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PURPOSE. Myocilin (MYOC) is a well-established primary open-angle glaucoma (POAG) risk
gene, with rare variants known to have high penetrance. The most common clinically
relevant risk variant, Gln368Ter, has an allele frequency of 0.1% to 0.3% in populations of
European ancestry. Detection of rare MYOC variants has traditionally been conducted using
Sanger sequencing. Here we report the use of genotyping arrays and imputation to assess
whether rare variants including Gln368Ter can be reliably detected.

METHODS. A total of 1155 cases with advanced POAG and 1992 unscreened controls
genotyped on common variant arrays participated in this study. Accuracy of imputation of
Gln368Ter variants was compared with direct sequencing. A genome-wide association study
was performed using additive model adjusted for sex and the first six principal components.

RESULTS. We found that although the arrays we used were designed to tag common variants,
we could reliably impute the Gln368Ter variant (rs74315329). When tested in 1155 POAG
cases and 1992 controls, rs74315329 was strongly associated with risk (odds ratio ¼ 15.53, P

¼ 1.07 3 10�9). All POAG samples underwent full sequencing of the MYOC gene, and we
found a sensitivity of 100%, specificity of 99.91%, positive predictive value of 95.65%, and
negative predictive value of 100% between imputation and sequencing. Gln368Ter was also
accurately imputed in a further set of 1801 individuals without POAG. Among the total set of
3793 (1992 þ 1801) individuals without POAG, six were predicted (probability > 95%) to
carry the risk variant.

CONCLUSIONS. We demonstrate that some clinically important rare variants can be reliably
detected using arrays and imputation. These results have important implications for the
detection of clinically relevant incidental findings in ongoing and future studies using arrays.
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Glaucoma is a major cause of blindness worldwide. Primary
open-angle glaucoma (POAG; Online Mendelian Inheri-

tance in Man [OMIM] 137760) is the most common subtype of
glaucoma, which is characterized by a progressive loss of
peripheral vision, although patients may remain undiagnosed
until central vision is affected.1,2 Treatment to lower intraoc-
ular pressure delays the progression of visual field loss. Several
genetic loci have been associated with POAG in linkage and
genome-wide association studies (GWAS).3–9 Mutations in the
myocilin (MYOC) gene (OMIM 601652) have been reported in
different populations and found to account for 2% to 5% of
unselected POAG patients.10 Gln368Ter is the most common
mutation in populations of European ancestry and confers a
high risk of POAG.3,11,12 The Gln368Ter mutation has been
observed across multiple populations,11 and was shown to be
associated with an average onset of POAG in the fifth and sixth

decades.13 Previous studies in 15 Australian families, a large
French Canadian family, and two unrelated French Canadian
families suggested that this mutation has derived from a
common ancestor, showing a founder effect.14,15 Detection of
the Gln368Ter mutation is clinically important as it allows for
early diagnosis and intervention. However, the risk allele has a
frequency of approximately 0.09% to 0.1% among multiple
ethnicities (http://www.ncbi.nlm.nih.gov/clinvar/variation/
7949/, http://exac.broadinstitute.org/variant/1-171605478-G-A
[both in the public domain]), 0.1% in the European American
population (http://evs.gs.washington.edu/EVS/ [in the public
domain]), and 0.26% in the 1000 Genomes phase 1 European
population. This is remarkably similar to the Gln368Ter
frequency of 0.09% found in the Blue Mountains Eye Study
consisting predominantly of European Australians.16 Sanger
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sequencing is traditionally used to detect this mutation, and it
is not directly genotyped on commonly used genotyping
arrays.

