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Abstract  

Adverse drug events (ADEs) are responsible for unnecessary patient deaths making them a major public health issue. 

Literature estimates 1% of ADEs recorded in Electronic Health Records (EHRs) are reported to federal databases 

making EHRs a vital source of ADE-related information. Using Columbia University Medical Center (CUMC)’s 

EHRs, we developed an algorithm to mine for vaccine-related ADEs occurring within 3 months of vaccination. In 

phase one, we measured the association between vaccinated patients with an ADE (cases) against those vaccinated 

without an ADE. To adjust for healthcare-process effects, phase two compared cases against those who returned to 

CUMC within 3 months without an ADE. We report 7 results passing multiplicity correction after demographic 

confounder adjustment. We observed an association, having some literature support, between swine flu vaccination 

and ADEs (H1N1v-like, OR=9.469, p<0.001; H1N1/H3N2, OR=3.207, p<0.001). Our algorithm could inform 

clinicians of the risks/benefits of vaccinations towards improving clinical care. 

1. Introduction 

1.1 Adverse Drug Events Are Important for Public Health 

Adverse drug events (ADEs) are a major cause of death in the United States of America [1]. To address this serious 

public health issue, the Federal Drug Administration (FDA) developed an adverse event reporting system. Since this 

reporting system began, more than 75 drugs or drug products have been removed from public use [2]. The number of 

ADEs occurring between 1998 and 2005 increased 2.6 fold illustrating the increasing importance of ADE prevention 

in clinical care [3]. Many ADE detection methods rely on adequate physician, pharmacist, or nurse reporting of the 

ADE to federal reporting systems. Realizing that 1% of ADEs recorded in Electronic Health Records (EHRs) are 

reported on the federal level [4], we chose to harness the large set of clinician-reported ADEs available in EHRs to 

find novel vaccine-ADE associations.  

1.2 Informatics Methods Enable Harnessing of Data Within EHRs  

The widespread adoption of EHRs enables meaningful use [5] of data recorded during the clinical encounter. 

Appropriate use of EHR data requires overcoming definition discrepancies [6], data sparseness and quality [7], bias 

[8], and healthcare process effects [9]. Informatics methods overcome these challenges by employing standardized 

ontologies to minimize definition discrepancies [10-12], measuring concordance across integrated datasets for data 

sparseness and quality assessment [7], and minimizing bias and healthcare process effects using statistical methods 

[13]. Informatics methods applied to EHRs [14] have been successful in diverse areas [15-17] including 

pharmacovigilance [18, 19]. They are also useful in predicting ADEs using chemical and molecular structures of 

compounds [20]. Approaching the problem from a different angle, our method investigates ADEs occurring and 

recorded during routine clinical care. 

1.3 ADE Detection and Prevention Feasible Using EHRs  

Multiple algorithms have shown the usefulness of EHRs for ADE detection. Haerian et al. developed a method for 

identifying drugs associated with two serious ADEs, rhabdomyolysis and agranulocytosis, after adjusting for patient 

comorbidities [19]. Luo et al. developed a pattern mining method for detecting ADEs from clinical trials data [21]. 

Linder et al. found that only 1% of EHR recorded ADEs are reported to the federal government, demonstrating that 

EHRs are a rich data source for ADE detection [4].  

2. Materials and Methods 

2.1 Columbia University Medical Center Dataset 

We used EHR data from Columbia University Medical Center (CUMC), previously converted to the Common Data 

Model (CDM) [22] developed by the Observational Medical Outcomes Partnership (OMOP). This dataset contains 

patients’ drug-related and diagnosis information. The CUMC Institutional Review Board approved this study. 

2.2 An Algorithm to Mine for Vaccines Associated with Adverse Events  

We mapped all International Classification of Diseases, version 9 (ICD-9) codes to the Systemized Nomenclature of 

Medicine – Clinical Terms (SNOMED-CT) using the OMOP CDM v.4 [22], which was proven useful by a number of 

prior research studies [23, 24]. By taking advantage of the medication-terminology mapping in the CDM (which 
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includes both RxNORM and NDF-RT)[22] we are able to map many different vaccines from different manufacturers 

to the same core ingredient set. Others obtained high quality results when using this same CDM mapping for 

medications [24]. Using the CDM also helps minimize terminology mapping issues common when using EHRs for 

medication information [25]. 

