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Abstract. Our goal in this study is to find risk factors associated with Pressure Ulcers (PUs) and to develop 

predictive models of PU incidence. We focus on Intensive Care Unit (ICU) patients since patients admitted to ICU 

have shown higher incidence of PUs. The most common PU incidence assessment tool is the Braden scale, which 

sums up six subscale features. In an ICU setting it’s known drawbacks include omission of important risk factors, 

use of subscale features not significantly associated with PU incidence, and yielding too many false positives. To 

improve on this, we extract medication and diagnosis features from patient EHRs. Studying Braden, medication, and 

diagnosis features and combinations thereof, we evaluate six types of predictive models and find that diagnosis 

features significantly improve the models’ predictive power. The best models combine Braden and diagnosis. 

Finally, we report the top diagnosis features which compared to Braden improve AUC by 10%. 
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1  Introduction 

Our goal in this study is to find risk factors associated with Pressure Ulcers (PUs) and to develop predictive models 

of PU incidence. A pressure ulcer is a localized injury to the skin and/or underlying tissue usually over a bony 

prominence, as a result of pressure, or pressure in combination with shear1. We focus on PU incidence in the 

Intensive Care Unit (ICU). Patients admitted to ICU have higher incidence of PUs than those admitted to the general 

hospital wards2. In the United States, the prevalence of patients afflicted with pressure ulcers across several ICUs 

ranged from 16.6% to 20.7% in 20092. An estimated 2.5 million patients are treated each year in acute care settings 
at an additional cost of $11 billion per year mostly arising from PU incidence3, which is possibly preventable. 

The common model for PU assessment is called the Braden scale. An advantage of the Braden scale is that 

it uses only six simple features to compute a summed score indicating the risk of acquiring PU. This simplicity is 

also a disadvantage: It omits important risk factors shown to be significant with PU incidence in ICU setting13, 17. It 

has also been shown to have high sensitivity with low specificity, resulting in predicting too many patients as “at 

risk”16, 17. Many potentially significant risk factors of PU incidence not considered by the Braden scale can be found 

in Electronic Heath Record (EHR) systems. We posit that features extracted from patient records in these systems 

can significantly improve the quality of PU assessment scoring. 

In particular, we study medication and diagnosis features extracted from EHRs. For medication features, 

we use the set of medications prescribed during the patient’s ICU stay. For diagnosis features, we use the ICU 

discharge diagnoses as encoded by International Classification of Diseases (ICD)-9 codes12. There are many such 
medication and diagnosis features, so we first perform univariate analysis to identify the features of each type 

strongly associated with PUs. Without such a feature selection process, predictive models (discussed next) would 

consist of a huge number of features which, as we show in Section 4, can harm prediction performance due to the 

curse of dimensionality. 
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Predictive modeling methods provide a framework by which clinicians can predict the likelihood that a 

patient will be diagnosed with a disease in the future. Accurate predictive models can help clinicians recommending 

preventive care to the patients. We evaluated six types of predictive models for PU incidence using five sets of 

features: 1) Braden, 2) Medication, 3) Diagnosis, 4) Braden & Diagnosis, and 5) Braden & Medication & Diagnosis. 

We find that using diagnosis features significantly improves the models’ predictive power. Finally, we report the top 

diagnosis features, which improve assessment quality over only Braden features (as measured by AUC) by 10%. 
The overall process of our study is shown in Figure 1. 

 

 
 

Figure 1. Our workflow for developing predictive model of PU among ICU patients using EHR data 

2  Methods 

Data Source: Data are 7717 patient records from three adult ICUs at The Ohio State University Wexner Medical 

Center (OSUWMC). An Information Warehouse (IW) compiles EHR data from an Essentris
©

 documentation 

system, administrative system (ADT), laboratory system, computerized provider order entry (CPOE), and 

medication system. Patients (age ≥ 18) admitted to ICUs between the years 2007 to 2010 comprise the sample. EHR 

data elements pertinent to patient demographics, diagnoses, and medications are retrieved from the IW. Patients who 

have contracted PU are identified by reviewing discharge diagnoses marked with ICD-9 codes. For instance, if a 

patient has an ICD-9 code, 707.07 (Pressure ulcer, Heel), the patient is included in the PU group. On the other hand, 

if a patient does not have any of the ICD-9 codes representing PUs, the patient is then included in the non-PU group. 