Genome-wide association studies have identified thousands
of common variants (i.e., variants with a minor allele frequency
[MAF] > 5%) associated with human complex diseases17

(http://www.genome.gov/gwastudies/ [in the public domain]).
Together the GWAS hits from common variants explain little
genetic variance of complex traits, resulting in the ‘‘missing
heritability’’ problem.18–20 The heritability of POAG and its
endophenotypes including intraocular pressure and vertical
cup-to-disc ratio was estimated at 0.81, 0.42, and 0.66,
respectively, in a previous study from our group.21 Since the
identified genetic variants contributing to the risk of POAG and
its endophenotypes explain a small proportion of the genetic
variance, missing heritability is an important issue for POAG as
it is for many other complex traits. Part of the missing
heritability may be due to excluding the rare variants (MAF <
5%) from the standard GWAS.18–20 Although next-generation
sequencing technologies have enabled efficient identification
of rare variants,22 the cost of sequencing is high, limiting
sample size in many situations and leading to low statistical
power to identify rare variants associated with complex
traits.23

Genotype imputation is a less expensive approach to
impute genotypes of untyped genetic variants. However, one
study showed that the proportion of well-imputed single
nucleotide polymorphisms (SNPs) (imputation quality score
[INFO] > 0.4) was only 69%, 60%, and 49% for SNPs with MAF
from 0.3% to 5% for individuals genotyped on Omini1M,
HumanHap 610, and Illumina 317k arrays, respectively, where
1000 Genomes pilot was used as the reference panel for
imputation.24 However, none of the very rare variants (MAF <
0.3%) were well imputed.24 In addition, given that statistical
power is proportional to allele frequency and imputation
quality, standard GWAS may be underpowered to test low-
frequency imputed variants. Methods for association analysis of
imputed rare variants are mainly based on combining
information across the rare variants within a gene or pathway
while accounting for genotype uncertainty due to the
imputation.25,26 Thus, it remains unclear whether variants
with MAF < 0.3% can be accurately imputed and used in
GWAS.

We previously performed a GWAS for POAG using the
variants with MAF > 1% imputed to the 1000 Genomes phase
1,7 and in this present study, we explicitly considered the
accuracy of imputing rare variants (MAF < 1%) including the
Gln368Ter mutation using common variants captured on
genotyping arrays. We then investigated whether it is possible
to detect the previously established association of the
Gln368Ter mutation with POAG from imputed data using a
standard GWAS, and whether we can detect other GWAS hits
for POAG using imputed rare variants.

METHODS

Study Design

In total, 1155 cases with advanced POAG from the Australian
and New Zealand Registry of Advanced Glaucoma (ANZRAG)
were available for this study, of whom 618 were genotyped on
Illumina Omni1M and 537 were genotyped on Illumina
OmniExpress array. Controls included 1992 individuals drawn
from the Australian Cancer Study (225 esophageal cancer
cases, 317 Barrett’s esophagus cases, and 552 controls
genotyped on Illumina HumanOmni1-Quad) or from a study
of inflammatory bowel diseases (303 cases and 595 controls

genotyped on Illumina HumanOmniExpressExome). The
cohort detail and diagnostic criteria have been previously
published.7,27 The data from cases and controls were merged
and cleaned (see details below), and the overlapping SNPs
between the arrays were used as the basis of imputation to the
1000 Genomes phase 1 reference panel and subsequent GWAS.
The research followed the tenets of the Declaration of Helsinki.
All participants provided written informed consent. Approval
was obtained from the Human Research Ethics Committees of
Southern Adelaide Health Service/Flinders University, Univer-
sity of Tasmania, QIMR Berghofer Institute of Medical Research
(Queensland Institute of Medical Research), and the Royal
Victorian Eye and Ear Hospital.