In the OMOP CDM [22], one code for “adverse effect due to correct medicinal substance properly administered” 

maps to 75 ICD-9 codes (each with relatively low prevalence). We used this mapping and extracted a population of 

16,296 patients with a coded ADE from an appropriately prescribed and administered drug. Because we were 

interested in vaccines, we extracted all patients who were vaccinated in our medical system (N=70,050). 

Subsequently, we recorded patients as having a vaccine-related ADE if the ADE occurred within a 3-month window  

(i.e., 90 days) after the vaccination date. We selected a 3-

month window because there is literature suggesting that 

over 8 weeks time may be necessary to appropriately 

capture a vaccine-related ADE [26]. If several ADEs 

occurred within the 3-month time frame (e.g., one 2 days, 

and another 7 days after vaccination) then both were 

included in the analysis. This was done because both 

clinician-coded ADEs could be the result of the 

vaccination. 

2.2.1 Phase One: Mining Vaccine-ADE Associations 

Across All Vaccinated Patients 

The first part of our algorithm (Figure 1) calculates the 

association between each vaccine and an ADE within 3 

months by comparing each individual vaccine (case) to all 

other vaccines in our dataset (as controls). Controls include 

all patients who were vaccinated regardless of whether they 

returned to the hospital for a follow-up visit. Associations 

are measured using the fisher-exact test with multiplicity correction using Bonferroni’s method (R v.3.1.0).  

2.2.2 Phase Two: Mining Vaccine-ADE Associations Adjusting for Health-Care Process and Demographic Effects  

To adjust for various health-care process effects [8, 9] that 

may affect whether or not a patient returns to CUMC within 

3 months, we decided to use as controls all patients who 

were vaccinated and were subsequently diagnosed with 

some other medical condition (not an ADE) within 3 

months of the vaccination date. Our cases remained 

unchanged and consisted of all vaccinated patients with an 

ADE diagnosis within 3 months. Therefore, in this second 

phase of the algorithm both cases and controls returned to 

CUMC within 3 months. For this analysis, we had 65,708 

controls and the same 1,231 cases (Figure 1). We measured 

the association between each vaccination and an ADE 

diagnosis using logistic regression. Specifically, each 

potential confounder (i.e., ethnicity, race, sex, age (at time 

of vaccination)) was modeled as a covariate in the logistic 

regression equation with the binary response (outcome) 

variable indicating the presence or absence of an ADE within 3 months of vaccination and the predictor variable 

denoting presence or absence of the vaccine of interest (R v.3.1.0). An association is reported as significant if the 

Bonferroni adjusted p-value is <=0.05. We further illustrate phase two’s control selection method in Figure 2.  

3. Results 

3.1 Overview of CUMC Dataset 

Our dataset contained 472,451 patients with both medication and diagnosis-related information. We found 19 vaccines 

prescribed at CUMC with at least one patient with a recorded ADE within 3 months after vaccination. In total, 1,231 

vaccinated patients were diagnosed with an ADE within 3 months, and Figure 3 depicts their characteristics. 

3.2 Vaccine-ADE Algorithm 

3.2.1 Phase One: Mining for Associations Across All Vaccinated Patients 

Figure 1. Algorithm Schema to Detect Vaccines 

Associated with Clinician-Coded Adverse Events  
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We applied our algorithm to all 19 vaccines and measured the association between the vaccine’s administration and an 

ADE within 3 months afterwards. After Bonferroni adjustment, we found 13 vaccines were associated with an ADE at 

this step. Characteristics of our case patients are shown in Figure 3 (note that the case population did not change 

between methods). All results from both phases of the algorithm are provided in Table 1 (following page). 

3.2.2 Phase Two: Mining for Associations After Adjusting for Healthcare Process, and Demographics 

During phase two, we constructed a logistic regression model with covariates for age, ethnicity, race and sex. We 

report results passing multiplicity correction (7 of 19 vaccines).  

Four vaccines were significantly associated with more ADEs 

and three vaccines were significantly associated with fewer 

ADEs compared with other vaccines. Two of the four vaccines 

associated with more ADEs were vaccines against flus 

originating in swine including: H1N1/H3N2/inactivated B-

Brisbane-60-2008 strain and H1N1v-like virus vaccine. For the 

H1N1/H3N2 combo vaccine, 503 of 6,904 patients returning 

within 3 months experienced an ADE. Further, for the H1N1v-

like vaccine, 103 of 423 patients returning within 3 months 

experienced an ADE. Both were significant after adjusting for 

demographic confounders (adjusted p<0.001 for both, Table 1).  

