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Abstract

Patient monitors in hospitals generate a high number of false alarms that compromise 
patients care and burden clinicians. In our previous work, an attempt to alleviate this problem by 
finding combinations of monitor alarms and laboratory test that were predictive of code blue 
events, called SuperAlarms. Our current work consists of developing a novel time series 
representation that accounts for both cumulative effects and temporality was developed, and it 
is applied to code blue prediction in the intensive care unit (ICU). The health status of patients is 
represented both by a term frequency approach, TF, often used in natural language processing; 
and by our novel cumulative approach. We call this representation “weighted accumulated 
occurrence representation”, or WAOR. These two representations are fed into a L1 regularized 
logistic regression classifier, and are used to predict code blue events. Our performance was 
assessed online in an independent set. We report the sensitivity of our algorithm at different 
time windows prior to the code blue event, as well as the work-up to detect ratio and the 
proportion of false code blue detections divided by the number of false monitor alarms. We 
obtained a better performance with our cumulative representation, retaining a sensitivity close to 
our previous work while improving the other metrics. 

1. Background  

Modern technology enables us to access in real-time the patient's medical history, as well as 
a continuous stream of physiological measurements, often paired with alarms generated by the 
devices capturing these signals. All these developments brought unintended consequences, 
namely, an excess of data. Clinicians are often overwhelmed by all the continuously streaming 
information. False alarm rates of 88.8% have been reported [1], which have led to alarm fatigue; 
a growing problem that decreases the quality of care of the patient. Numerous efforts have been 
made in order to take a more integral approach for real-time patient assessment [2-6]. 

In [7], Hu et al introduced a data-driven approach, which consists in finding meaningful 
combinations of monitor alarms that are present in code blue patients but not in control patients. 
These patterns were called SuperAlarms. In [8], this work was expanded to include laboratory 
test results, and a different approach to find these combinations, resulting in less redundant 
patterns. A sensitivity of 93% was achieved in the independent dataset, where we say a code 
blue is predicted if at least one SuperAlarm is triggered in a given time window. 

We propose to generate a time series that encodes the cumulative effects of each 
SuperAlarm, dependent on time elapsed between the current time and the previous time each 
SuperAlarm patterns were triggered. This novel representation encodes both frequency and 
proximity in time, and could be easily used in any application concerned with time series 
classification. We compare this representation to a term frequency representation (TF), a 
commonly used technique in natural language processing (NLP). 
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2. Methods 

2.1 SuperAlarm patterns 

The extraction of our SuperAlarm patterns is described in [7,8] SuperAlarm patterns are 
combinations of frequently co-occurring monitor alarms and laboratory test results that were 
capable of predicting code blue events in hospitalized patients. The SuperAlarm patterns were 
discovered using a maximal frequent itemsets mining algorithm (MAFIA). The dataset used to 
extract the SuperAlarm patterns was extracted from a central repository of comprehensive data 
elements archived for patients hospitalized at the UCLA Ronald Regan Medical Center, 
admitted from March 2010 to June 2012. The patients included in this study came from either 
ICUs or other acute care areas, see [8]. The control set was determined as patients without 
code blues or unplanned ICU transfers. For each code blue patient, a cohort of control patients 
was selected following certain criteria [8]. A total of 1766 control patients and 176 code blue 
patients were included in the training set, and 440 control and 30 code blue patients in the test 
set. 

2.2 Representation of the time series 

Let there be m different SuperAlarm patterns. We propose representing each patient, at a 
given time , via an m-dimensional vector . Hence, each patient is represented by a 
multidimensional time series .

One possibility for extracting this vector  is given by a term frequency (TF) approach, 
which consists on pre-defining a window of a specific length , and, given a time , and building 
the frequency vector: 

.

We used three values for L in our study:  hrs, 4 hrs and 6 hrs. We refer to their 
corresponding representations  as TF2, TF4 and TF6 ; respectively. However, this 
approach has a few drawbacks. First, a fixed window of time may arbitrarily remove the 
influence of a SuperAlarm in the future. Also, the importance of a SuperAlarm trigger should 
depend on how close to the current time t it was triggered. We propose a continuous, 
cumulative representation of the lingering effect a Super Alarm trigger should have. We call our 
approach “weighted accumulated occurrence representation”, or WAOR. In this representation, 
the i-th entry will describe the cumulative value, up to time t, of the i-th SuperAlarm: 

,

where the indicator function  is defined as 1 if the i-th SuperAlarm is triggered at time t’, 
and 0 otherwise. Also,   is a decreasing function of , the difference between 
the current time t and the time the i-th SuperAlarm was triggered, t'. This is because, if a 
SuperAlarm is triggered, we want it to influence the i-th entry of  for minutes, or hours. The 
three functions  we used are given by ,  and 

, and their corresponding representations  are referred to as 

WAORsqrt, WAORabs and WAORsq, respectively, throughout the text.