Institutional Review Board (IRB) approval is obtained for data extraction. Data are de-identified by the IW staff as 

the honest broker. Patient demographics are summarized using descriptive statistics as shown in Table 1. 

Data Cleaning and Preparation: First, patients who have a PU at the time of admission are excluded. In addition, 

patients whose ICU stay is shorter than 72 hours are excluded since PUs generally develop after 72 hours of 

admission11. Second, if a patient has multiple hospitalizations (for any reason) during the study period, only the first 
hospitalization record is included. If a patient has more than one ICU admission record during the hospitalization, 

only the first ICU admission record is included in the analysis. This is because our objective is to find risk factors of 

patients who have the first incidence of PUs during ICU stay. Patients who have PUs at the time of admission may 

have previously been exposed to unknown risk factors of which we have no data, and of which clinicians have no 

control. This patient selection process is consistent with our previous study4.  

The Braden scale contains 6 subscales: sensory perception, moisture, activity, mobility, nutrition, and 

friction & shear. Our Braden features include these, since most of the subscales have significant association with PU 

incidence, as well as a summed Braden scale for consistency with previous work13, 14. 

Medications that are used for the patients in PU and non-PU groups during the ICU stay are listed. This list 

is reviewed by a research team, which is comprised of a registered nurse, two ICU clinical nurse specialists, and a 

dietician. Through a manual review, medications are grouped into salient categories, for instance, Meperidine and 

Nalbuphine are classified into the Analgesia category. The vasoactive category contains vasodilators e.g., sildenafil 
and vasoconstrictors e.g., dopamine. Medication categories are coded as dichotomous variables. 

Discharge diagnostic ICD-9 codes are used to identify patients experiencing maladies during their sojourn 

at ICU. The diagnostic data are coded with ICD-9 codes that are 5 digits long and are extracted from the EHR 

system. The first three digits indicate a main disease and the last two provide additional information about the 

disease. ICD-9 codes are collapsed into 3 digits in order to analyze the main diseases. Most of the 707 ICD-9 codes 

are considered PUs except 707.1 (Ulcer of lower limbs), 707.8 (Chronic ulcer of other specified sites), and 707.9 

(Chronic ulcer of unspecified site). Those codes are grouped as 707-notPU. 

Variable Selection: Univariate analysis is carried out to determine what medication categories are highly associated 

with PUs. Chi-square statistics are applied to medication categories with frequencies greater than 20. Otherwise, 

Fisher’s Exact Test (FET) is used. The variable is considered significant if its p-value is less than 0.1. Hence, the 

medication categories that are significantly associated with PUs are retained.  

To quantify the strength of the association between PU and each diagnosis, !!-statistics are employed. The 

premise behind the !!-test is to examine relatedness of two events by measuring the deviation between observed 
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and expected values. Only discharge diagnoses are included since they are clinically more meaningful than 

admission diagnoses. After the comorbidity association is created, we remove weakly comorbid conditions in the 

same way as we dealt with medication variables, through a statistical significance test. This process yields a subset 

of diagnoses highly associated with PUs to be used as variables for machine learning algorithms. 

Machine Learning: We apply six diverse machine learning algorithms on results from the univariate analysis to 

build predictive models using 10-fold cross validation: logistic regression (LR), support vector machine (SVM), 
decision tree (DT), random forest (RF), k-nearest neighbor (kNN), and Naïve Bayes (NB). These methods were 

accessed through the WEKA software suite.  

LR is a statistical method that predicts the probability of dichotomous outcomes from one or more 

independent variables and has been widely used in medical studies13, 15-17. SVM5 has the ability to learn a highly 

nonlinear decision boundary and outperforms other methods on some datasets6, 7. DT generates descriptive models 

and has been widely used in clinical applications where interpretation is desired. RF offers robustness against 

overfitting and outliers, and has been found to give good performance in several applications8, 9. kNN is an intuitive 

method which classifies a data point based on majority votes of its neighbors. NB is a probabilistic classifier, which 

has higher bias than LR thus converges faster when there is little training data18. 