Quality Control (QC)

The QC was performed in PLINK28 (http://pngu.mgh.harvard.
edu/~purcell/plink/ [in the public domain]) by removing
individuals with more than 3% missing genotypes, SNPs with
call rate < 97%, MAF < 1%, and Hardy-Weinberg equilibrium P

< 0.0001 in controls and P < 5 3 10�10 in cases. The same QC
protocol was used before merging the cases and controls to
avoid mismatches between the merged datasets. Following
merging, the genotypes for 569,249 SNPs common to the
arrays were used for subsequent analyses. The autosomal
markers were used to compute identity by descent in PLINK,
with one of each pair of individuals with relatedness of >0.2
removed. The smartpca package from EIGENSOFT software
(http://www.hsph.harvard.edu/alkes-price/software/ [in the
public domain]) was used to compute principal components
for all participants and reference samples of known northern/
western European ancestry (1000 Genomes British, CEU [Utah
Residents with Northern and Western European Ancestry],
Finland participants).29,30 Ancestry outliers with PC1 or PC2
values > 6 standard deviations from the known northern/
western European ancestry group were excluded.

Imputation

We used IMPUTE231 to perform imputation with the 1000
Genomes phase 132 (March 2012 release) as the reference
panel. The worldwide reference panel was used, with SNPs
with a MAF < 0.1% in Europeans filtered out. Imputation was
performed in 1-Mb sections with the recommended settings for
IMPUTE2 including a 250-kb buffer flanking imputation
sections and the effective size of the sampled population as
20,000.31 Imputation quality can be objectively assessed by the
average concordance between input SNPs genotypes and their
‘‘best guess’’ genotypes imputed from the surrounding SNPs;
we achieved a very acceptable ‡0.95 across the genome.
Single nucleotide polymorphisms with an INFO < 0.4 were
discarded. The imputation maximum posterior probability was
used to assign the best guess imputed genotypes for
rs74315329 and two SNPs in linkage disequilibrium (LD) with
rs74315329 (measurement of the degree to which alleles at
two genetic loci are associated, where r2 ¼ 0 indicates
independent alleles and r2¼ 1 indicates completely correlated
alleles), rs187423359, and rs182384379 (r2 ¼ 0.5 with
rs74315329), with setting the threshold of calling genotypes
to 0.6.

Statistical Analysis

Of the SNPs with INFO > 0.4 from imputation, only very well-
imputed SNPs (INFO > 0.8) were carried forward for
association analysis. SNPTEST33,34 was used to perform
association testing on the imputed data using additive model
(-frequentist 1) and full dosage scores (-method expected)
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adjusting for sex and the first six principal components.
Genomic inflation factor lambda (k) was calculated to
investigate the presence of population stratification and
inflation. The P values were corrected for genomic inflation
factor k (1.06) by dividing the v2 values by 1.06.

Sequencing

We screened the POAG cases in this study for the Gln368Ter
mutation using direct sequencing as previously de-
scribed.12,35,36

Genotyping and Imputation for the Twin 610K
Study

To assess imputation quality using the HumanHap610 array we
examined 1801 unrelated individuals genotyped on the
Illumina HumanHap610 array from the Brisbane Adolescent
Twin Study.37,38 Following cleaning, 504,071 SNPs were
available for imputation. Imputation was performed as for
the POAG cohorts above.

RESULTS

Genotype data from 1155 individuals with advanced POAG
from the ANZRAG and 1992 controls were combined and
cleaned, and 569,249 SNPs were used as the base of
imputation to the 1000 Genomes phase 1 reference panel. A
panethnicity reference panel was used, with SNPs with a MAF
< 0.1% in European 1000 Genomes samples filtered out to
exclude the singleton or monomorphic SNPs. In total,
5,537,665 SNPs were imputed with MAF < 1%, of which
3,260,097 (59%) were imputed with an acceptable imputation
quality (INFO > 0.4). This ratio of SNPs with INFO > 0.4 drops
marginally to 53% (466,199 from 876,619 SNPs) for the SNPs
with MAF < 0.1% (allele frequencies reported here are in the
imputed samples). The proportion of well-imputed SNPs with
INFO > 0.8 was lower at 11% (615,714 SNPs) for SNPs with
MAF < 1%, and 4% (35,512 SNPs) for the SNPs with MAF <
0.1%. These data suggest that a high proportion of acceptable
quality SNPs were imputed in this study, even for SNPs with
MAF < 0.1%.