2.2.1 Sampling the patients in the training set

163



�

From here onward we drop the subindex “TF” or “WAOR” indicating the time series 
representation in this text. The following analysis was carried out for all six representations 
described in the previous section. For every patient, we chose a sequence 

 , where  such that a SuperAlarm was triggered at 
time }.  Since we had far more controls than cases, we handled the class imbalance by 
oversampling the cases. For control patients, no particular time carries more importance. 
Hence, up to three time points  for each control patient were sampled uniformly from , with 
a total of 4,126 samples. For a case patient, time points closer to a code blue event should be 
preferred, since they give us vectors p(t) that carry more descriptive power for a code blue 
event. The number of time points  sampled depended on their closeness to the code blue 
event – points close to the event had a higher probability of being sampled, and up to 60 
timepoints were sampled for each case patient. The training set consists of 6,880 observations. 
The training dataset was scaled to the range .

Figure 1. A comparison of code blue cases and control patients. In this image, each column represents one 
sample p(t), and the i-th row the i-th value of the vector p(t), that is, how represented the i-th SuperAlarm is at the 
time t, using the representation WAORabs.

2.2.2 Sampling the patients in the test set 
Both control and code blue patients in the test set will be sampled every time a SuperAlarm 

was triggered. We obtained a total of 60,604 code blue and 239,665 control vectors. The 
transform that achieved the  scaling in the training set was applied to the test set as well.

2.3 Classification

Feature selection was achieved by applying a L1 regularized logistic regression (L1-LR) 
model to the entire training set. In L1-LR, the probability of a sample x being labeled as a code 
blue (y=1) is given by , where x is, in our case, the vector  with the 
information about the patient, and  is a sigmoid function, and  is a vector of weights to be 
learned by the classification algorithm, given by the solution to:

All vectors extracted from a code blue patient will be labeled as , and all of those 
extracted from control patients as . Linear models penalized with the L1 norm have sparse 
solutions: many of their estimated coefficients are zero. The features retained are those that 
were assigned non-zero coefficients. 

Afterwards, L1-LR classification was used. The hyper parameter C, as well as the class 
weights, were chosen via a grid search and 10-fold cross validation on the training set.  The 
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value C chosen is so that it maximizes the mean of a given performance metric across all the 
folds in cross validation in the training set. However, different performance metrics produce 
different results in the hyper-parameters of the classifiers. We performed our analysis with two 
performance metrics: Precision, given by  where  = true positive,  = False 
positive; and f1 score, given by , where  = False negative.  

3. Results

Both control and code blue patients in the test set will be sampled every time a SuperAlarm 
is triggered, producing a sequence . Afterwards, the 
classifier trained in the training stage will convert this sequence into a sequence of decisions, 

, where  or , with  corresponding to the classifier labeling the 
observation as "control", and  to the classifier labeling the observation as "code blue".  

We present the following performance metrics; all have significance in a clinical setting and 
are defined in [7]: 

SensitivityL@(T): The proportion of code blue patients to have at least one  in the 
time window [T hours before the code blue - 12 hours, T hours before code blue event].  

 Work-up to detection ratio: Defined as , where  is the number of 
code blue patients that our algorithm labeled correctly as "code blue", and  is the number of 
control patients that our algorithm labeled incorrectly as "code blue".  

 Alarm frequency reduction rate: Defined as , where FSAR, or False 
SuperAlarm ratio, is computed in the control population. It is given by the mean and standard 
deviation (std) of number of SuperAlarm triggers in one hour divided by number of monitor 
alarms in that hour, computed throughout the patient’s stay.   

In computing the WTDR we specified windows of 12 hours, corresponding to a usual nursing 
shift. We say our algorithm labeled a "code blue" patient as true if at least one  is equal to 1, 
from the time of the code blue up to 12 hours before the code blue. To determine if our 
algorithm labeled a control patient as a "code blue", we randomly select 100 windows of 12 
hours throughout the patient's stay. For each window, if there was at least one  in each 
time window, the patient was labeled as a "code blue". We obtained the mean and std of times 
each control patient is labeled as a “code blue”, and combined them all to report the mean and 
std of b. We show results for the test set when optimizing two metrics in cross validation: 
Precision (Table 1) and f1 score (Table 2). 

