with mentions of CFs is as follows: BEFORE was the most predominant, associated with 37% of CFs, whereas DURING

was observed for 35% of the CFs, while AFTER was associated with 28% of the CFs. Moreover, we observed that the same

CF may be mentioned multiple times in the same PR and that each of these mentions may be associated with a different TS.

In this way, the TSs associated with each CF vary within a single PR, across PRs for the same patient, and between different

patients from the population. When analysing the association between mentions of CFs and TSs, we discovered that 89% of

the CFs mentioned in a PR were associated with all three possible TSs and only a very small percentage of the CFs annotated

in our dataset were associated with only one or two TSs. Motivated by these observations, we based our chronological ordering

on temporal inference which operates according to the following assumptions:

[A1] If a CFi from PRj for a patient is associated with TS = AFTER, we temporally infer that CFi was present in the time interval TI(CT(PRj),

CT(PRj+1)), denoting the time interval (TI) between the creation times (CTs) of two successive PRs for the same patient.

[A2] In the first PR created for a patient, all CFs associated with TS = BEFORE are inferred to have been present in the special time interval BEFORE-ALL.

[A3] In the last PR created for a patient, all CFs associated with TS = AFTER are inferred to have been present in the special time interval AFTER-ALL.

[A4] A CFi associated with TS = DURING is processed in the same way as if it were annotated with TS = AFTER (as described in [A1]). Very few CFs

occur only DURING the medical visit (6%), while the vast majority of CFs (83%) occur both DURING and AFTER (and even BEFORE) the creation time of

their PRs. Hence, given that the TS DURING does not represent a statistically significant distribution in our data, we cast the temporal inference for it to be

similar to the one dictated by the TS AFTER. Clearly, for a different temporal distribution of CFs, this assumption may not hold and additional temporal

inference may be required.

Based on these assumptions, we automatically inferred the CO of the CFs for each patient. Figure 1 illustrates the temporal

inference for one patient documented in the dataset and the resulting CO of CFs induced for that patient.

Figure 1: Chronological ordering (CO) of clinical findings (CFs) for a patient.

To devise the chronological order of CFs, we first take into account the creation times (CTs) of each PR. Given all the PRs

generated for a patient, we order the PRs as shown in Figure 1. This allows us to produce N+1 time intervals where N
is the number of PRs produced for the patient. These time intervals (TIs) are represented as: [ BEFORE-ALL; TI(CT(PR1),

CT(PR2)); TI(CT(PR2), CT(PR3)); ...; AFTER-ALL]. In the next step, we applied the assumptions [A1-4], in order to

determine which CFs should be associated with each TI. For each PRi, we map each CF with TS = BEFORE into the

time interval TI(CT(PRi−1), CT(PRi)), and each CF with TS = AFTER into the time interval TI(CT(PRi), CT(PRi+1)).

Figure 2: A probabilistic graphical model

encoding the likelihood of any possible

progression of clinical findings.

As illustrated in Figure 1, a chronological ordering (CO) is a temporally-ordered

sequence of sets, where each set Si represents the combination of CFs which were

temporally inferred as belonging to the i-th time interval (TIi). For example, the CO

produced for the patient illustrated in Figure 1 consists of the following sets: S0 =

{DIABETES, CAD}; S1 ={CAD, OBESITY}; S2 ={DIABETES HYPERTENSION}, S3
={HYPERLIPIDEMIA, OBESITY}; and S4 ={CAD, HYPERTENSION}. When we infer

the COs for all patients in the dataset, we enable the probabilistic representation of

the knowledge about CFs from the clinical dataset.

A Graphical Model for Representing Knowledge about Clinical Findings
We encoded knowledge using a probabilistic graphical model (PGM), illustrated

in Figure 2. In our PGM, nodes correspond to CFs and are represented as binary

random variables. Our PGM also encodes knowledge about the CO of CFs. COs

are sequences of sets of CFs, denoted as S0,S1,...,SL where L is the longest CO

inferred from our dataset. Because the PGM encodes knowledge about the entire
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patient population documented in the dataset, the PGM needed to encode all the possible sets of CFs for each Si where 0≤i≤L.