The Gln368Ter (rs74315329) rare variant (MAF ¼ 0.1% in
our controls, MAF ¼ 1.2% in our cases estimated from the
imputation data) had a high imputation quality (INFO¼ 0.93).
The imputation maximum posterior probability (posterior
probabilities for each of the three genotypes of a SNP in the
population, i.e., homozygous for wild-type allele, heterozy-
gous, and homozygous for mutant allele) was used to assign
the best guess imputed genotypes for the Gln368Ter variant
(the threshold of calling genotypes was set to 0.6). The best
guess imputed genotypes were then compared with the
genotypes obtained from direct sequencing to investigate the
concordance between the genotypes obtained from imputa-
tion and sequencing. None of the individuals were homozy-
gous for the mutant allele (A allele) (imputation posterior
probability was zero for the A/A genotype in all the
individuals). Table 1 shows the imputation probabilities and
results of direct sequencing for individuals with posterior
probabilities > 0 for the heterozygous genotype (A/G). Of the
37 individuals in Table 1, 30 (all case samples) had also the
genotypes available from sequencing. Of the 30, 28 (93.3%)
were confirmed by sequencing to be carriers (Table 1). In
addition, four POAG unaffected individuals were also carriers
of the mutation based on the imputation results, three of
them with high confidence (imputation posterior probabili-
ties > 0.95). The other POAG cases in this study who are not

included in Table 1 (n ¼ 1124) were not carriers of the
mutation as confirmed by both imputation and sequencing.
Overall, we found a sensitivity of 96.29%, specificity of
99.91%, positive predictive value of 96.29%, and negative
predictive value of 99.91% for imputation of the Gln368Ter
variant compared with direct sequencing. When only
individuals with high imputation posterior probabilities
(>0.9) are included to reduce the uncertainty for the best
guess genotypes obtained from imputed data, the accuracy is
higher at a sensitivity of 100%, specificity of 99.91%, positive
predictive value of 95.65%, and negative predictive value of
100% (Table 2).

Table 1 also shows the best guess imputed genotypes and
imputation posterior probabilities for the heterozygous geno-
types of rs187423359 and rs182384379 (the proxy rare
variants in r2¼ 0.5 with rs74315329). Although the imputation
results for rs187423359 and rs182384379 were consistent with
the imputation results for rs74315329, the results were not
identical because those SNPs are not in complete LD with
rs74315329 (r2 ¼ 0.5).

We also investigated whether rs74315329 can be imputed
accurately using the other commonly used genotyping arrays.
rs74315329 was well imputed with INFO ¼ 0.83 in 1801
individuals of European descent (all unscreened for POAG)
genotyped on the Illumina HumanHap610 array, with 1000
Genomes phase 1 as the reference panel. Three individuals in
this dataset were carriers of the risk allele with high confidence
(imputation posterior probability of 100%). The lower impu-
tation accuracy for rs74315329 in that study may be due in part
to a lower frequency of the risk allele in individuals without
POAG (frequency of 0.1% estimated from the imputed data in
this dataset compared with 0.5% in the ANZRAG dataset), or
may be due to lower SNP coverage on the HumanHap610 array.
However, while lower, INFO 0.83 still represents high-quality
imputation, and suggests that the HumanHap610 arrays, in
addition to Omni1M, OmniExpress HumanOmni1- Quad, and
HumanOmniExpressExome arrays, can be used for imputation
of rs74315329 Gln368Ter.