 We select machine learning algorithm hyperparameters according to recommended practices in the 

literature10. For instance, for SVM grid search for the best regularization (!) and kernel function (!) parameters is 
carried out on training data. Both libSVM and SVMlight are investigated.  For the DT method, parameter selection 

through cross-validation is used to find the best confidence factor (!) for pruning. For kNN the number of neighbors 

k is varied from 5 to 100. For RF the number of trees is varied from 10 to 250.  
 

3  Results 

Patient Demographics: A total of 7,717 ICU patients are included in the analysis. The number of patients in PU 

group is 590, while the number of patients in non-PU group is 7,127. Patient demographics are summarized in Table 

1. Of the patients, 57.4% are male and 82.2% are demographically classified as white. The mean age of the patients 

is 57.7 years and the mean length of ICU stay is 10.1 days.  

Table 1. Demographics of ICU Patients (N=7717) 
Variable Total PU Group (N=590) Non-PU Group (N=7127) Statistic p value 

Gender, freq (%) Male 4426    378 (64.1%) 4048 (56.8%) !
2
=11.9 <.000 

 
Female 3291  212 (35.9%) 3079 (43.2%)   

Race/Ethnicity, freq (%) White 6345 469 (79.5%) 5876 (82.4%) !
2
=3.15 .076 

 Non-white 1372  121 (20.5%) 1251 (17.6%)   

Age (years), mean (SD) 57.7 (15.9) 59.0 (15.5) 57.6 (16) t=4.52 .034 

Length of ICU stay (days), mean (SD) 10.1 (10) 13.4 (14.3) 9.8 (9.6)  t=70.56 <.000 

 

Table 1 shows that gender and length of ICU stay are very statistically significant of PU development. However, 

demographic data are clinically obvious PU risk factors for clinicians. The clinicians are already attuned to the 

relationship between length of ICU stay or hospitalization and PU incidence. Consequently, we are looking for non-

obvious relationships that could be related to PUs such as medications and diagnoses.  

Medication variable selection: In total, 828 unique medications are administered to the patients in our study. 

Medications are grouped into 72 categories by clinical experts based on the clinical effects and pharmacology of the 

medications. For example, Electrolytes: calcium acetate, glucose, potassium chloride. Analgesia: hydromorphone, 

meperidine, morphine, nalbuphine. Sedation, continuous: lorazepam, midazolam, pentobarbital, propafol. 

Neuromuscular Blockage: pancuronium, rocuronium, succinylcholine, vecuronium. 

Antibiotics/Antifungal/Antiviral: imipenem, isoniazid, itraconazole, lamivudine (epivir), linezolid. NSAIDS: 

ibuprofen, naproxen. Categories whose frequency is less than 10 are removed, since they are not considered 

significant for the univariate analysis. Additionally, Electrolytes, IV fluid, Research drugs, and Miscellaneous 

categories are removed since they do not appear to be clinically meaningful; thus, 49 categories are used for 

univariate analysis. Only 18 medication categories are found to be significantly associated with PUs at significance 

level 90% (i.e., p-value < 0.1). 
Comorbidity association: The number of main discharge diagnoses after collapsing the ICD-9 codes to three digits 

totaled 861 diagnoses. We construct the comorbidity association in the same manner as the medication variables are 

selected by removing diagnoses whose frequency is less than 10. Retained conditions are qualified by !! statistic 

greater than 20 (i.e., significance level ! ! !!!!"), resulting in 61 comorbid conditions highly associated with PUs.  

Machine Learning: We report the performance of predictive models of PU incidence in Tables 2 thru Table 6, 

which show five performance measures of six different machine learning algorithms on features that include Braden, 
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medication, and diagnosis features, and combinations thereof. The performance measures are sensitivity (SENS), 

specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV), and area under ROC curve 

(AUC). We focus on AUC performance measure since it considers both true positive rate (sensitivity) and false 

positive rate (1-specificity). For SVM, we report the performance of libSVM which gave comparable to slightly 

better performance than SVMlight. For kNN, we used ! ! ! and for RF, we used 150 trees which performed best. 
As seen in Table 3, predictive models using medication features perform poorly, with the best model NB 

having only AUC 0.62. By contrast, Table 2 shows that Braden scale alone gives 0.73 AUC with its best model, LR. 