This was achieved by assigning a value of 1 to the random variable of a CF which was observed in the same Si and a value

of 0 to any CF which was not observed in that same Si. An advantage of the knowledge representation using the PGM stems

from the ability to also assign a probability to the random variables, which encapsulates the statistical distribution of the CFs

corresponding to the COs across all patients. A second advantage of this knowledge representation stems from the ability to

capture statistical dependencies between the random variables, which are represented as edges in the graph. Any edge from a CFx

in Si to a CFy in Si+1 indicates such a dependency. The statistical dependencies between CFs across successive sets (Si to Si+1)

allows us to represent all the possible ways in which CFs may progress from one time interval to the next based on the properties

of our clinical dataset. Because we are only considering five different CFs in our dataset, there are 25=32 possible statistical

dependencies between any Si to Si+1.

Predictions as Probabilistic Inference
To make predictions about the progression of CFs of any patient, we used probabilistic inference to estimate the most likely

assignment of CFs, Ŝ, given the observed sets of CFs and their COs encoded in the sets S0,S1,...,Si by finding the most likely

assignment to the set Si+1. When i=1, we make predictions about the progression of CFs given knowledge documented only in

the first PR, whereas when i= LAST, we make predictions about the progression of CFs after the last visit (documented in the

last PR) of the patient. Since there are 32 possible transitions from any Si to Si+1, we define X as the set of all 32 possible values

for Si+1. In this way, probabilistic inference used the maximum a posterior (MAP) assignment which predicts the most likely

progression, i.e. the set of CFs Si+1 provided by the assignment Ŝ:

Ŝ=argmax
S′∈X

P(Si+1=S′|S0,...,Si) (1)

To compute the MAP estimation, we also needed to estimate (a) the transition probability between a set of CFs Si to a set

Si+1; and (b) the prior probability of any set Si which indicates the likelihood that the combination of CFs represented by

Si was observed in any CO produced by temporal inference in the patient population. To estimate the transition probability,

P(Si+1|Si) we evaluated two functions: (a) Q1(Si,Si+1) representing the number of times in which all CFs observed in the

set Si were temporally mapped to some time interval TIj in a CO, while all the observed CFs from Si+1 were temporally

mapped to the next time interval TIj+1 in the same CO; and (b) Q2(Si) representing the number of times the CFs from Si were

temporally mapped to the same time interval in any of the COs for the entire patient population. This allowed us to estimate

P(Si+1|Si)=Q1(Si,Si+1)/Q2(Si). Similarly, to estimate P(Si), we define the number Q3 which represents the total number

of COs induced for the entire dataset. Then, P(Si)=Q2(Si)/Q3. Given the definitions of the transition probability and the prior

probability of any set of CFs, we can compute the likelihood of any progression of CFs. We define the progression of CFs as a

sequence of sets of CFs, S0,S1,...,Sj, where j represents the number of time intervals in the documented care of the patient. This

enables us to compute the likelihood of any progression of CFs as:

P(S0,...,Sj)=P(S0)×

j−1∏

i=0

P(Si+1|Si) (2)

As we were able to compute the likel.ihood of any arbitrary progression of CFs from the dataset, we were also capable of

predicting the progression of a new, unseen set of CFs, i.e. Sj+1 using Eq. 3.

P(Sj+1|S0,...,Sj)=
P(S0,...,Sj+1)∑

S′∈X

P(S0,...,Sj,S
′)

(3)

As the probability of a new progression of CFs is defined by Eq. 3, the probabilistic inference through MAP as given in Equation 1

makes predictions about the progression of CFs in the dataset used in our experiments and allowed us to evaluate the model we have

constructed. To exemplify the probabilistic inference enabled by our model, we use the CO illustrated in Figure 1 to instantiate the

five sets of CFs S0, S1, S2, S3, and S4. This allows us to determine the probability that the CFs for this patient will progress such

that only HYPERTENSION is present in the future by defining S5={HTN5=1,OBY5=0,HLA5=0,DBS5=0,CAD5=0}.