The other POAG-associated MYOC variants (http://www.
omim.org/entry/601652 [in the public domain]) either were
monomorphic in 1000 Genomes phase 1 European popula-
tion and were filtered out during imputation or were not
present in the reference panel. Thus, this study could not
investigate the imputation of other POAG-associated MYOC

variants.
Association analysis for the imputed variants was per-

formed using an additive model adjusted for the sex and the
first six principal components. The genomic inflation factor k
was 1.06 after including sex and the first six principal
components as covariates. The P values obtained from the
association analysis were corrected for the genomic inflation
factor k. In addition to the common variants previously
reported,7 the only genome-wide significant rare variant (MAF
< 1%) associated with POAG in this study was rs74315329,
the Gln368Ter mutation (odds ratio ¼ 15.53 and P ¼ 1.07 3
10�9).

DISCUSSION

In this study we report the accurate imputation of a rare
variant (Gln368Ter mutation in the myocilin gene [MYOC]
with MAF¼0.5% in our study population) imputed to the 1000
Genomes phase 1 reference panel. The imputed variant was
successfully used in a GWAS to detect an association with
POAG using standard allelic association analysis. This study
suggests that rare variants can be accurately imputed using
dense reference panels such as the 1000 Genomes project data
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and high-coverage microarrays such as HumanHap610, Om-

niExpress, Omni1M, HumanOmniExpressExome, and Human-

Omni1-Quad. Imputation of rare variants is currently far more

cost-effective than sequencing methods for genotyping a large

numbers of variants. This in its own right is important given

the prohibitive costs of whole-genome sequencing and the

resultant small sample sizes, which are poorly powered to

detect an association with complex traits.23 Although detecting

associations of imputed rare variants by single variant tests in

standard GWAS may not be powerful due to the low allele

frequency and low imputation accuracy,25 the results of this

study suggest that some clinically important rare variants can

be imputed with high accuracy to detect an association with

complex traits in standard GWAS.

TABLE 1. Imputation Maximum Posterior Probability, Best Guess Imputed Genotypes, and Genotypes From Direct Sequencing for rs74315329,
rs187423359, and rs182384379