Table 4 shows that when using diagnosis features, LR and NB give the highest AUC of 0.80. Using the combination 

of three types of features, shown in Table 5, LR performed best with AUC 0.827 followed closely by NB and RF 

with AUC 0.82. Table 6 shows that Braden and diagnosis features outperform using all three types of features with 

AUC 0.830 from LR. Medication features perform poorly individually (Table 3) and worse jointly (Table 5) than 

when they are omitted from the model (Table 6). Diagnosis features (Table 4), on the other hand, outperform Braden 

features individually (Table 2) and give the best performing model in Table 6. 

Since adding diagnosis features to Braden gives the best results, we present the most significant diagnosis 

features in Table 7, which along with the other results is discussed in more detail in the next section. 
 
Table 2. Braden features 

 

SENS SPEC PPV NPV AUC 

LR 0.007 0.999 0.190 0.924 0.731 

NB 0.297 0.939 0.288 0.941 0.727 
DT 0.046 0.993 0.368 0.926 0.712 

kNN 0.030 0.997 0.441 0.925 0.707 
RF 0.050 0.991 0.328 0.927 0.688 
SVM 0.623 0.633 0.124 0.953 0.628 

 

Table 3. Medication features 

 

SENS SPEC PPV NPV AUC 

LR 0.001 1.000 0.033 0.923 0.615 
NB 0.002 0.999 0.120 0.923 0.617 

DT 0.017 0.990 0.132 0.924 0.562 

kNN 0.002 0.999 0.031 0.923 0.529 
RF 0.022 0.986 0.113 0.924 0.530 
SVM 0.449 0.630 0.091 0.933 0.540 

 

!

Table 4. Diagnosis features 

 

SENS SPEC PPV NPV AUC 

LR 0.103 0.993 0.576 0.930 0.801 

NB 0.477 0.869 0.232 0.953 0.800 

DT 0.191 0.936 0.201 0.933 0.569 

kNN  0.008 0.999 0.553 0.924 0.713 
RF 0.066 0.992 0.398 0.928 0.779 
SVM 0.711 0.713 0.172 0.968 0.712 

!

Table 5. Braden, medication, and diagnosis features 

 

SENS SPEC PPV NPV AUC 

LR 0.167 0.988 0.541 0.935 0.827 

NB 0.642 0.809 0.218 0.965 0.815 
DT 0.243 0.934 0.234 0.937 0.579 

kNN  0.011 0.999 0.477 0.924 0.684 
RF 0.088 0.994 0.541 0.929 0.817 
SVM 0.743 0.724 0.183 0.972 0.734 

!

!

Table 6. Braden and diagnosis features 

 

SENS SPEC PPV NPV AUC 

LR 0.160 0.990 0.556 0.934 0.830 

NB 0.628 0.821 0.226 0.964 0.815 

DT 0.232 0.938 0.238 0.936 0.588 

kNN 0.023 0.999 0.737 0.925 0.670 
RF 0.109 0.991 0.515 0.931 0.806 
SVM 0.744 0.727 0.185 0.972 0.736 

!

 

4  Discussion 

Table 7. Top 10 discharge diagnoses’ comorbidity with PU 
!