In several instances we found that all patients who returned to 

CUMC within 3 months had an ADE diagnosis. This includes 

five vaccines typically given to infants: 

pertussis/diphtheria/tetanus; hepatitis B surface antigen; tetanus; 

diphtheria/haemophilus B; Polio 3 types. While interesting, 

none of these vaccines were significant after adjusting for 

demographic confounders and multiplicity.  

4. Discussion 

4.1 Important Vaccine-ADE Associations 

Vaccine-related ADEs can result from a number of different 

mechanisms important for achieving precision medicine [27]. 

Our two-phase algorithm was developed specifically for finding 

vaccines associated with clinician-coded ADEs in EHRs and 

was agnostic to the mechanism underlying the vaccine-ADE 

relationship.  

Interestingly, two types of swine flu vaccines were positively associated with an increased risk of an ADE within 3 

months of vaccination after adjustment for confounders (Table 1), namely the combo H1N1 / H3N2 / B-brisbane 

influenza (OR=3.207, p<0.001) vaccine and the influenza A-California-7-2009-(H1N1)v-like virus (OR=9.469, 

p<0.001) vaccine. Importantly, H1N1 originates in swine [28] and all swine flu vaccines in our study were associated 

with increased risk of ADEs. This fits well with prior literature supporting vaccine-related ADEs resulting from a 

different swine flu vaccine in the 1970s [26], which resulted in very serious ADEs including paralysis. Another study, 

found a similar result for H1N1 vaccination when compared to general influenza vaccination [29].  

4.2 Value of Clinician-Coded ADE Associations 

Early detection of ADEs is crucial for patient safety. Using our algorithm, we uncovered several vaccines that resulted 

in ADEs within 3 months for all patients who returned to CUMC within 3 months (Table 1). This was true for several 

vaccines given to infants. Although the results are not significant after covariate modeling (age is one confounder) it is 

suggestive of a relationship that may warrant further exploration. There are two main types of Hepatitis B 

vaccinations at CUMC: Hepatitis B (surface antigen) at a concentration of 0.04 mg/ml and Hepatitis B recombinant at 

a concentration of 0.01-0.02 mg/ml. Vaccination by the higher dose Hepatitis B vaccine resulted in 9 patients with 

ADEs out of 9 patients with the vaccine who returned to CUMC within 3 months (100% developed an ADE). 

Contrastingly, vaccination by the lower dose Hepatitis B recombinant vaccine (half to one-quarter the potency) 

resulted in ADEs among 1 of 1,617 patients seen at CUMC within 3 months after vaccination. Neither hepatitis 

vaccine was significantly associated with ADEs after adjusting for age, sex, ethnicity, and race. Patients receiving the 

higher dose Hepatitis B vaccine were less likely to return within 3 months (9/1474, Table 1) then those receiving the 

lower dose (1617/1659, Table 1). A likely explanation is that a higher proportion of infants received the lower dose 

(0.1-0.2 mg/ml) vaccine (94.45% of those vaccinated were <=0 years); whereas, both infants and toddlers received the 

higher dose (0.4 mg/ml) vaccination (65.94% of those vaccinated were <=0 years; 27.34% were one year olds). 
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Table 1. Vaccine-ADE Results for Phase 1 and 2 Trials. 
   Phase 1: Association Between Vaccine Administration and 

Adverse Effect 

Phase 2: Adjusting for Demographics and Only 

Including Patients Returning Within 3 Months 

Shortened 

Vaccine Name 

Origin 

Organism 

No. 

Cases
1
  

No. 

Vaccinated 

Prop.
2
 Odds Ratio 

(OR) 

Adj. P
4
 No. 

Vaccinated 

who 

Returned 

within 3 

Months 

Prop.
3
 OR Adj. P

4
 

Associated with ADEs After Confounder 

Adjustment: 

        

  Mumps Human 5 785 0.006 0.451 1 8 0.625 106.793 9.54X10
-9

 

  H1N1/ H3N2 /  

    Inactivated B- 

    Brisbane-60- 

    2008 strain 

Swine 

Virus (first 

2), Human 

Virus 

503 19517 0.026 2.119 3.10X10
-41

 6904 0.073 3.207 5.86X10
-103

 

  Pertussis /  

    Diphtheria/  

    Haemophilus b /  

    Polio / Tetanus 

Bacteria 

(first 3), 

virus, 

bacteria 

68 11575 0.006 0.399 1.83X10
-16

 163 0.417 31.216 9.42X10
-90

 