Individual

ID POAG

rs74315329*

Best Guess

Imputed

Genotypes†

rs74315329 G/A

Probabilities‡

rs74315329

Genotypes

From Direct

Sequencing

rs187423359

Best Guess

Imputed

Genotypes†

rs187423359 C/T

Probabilities‡

rs182384379

Best Guess

Imputed

Genotypes†

rs182384379 G/A

Probabilities‡

AG-107 Yes G/A 1 G/A C/T 0.999 G/A 1

AG1176 Yes G/A 1 G/A NA 0.436 G/A 1

AG1335 Yes G/A 1 G/A C/T 1 G/A 1

AG-136 Yes G/A 1 G/A C/T 0.999 G/A 1

AG1408 Yes G/A 1 G/A NA 0.436 G/A 1

AG1432 Yes G/A 1 G/A C/T 0.999 G/A 1

AG-301 Yes G/A 1 G/A C/T 0.999 G/A 1

AG-315 Yes G/A 1 G/A C/T 0.999 G/A 1

AG-542 Yes G/A 1 G/A C/T 0.999 G/A 1

AG-697 Yes G/A 1 G/A C/T 1 G/A 1

AG-720 Yes G/A 1 G/A C/T 0.999 G/A 1

GTas2-21 Yes G/A 1 G/A NA 0.437 G/A 1

GTas229-2 Yes G/A 1 G/A C/T 0.999 G/A 1

GTas2-68 Yes G/A 1 G/A NA 0.436 G/A 1

GTas337-4 Yes G/A 1 G/A C/T 0.999 G/A 1

GTas440-1 Yes G/A 1 G/A C/T 0.957 G/A 0.976

GTas447-1 Yes G/A 1 G/A C/T 0.881 G/A 1

Gvic117-1b Yes G/A 1 G/A C/T 0.993 G/A 1

Gvic122-1 Yes G/A 1 G/A C/T 0.999 G/A 1

Gvic139-1 Yes G/A 1 G/G C/T 0.999 G/A 1

AG-633 Yes G/A 0.999 G/A C/T 0.998 G/A 0.997

AG-021 Yes G/A 0.998 G/A C/T 0.87 G/A 0.999

AG-242 Yes G/A 0.956 G/A C/T 0.749 G/A 0.956

Gvic124-1b Yes G/A 0.839 G/A C/T 0.689 G/A 0.79

AG0857 Yes G/A 0.762 G/A C/T 0.749 G/A 0.698

AG1315 Yes G/A 0.734 G/A C/T 0.711 G/G 0.191

AG-093 Yes G/A 0.6 G/A NA 0.501 NA 0.496

AG0792 Yes G/G 0.193 G/A NA 0.49 G/G <0.1

AG1383 Yes G/G 0.157 G/G C/C <0.1 G/G <0.1

AG0730 Yes G/G 0.127 G/G C/C 0.332 G/G <0.1

GTas0-1358b Yes G/A 1 NA C/T 0.998 G/A 0.998

171401 No G/A 1 NA C/T 0.999 G/A 1

251442 No G/A 1 NA C/T 0.999 G/A 1

687.001 No G/A 0.951 NA C/T 0.742 G/A 0.9

251270 No G/A 0.857 NA C/T 0.853 G/A 0.851

CON_3972 No G/G 0.39 NA C/C <0.1 G/A 0.396

FMC_758.001 No G/G 0.156 NA C/C 0.113 G/G 0.155

This table shows the imputation maximum posterior probability for the individuals with posterior probability of more than 0 for the
heterozygous genotypes of rs74315329 and two other proxy SNPs (rs187423359 and rs182384379). The best guess imputed genotypes have been
also shown for these SNPs (calling threshold was set to 0.6). The genotypes of rs74315329 obtained through direct sequencing are also presented.
Allele G is the wild-type allele, and A is the POAG risk allele for rs74315329. NA, not available.

* The Gln368Ter variant.
† Best guess imputed genotypes obtained from the imputation maximum posterior probabilities with the threshold of calling genotypes set to 0.6.
‡ Imputation maximum posterior probabilities for the heterozygous genotypes of the respective variants.

TABLE 2. Accuracy of Imputation Compared With Direct Sequencing
for the Individuals With Imputation Posterior Probabilities > 0.9 for
Gln368Ter Variant

Sequencing

Imputation Carrier Noncarrier

Carrier True positive, TP ¼ 22 False positive, FP ¼ 1

Noncarrier False negative, FN ¼ 0 True negative, TN ¼ 1124

%Sensitivity¼100*(TP/TPþFN)¼100*(22/22)¼100%. %Specificity
¼100*(TN/TNþ FP)¼100*(1124/1125)¼ 99.91%. %Positive predictive
value ¼ 100*(TP/TP þ FP) ¼ 100*(22/23) ¼ 95.65%. %Negative
predictive value ¼ 100*(TN/TNþ FN) ¼ 100*(1124/1124) ¼ 100%.
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This study used a mix of arrays with the sets genotyped
separately; they were combined and thinned to a common set
of SNPs with appropriate QC. We were able to accurately
impute Gln368Ter with SNPs from the intersection of a
number of arrays, suggesting that the method to impute
Gln368Ter might be robust to array choice.

Could this approach be used for screening other patho-
genic variants with lower MAF? Imputation effectiveness is
dependent on the existence of a haplotype that tags the target
SNP, that haplotype being properly captured/characterized in
the reference panel, and the genotyping array containing SNPs
in that haplotype. Thus, while imputation difficulty is inversely
proportional to MAF (as linkage disequilibrium is limited by
the relative allele frequency difference, and rarer SNPs have a
smaller range of allele frequencies that can tag them), there
isn’t a simple cut off. Also the rarer the target SNP, the larger
the reference panel required to capture the correct haplotypes
to impute it, should such a haplotype exist. Accordingly, the
lower limit of this approach is proportional to the MAF, the
size of the reference panel, and the SNP array coverage.