SuperAlarm 

 type

Sensitivity@L(t) (%) 
AFRR

(mean ± std) 

WTDR

(mean ± std) 

30 min 1 hr 2 hrs 6 hrs 12 hrs  12 hrs 

TF2 20.0% 20.0% 20.0% 16.6% 13.3% 99.3 ± 4.8 1.9 ± 0.3 

TF4 23.3% 23.3% 23.3% 20.0% 16.6% 99.1 ± 5.1 1.83 ± 0.26 

TF6 26.6% 26.6% 26.6% 20.0% 23.3% 99.2 ± 4.9 1.53± 0.21 

WAORsq 36.6% 36.6% 36.6% 33.3% 26.6% 99.1 ± 7.1 1.47 ± 0.18 

WAORabs 40.0% 40.0% 40.0% 30.0% 30.0% 98.3 ± 9.5 1.98 ± 0.16 

WAORsqrt 40.0% 40.0% 36.6% 30.0% 26.6% 97.7 ± 10.7 2.6 ± 0.18 

Table 1. Results of online classification using precision score as the performance metric for cross 
validation during training. 
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Table 2. Results of online classification using f1 score as the performance metric for cross validation 
during training. 

4. Discussion 

We introduced a novel time series representation of our previously developed SuperAlarm 
patterns that reduces false positives while retaining the sensitivity of code blue prediction in our 
dataset. Our WAOR time series representation carries advantages over a TF approach: 
temporality is included, and events happening closer to the current time carry more weight. Off-
the-shelf techniques used in NLP that express a document of words as a vector just based on 
their frequencies may not be suitable for the problem of monitoring patients in time, as they do 
not leverage the temporal nature of the data. Our WAOR representation can be applied to any 
other timeseries datasets for event prediction. There are other existing methods to detect 
patient deterioration [2-6]. We did not compare their performance with the proposal algorithm in 
this study. This is partly due to the fact that none of these existing methods for patient 
deterioration detection uses alarm data and our current data set does not contain vital signs that 
are frequently used in some of the existing methods. We acknowledge that a direct comparison 
between our algorithm and the existing methods. However, we argue that the appropriate 
performance metrics such as sensitivity and work-up to detection ratio that are reported in this 
study can be readily communicated to clinical users. 

In our application, we have far more control patients than code blue patients. We balanced 
the training dataset by oversampling the code blue patients, drawing more samples as the 
patient approached the code blue event. Moreover, we optimized the class weights during cross 
validation. Better results in the test set were obtained after optimizing the class weights. Even 
though a priori we assume all SuperAlarm patterns carry equal importance, the coefficients 
found by our classifier assign more importance to more predictive patterns. 

Using the f1 score as a performance metric, we see the WAORsq approach clearly 
outperforms the other ones, in terms of SensitivityL@(T) and with a  of 4.75 and a 
of 88.5%. Our approach retains a sensitivity compared to that in [7], while reducing both the 

 and . When we use the precision as a performance metric, the sensitivity drops 
significantly for all six approaches. However, the WAOR representations have a higher 
sensitivity than the TF ones, while keeping comparable  and . A parameter yet to be 
exploited in the WAOR representations is the constant term in the denominator added to ensure 
it will be non-zero. In our application, we set this parameter to be equal to one, however, in 
future work we will optimize this parameter in cross validation.  

SuperAlarm 

type

Sensitivity@L(t) (%) 
AFRR

(mean± std) 

WTDR

(mean ± std) 

30 min 1 hr 2 hrs 6 hrs 12 hrs  12 hrs 

TF2  46.6% 46.6% 46.6% 43.3% 40.0% 96.7 ± 11.6 2.90 ± 0.25 

TF4 43.3% 43.3% 43.3% 43.3% 43.3% 97.1 ± 10.8 2.65 ±  0.29 

TF6 43.3% 43.3% 43.3% 33.3% 33.3% 97.2 ± 10.4 2.71 ± 0.32 

WAORsq 90.0% 90.0% 90.0% 86.6% 70.0% 88.5 ± 21.4 4.75 ± 0.14 

WAORabs 50.0% 50.0% 50.0% 43.3% 36.6% 95.7 ± 13.0 3.56 ± 0.22 

WAORsqrt 46.6% 46.6% 43.3% 36.6% 33.3% 96.6 ± 11.9 3.04 ± 0.26 
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