  H1N1v-like virus  

    vaccine (0.25- 

    0.5 mg/ml) 

Swine 

Virus 

103 3701 0.028 2.070 1.90X10
-9

 423 0.243 9.469 7.70X10
-79

 

Associated with Fewer ADEs After 

Confounder Adjustment: 

        

  Pneumococcal  

    Type 1, 10A,  

    11A, 12F 

Bacteria 1186 34983 0.034 4.149 5.68X10
-230

 33976 0.035 0.406 7.20X10
-66

 

  Rubella Human 21 13568 0.002 0.101 1.21X10
-56

 13565 0.002 0.055 2.01X10
-37

 

  Pertussis /  

    Diphtheria/  

    Hepatitis B  

    Surface Antigen  

    (0.02 mg/ml) 

Bacteria 

(first 2), 

Primate 

virus 

64 11406 0.006 0.381 2.30X10
-17

 10660 0.006 0.208 8.65X10
-33

 

Insignificant After Confounder 

Adjustment: 

        

  Hepatitis B (0.01  

    or 0.02 mg/ml)  

Primate 

virus 

1 1659 0.001 0.042 5.37X10
-8

 1617 0.001 0.056 0.079 

  Varicella-Zoster  

   Live (Oka- 

   Merck)[Varivax] 

Vertebrate 

Virus 

3 99 0.030 2.208 1 30 0.1 5.618 0.103 

  Pertussis /  

    Diphtheria /  

    Tetanus  

    [Infanrix] 

Bacteria 59 11301 0.005 0.353 3.35X10
-19

 59 1 8982647 1 

  Hepatitis B (0.04  

    mg/ml) 

Primate 

virus 

9 1474 0.006 0.431 0.133 9 1 135359422 1 

  Tetanus Bacteria 57 11301 0.005 0.341 4.28X10
-20

 57 1 89762087 1 

  Diphtheria /  

    Haemophilus B 

Bacteria 49 10242 0.005 0.325 2.11X10
-19

 49 1 90639367 1 

  Polio Types 1-3 Virus 5 1453 0.003 0.242 0.002 5 1 82665283 1 

  Meningococcal  

    Group A/C/W/Y    

Bacteria 10 291 0.034 2.519 0.161 273 0.037 1.154 1 

  Measles / Mumps  

    / Rubella 

Human 21 13571 0.002 0.101 1.23X10
-56

 21 1 129593962 1 

  Streptococcus 

    Pneumonia 

Bacteria 3 545 0.006 0.390 1 56 0.054 2.665 1 

  Haemophilus B Bacteria 13 13 0.008 0.600 1 1545 1 104864930 1 

  Diphtheria /  

    Tetanus 

Bacteria 58 11301 0.005 0.347 1.42X10
-19! 58 1 89078106 1 

1
Vaccinated and ADE within 3 months 

2
Cases / No. Vaccinated 

3
Cases / No. Vaccinated and Returned to CUMC Within 3 months 

4
Adjustment made using Bonferroni. Only Bonferroni-adjusted p-values <=0.05 were considered significant. 

199



Infants have more wellness visits per year; therefore, vaccines given to a higher proportion of infants would be 

expected to have a higher return rate within 3 months (which we observed). This also demonstrates how the healthcare 

process can affect results of retrospective analyses using EHRs. Importantly, we adjusted for these types of biases in 

our algorithm by comparing patients receiving an ADE within 3 months to those who have returned to the hospital 

ADE-free within 3 months to help adjust for these biases. We also included age as a covariate in our regression model 

to adjust for age as well. 

4.3 Limitations and Future Work 

A limitation of our work includes our exclusive use of clinician recorded ADEs from EHRs. Some estimates suggest 

that only one-tenth of ADEs are clinician reported [30]. Therefore, we may be under-estimating the number of ADEs. 

We used only clinician-reported ADEs because we wanted to ensure that a clinician had validated the ADE as having 

occurred (i.e., a “true” ADE). Future work includes further exploration of dose-dependency effects for vaccine-related 

ADEs. Dosage data was only available for some vaccines at this stage. However, we hope to include clinical text and 

other data types in future to further tease out dosage effects and their relation to ADE risk.  

5. Conclusion 

We present an algorithm for discovering vaccines more likely to result in clinician-reported ADEs within 3 months of 

vaccination when compared to other vaccines. Our method found several interesting associations including two swine 

flu vaccinations that are positively associated with ADEs within 3 months of vaccination after confounder adjustment. 
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