!
!  CD-9 Disease description 

524.193 344 Other paralytic syndromes 
487.9 1 995 Certain unclassified adverse effects 
476.778 038 Septicemia 

444.992 730 Osteomyelitis/periostitis/bone infections 
308.461 785 Cardiovascular system symptoms 
232.930 482 Bacterial pneumonia 

211.980 599 Disorders of urethra and urinary tract 
198.863 518 Other diseases of lung 
168.651 112 Candidiasis 

155.338 263 Other protein-calorie malnutrition 

Incorporating diagnosis along with Braden features as shown in Table 6 yields the best predictive model for PU 

incidence. LR and NB model variants scored 83% and 82% AUC, respectively. LR, the only linear model, performs 

best indicating that a linear separating boundary is effective for our data. NB is known to underperform LR when 
training size is large18 (we have N=7717) and when significant features are collinear (our Braden total is with 

subfeatures). DT and RF can only make axis-parallel "cuts" and do not find a good non-axis parallel boundary. kNN 

with small k lacks enough global knowledge, and when increasing k to give more, loses PPV i.e., classifies all as 

negative as PU patients are the minority by a factor of approximately 1:12. SVM proves too difficult to tune; grid 

search does not find as good a separating boundary as LR. PPV and NPV are influenced by the ratio of PU patients 

in the dataset19, resulting in low PPV and high NPV since PU patients are in the minority. All models have high 

SPEC and low SENS. Consequently, they are more appropriate for ruling out PU incidence, and are likely to 

properly classify healthy patients as not having a PU. This makes them candidates as a second-level test19 for 

patients already identified as at risk by Braden scale, which is known to have the complimentary characteristics of 

low SPEC and high SENS16,17. 

Table 7 lists the top 10 discharge diagnoses from the comorbidity association ranked by !!-statistic. Most 
of the diagnoses in Table 7 are associated with bed-rest, which is well known to be associated with PU incidence. 
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The codes 995, 038, 730, and 112 are consistent with Bours et al.’s findings14 as to the primary causes of admission 

to ICU for PU patients. Empirically, our clinician collaborators have indicated that most PU patients in their unit 

suffer from specific adverse effects of Sepsis (995.91) and Systemic Inflammatory Response Syndrome (SIRS, 

995.9). They also noted that with lung-related maladies such as pneumonia, patients sit up at a high angle, which 

places pressure in a small area, increasing the chance of PUs.  

We found medications alone (Table 3) to be poor predictors of predict PU risk, consistent with findings of 
Kaitani et al.15; our models constructed with them underperform the others. Additionally, incorporating features 

which are not relevant to predicting PU can cause the model to produce a worse result. This is demonstrated by the 

1% to 2% AUC performance difference between the worse model including Braden, medication, and diagnosis 

features (Table 5) compared to the better model with only Braden and diagnosis features (Table 6). Furthermore, we 

experimented on predictive models without univariate analysis feature selection, that is, all 72 medication and all 

861 diagnosis features. For medication with all features, DT decreased by 4% AUC compared to with univariate 

analysis, while other methods increased by 1% - 4%. For all models with diagnosis, LR decreased by 13% to 16% 

AUC and SVM decreased by 5% to 6% while other models changed by -1% to 3%. Because these models with 

many more features delivered generally poorer classification performance due to the curse of dimensionality, and 

exhibited longer computational runtime (5 minutes to 2 hours for diagnoses), we used feature selection to reduce the 

number of features as described earlier in Sections 2 and 3.  

There are limitations pertaining to our study. First, the data are from a single institution; thus, interpretation 
of the findings are limited.  Second, our IW lacks APACHE II severity scores, hence we considered PU incidence as 

dichotomous. Finally, the predictive power for pressure ulcer incidence in this study is only based upon Braden 

scale, discharge diagnosis, and medication. In the future we will investigate other patient data such as demographics, 

procedures, and laboratory settings to determine which contribute meaningfully to a risk assessment model. 

In conclusion, in this study we have identified PU risk factors and evaluated predictive models of PU 

incidence in ICU setting. Beyond the simple features used in the traditional PU assessment, we extracted medication 

and diagnosis features from patient EHRs and constructed predictive models. Studying baseline Braden, medication, 

and diagnosis features and combinations thereof, we evaluated six types of predictive models and found that 

diagnosis features significantly improve the models’ predictive power. In our best model, Braden and diagnosis 

features perform the best and improve AUC performance by 10%. Of the predictive model types, LR and NB 

performed best throughout. Lastly, we investigated diagnosis features in detail and report the 10 most comorbid with 
PU. Most of them relate to patient infection, immobility and imperceptions. Both predictive models and risk factors 

can assist clinicians in administering preventive care to patients.  
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