It was demonstrated previously that using dense genotyping
arrays (such as Illumina Omin1M and HumanHap 610 arrays)
and dense reference panels (such as 1000 Genomes) will
increase the accuracy of imputation for common and rare
variants.24 While none of the rare variants with MAF < 0.3%
were well imputed (INFO > 0.4) in that study, we could
accurately impute 53% of rare variants with MAF < 0.1% (INFO
> 0.4). The likely reason for this poor imputation of rare
variants with MAF < 0.3% could be the smaller sample size
used for imputation (153 individuals versus 3147 individuals
used in the ANZRAG dataset) as well as the greater coverage in
the 1000 Genomes phase 1 release. These data suggest that
using dense reference panels and genotyping arrays along with
a large number of people for imputation can improve the
imputation accuracy of rare variants.

HapMap-based imputation has a higher proportion of well-
imputed rare SNPs than 1000 Genomes pilot (not phase 1)
imputation.24 This may be due to the larger number of rare
variants (including very rare variants with MAF < 0.3%) in the
1000 Genomes panel compared to the HapMap panel, which
in turn may result in an overall reduction in the proportion of
well-imputed rare variants. On the other hand, the 1000
Genomes pilot reference panel contains a relatively small
population (60 CEU [Utah Residents with Northern and
Western European Ancestry] individuals, 62 Han Chinese in
Bejing þ Japanese in Tokyo (CHBþJPT) individuals, and 59
Yoruba in Ibadan, Nigeria (YRI) individuals) compared to the
following release (phase 1) of the 1000 Genomes data.
Moreover, since genotypes in 1000 Genomes have been
derived using low pass sequencing, the genotyping quality of
the reference panel may be low for very rare SNPs. However,
1000 Genomes may be a better source for imputation of rare
variants compared to HapMap due to the increased density and
inclusion of a larger number of rare variants.24

Screening rare variants associated with complex traits can
be clinically important for prediction of risk and diagnosis and
treatment. Here, we could accurately screen the Gln368Ter
mutation in the MYOC gene, which is associated with POAG,
by imputing this mutation using genotypes available on
common genotyping arrays. The penetrance of the Gln368Ter
mutation is high and increases with aging.39–41 The frequency
of this mutation has been estimated to be 0.1% to 0.3% in the
European population, which means that at least 2 people in
every 1000 are expected to be carriers. As such this represents
a relatively high number of people at risk who can be
accurately screened for the mutation using a relatively cheap
array typing. We have found that detecting the Gln368Ter
MYOC mutation using imputation can accurately identify

people at high risk of developing POAG. This can in turn
result in early diagnosis and timely treatment, thereby
preventing the development of irreversible blindness. Of the
total of 3793 individuals without POAG in this study, 6 people
were found with high confidence (imputation posterior
probability > 0.95) to carry the Gln368Ter mutation. These
people are at high risk of developing POAG later in their life.
Similarly, a large number of individuals have had their genome
scanned using arrays (e.g., almost a million 23andMe custom-
ers); being able to predict which of those individuals carry a
high-risk MYOC mutation would be of considerable signifi-
cance as it would lead directly to many individuals seeking
appropriate clinical advice.

One limitation of this study is that we did not use other
reference panels or imputation tools to compare the results
and investigate whether high accuracy of imputation will also
be obtained using those panels and tools. In addition,
although we validated the imputation results for the
Gln368Ter variant using Sanger sequencing in the 1155 POAG
cases, we did not have DNA available for the controls and
hence did not Sanger sequence controls to verify any controls
that were carriers.

In summary, we showed that imputation using common
SNPs directly genotyped on genotyping arrays could be an
accurate and less expensive (compared to direct sequencing)
approach for detecting some clinically important rare variants
such as Gln368Ter. These results are clinically important in
terms of early detection and treatment of patients at high
risk.
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