Using Eq. 3, we can compute the posterior probability for the CFs in S5 as 09.8%, meaning that, for the patient, there is an

approximately 10% chance that he or she will no longer present with CAD in the next hospital visit and will instead present with

only hypertension. We can additionally predict the most probable progression of CFs for the same patient, by determining (a) the

most probable assignment of random variables from S5 and (b) the likelihood of that assignment. The most probable next set of

CFs is HYPERTENSION and CAD with probability 17.5%, and the next most likely assignment is HYPERTENSION at 9.8%. This

shows that although there are many possible combinations of CFs for the next time-step, our model predicts that the combination

of both HYPERTENSION and CAD is 78.6% more likely than just HYPERTENSION.
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Experimental Results
We conducted an extensive set of experiments with the purpose of evaluating the quality of the predictions of CF pro-

gressions. We considered predictions performed after any number of time intervals had been observed, i.e. we evaluated

the predictions for each possible value of 1 ≤ j ≤ L, where L is the length of the longest CO obtained for any patient.

j Acc PPV FNR FPR TNR TPR F1 TP FP FN TN

1 84.94 94.22 22.84 05.69 94.31 77.16 84.84 375 23 111 381
2 81.91 86.63 17.80 18.51 81.49 82.20 84.35 434 67 94 295
3 86.18 91.13 13.20 14.91 85.09 86.80 88.91 493 48 75 274
4 86.71 85.21 06.27 23.38 76.62 93.73 89.26 478 83 32 272
5 88.92 85.29 02.52 22.60 77.40 97.48 90.98 232 40 6 137

Table 3: Performance results over all CFs for COs of length j, where Acc = Accuracy, PPV = positive predictive
value (Precision), FNR = false negative rate, FPR = false positive rate, TNR = true negative rate (Specificity),

TPR = true positive rate (Recall), F1 = F1-measure defined as 2× PPV×TPR
PPV+TPR

, TP = true positives, FP = false

positives, FN = false negatives, TN = true negatives.

It is to be noted that the accuracy

of our model is always very high

(above 80%) while the F1-measure

improves as more information from

the COs of CFs becomes available.

Table 3 details the evaluations of the

predictions produced by our system

for all COs of length j from the en-

tire patient population. As shown,

the highest precision for the prediction of any type of CF was obtained when considering only a single previous time-interval. This

confirms the conclusions hypothesized in [8] which suggest that the presence of CFs in the immediately proceeding PR is the best

predictor for the presence of a CF. Note, however, that when considering COs of greater length, the Recall tends to improve. This

suggests that considering more chronological information allows for more complex and rarer combinations of CFs to be predicted.

A more detailed evaluation of the prediction of the progression for each individual CF is illustrated in Figure 3. Across all five
(a) Obesity (b) Hypertension (c) Hyperlipidemia (d) Diabetes (e) CAD

Figure 3: Experimental results for the prediction of the progression of CFs for chronological orderings of lengths 1≤j≤5, where A denotes the Accuracy, P
denotes the Precision, R denotes the Recall, and F1 denotes the F1-measure.

CFs, our probabilistic model has the best F1 measure when predicting DIABETES, with an F1=94.57. Coronary Artery Disease,

CAD, was a close second at F1=92.31, followed by HYPERTENSION with F1=93.24, HYPERLIPIDEMIA at F1=85.42, and

OBESITY at F1=78.8. We believe that the difference in predictive performance for these CFs can be attributed to differences

in the distribution of how often each type of CF was observed in our dataset. For example, DIABETES, HYPERTENSION and

CAD are the most frequently occurring CFs (26%, 30%, and 19% respectively), while HYPERLIPIDEMIA and OBESITY are the

least frequently occuring CFs (accounting for 16% and 7%, respectively). Further, we notice that for the most common CFs

(HYPERTENSION and DIABETES), the F1-measure tends to improve consistently as COs of longer lengths are considered, while

for less common CFs (OBESITY) the trends are not as clear. This implies the need for additional data to balance the distribution of

CFs. It also shows that, for any given problem-based patient cohort, the progression of certain CFs may be better predicted as

more PRs documenting that CF are provided.

Conclusion
This paper has introduced a novel method of predicting the progression of CFs. The predictions are based on probability inference
operating on a graphical model that encodes knowledge about CFs extracted from PRs as well as their inferred chronological
orderings. Our method provided promising results in extensive experiments.
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