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Purpose: To compare parametric models for fitting published distributions of visual
field progression rates (in dB/yr) for glaucoma.

Method: We fitted a modified Gaussian model, a modified Cauchy model and a
modified hyperbolic secant model to previously published distributions of visual field
progression rates from Canada, Sweden, and the United States. The modification
allowed the shape of the model’s distribution either side of the mode to be
independently varied to allow for the asymmetric tails seen in visual field progression
rate distributions.

Results: Summing likelihoods across datasets, the modified hyperbolic secant was
strongly favored (by 26.7 log units) compared with the next best-fitting model, the
modified Cauchy. The modified hyperbolic secant was not the best fit for the
Canadian dataset, however. Best-fitting modified hyperbolic secant parameters were
broadly similarly between datasets, with parameter variances being less than those
expected to negate the benefits of a previously described Bayesian method for
improving individual visual field progression rate estimates in glaucoma.

Conclusions: Although the optimum model differed depending upon the particular
dataset, a modified hyperbolic secant performed well for all distributions investigated
and was strongly favored when evidence was summed across datasets.

Translational Relevance: Despite differences in the progression rate distributions
between studies, the use of an ‘‘average’’ distribution may still be of benefit for
improving individual visual field progression rate estimates in glaucoma using
Bayesian methods.

Introduction

The overall rate of visual field loss in glaucoma (in
dB/yr) can be estimated by linear regression of the
perimetric summary index mean deviation (MD),1 or
by averaging the individual rates of loss at each point
in the visual field.2 It is a common finding that the
distribution of glaucoma progression rates is skewed,
with a longer tail for negative rates of progression
(i.e., worsening visual fields over time) than for
positive rates.2–5 The ability to quantify such distri-
butions allows rates of progression to be compared
between different glaucoma types3 or between differ-
ent groups with the same glaucoma type (e.g., study
populations versus general clinical populations).5

More specifically, fully quantifying distributions
allows for differences other than those in central
tendency (e.g., mean or median rate) or spread (e.g.,

the interquartile range) to be explored. This may be
particularly important when trying to examine
differences within the tails of distributions: for
example, the number of very fast progressors in a
group.5 Quantifying progression distributions is also
needed for Bayesian methods that use population
data to constrain estimates of rates in individuals6–9

and so help to reduce the wide variation in rates seen
when the amount of longitudinal data available is
limited.10

One way to efficiently quantify distributions is by
fitting them with parametric models. Glaucoma
progression rate distributions have previously been
parametrically modelled using a modified hyperbolic
secant,6 which allows for the slopes of the upper and
lower tails to be specified, along with the mode of the
distribution. This model was selected because it fitted
the general shape of the distribution well enough for
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the simulation studies then performed, and so no
attempt was made to see whether other models might
provide substantially better fits.6 There has been an
increased use of nonparametric methods to quantify
aspects of the visual field,11,12 particularly given the
ubiquitous access to fast computing required to
generate these analyses. Therefore, it may be ques-
tioned why parametric models are required at all, at
least for statistical quantification purposes. We
believe that parametric models are useful for several
reasons. Firstly, simple parametric models for pro-
gression rate distributions efficiently summarizes the
entire shape of the distribution in a way that simple
metrics such as the mode and interquartile range
cannot. Secondly, the frequency of rapid rates of
progression is relatively small and so it is not
uncommon for histograms of empirical progression
data to have some bins with a zero frequency in one
range, yet have nonzero frequencies at lower and
higher ranges. This can occur despite large cohort
sizes (e.g., 583 patients in Heijl et al.13). Presuming
that the distribution of glaucoma is a continuous
function, these zero frequencies reflect sampling
variability rather than that glaucoma never produces
progression rates within the missing range. Conven-
tional nonparametric bootstrapping procedures,
where new datasets are generated by sampling with
replacement from the original data, will also always
have zero frequencies at the same ranges, and so do
not solve the problem. It is possible to smooth the
data using a spline curve or moving average5 and so
fill in these gaps, although the degree of smoothing
selected is commonly ad hoc and such techniques
necessarily widen the frequency distribution and
flatten its peak. Modelling the distribution paramet-
rically avoids intermediate zero frequency bins. There
is also no inherent reason for such models to bias a
distribution in a particular direction (e.g., always
widen or narrow) or to systematically reduce the peak
of the distribution, although a specific model may
indeed create a bias if it is always found to be either
too compact or too broad relative to the empirical
data. Bootstrap data may still be generated from
fitted distributions in order to determine probability
limits, a procedure known as a parametric bootstrap.
Finally, empirical data is often presented in histo-
grams with markedly differing binning strategies (e.g.,
regular 0.1-dB/yr wide bins5 vs. 0.5-dB/yr bins with
open ended-bins for distribution tails2) making a
comparison of distributions between different studies
challenging. Parametric models of these data can be
presented using a common binning strategy and so

avoid distortions introduced by different histogram
binning strategies.

Here, we examine three candidate models for
fitting the distribution of glaucomatous visual field
progression rates, and apply them to recent distribu-
tional data published in the literature. In addition to
employing standard goodness-of-fit assessments, we
use statistical methods to investigate whether one of
the models is better supported by the data.

Methods

Candidate Models

We investigated three candidate models: a modi-
fied hyperbolic secant, a modified Gaussian, and a
modified Cauchy distribution. In all cases, the
principal modification was to allow for separate
parameters to alter the width of the distribution
either side of the mode. A Gaussian and a Cauchy
distribution represent two extremes of the t distribu-
tion, the former having many degrees of freedom and
the later having one degree of freedom,14 thereby
representing a compact and a wide distribution,
respectively. A Cauchy distribution is sometimes used
in robust regression methods to account for outliers in
the data not well modelled by a Gaussian distribu-
tion.15

The modified Gaussian was as follows:

fðrÞ ¼ Ae
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where r is the progression rate, A gives the height of
the function at its peak, mode gives the position of the
peak, and B and C alter the width of the distribution
to the more positive and more negative side of the
mode, respectively.

The modified Cauchy distribution was as follows:
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with terms defined as per the modified Gaussian
distribution.
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The modified hyperbolic secant was as described in
King-Smith et al.16 and as previously used to model
glaucoma progression rate distributions.6 Its param-
eters were defined as per the modified Gaussian
distribution, with mode being equivalent to parameter
t in the original equation by King-Smith et al.16

For this paper, parameter A was set to give an area
of one under each function, as calculated by summing
the bin heights at 0.1-dB/yr wide intervals between
�10 and þ10 dB/yr. All three distributions therefore
had only three free parameters (i.e., mode, B, C).

Empirical Data and Fitting

We estimated the distribution of visual field
progression rates (in dB/yr) in glaucoma from
previously published histograms: 2324 glaucoma and
glaucoma suspect patients drawn from a tertiary-care
setting in Canada (�5 SITA-Standard 24-2 Hum-
phrey Field Analyzer [Carl Zeiss Meditec, Inc.,
Dublin, CA] fields, tested every 4 months),5 587 eyes
with treated glaucoma from the New York Glaucoma
Progression Study (�8 SITA-Standard 24-2 Hum-
phrey Field Analyzer II fields, tested each 6 to 12
months; data from progressing and non-progressing
patients combined),2 and 583 patients with primary
open-angle glaucoma or pseudoexfoliation glaucoma
in Sweden (�5 Humphrey SITA-Standard fields over
�5 years).13 The Canadian and Swedish studies
determined progression rates from linear regression
of the summary index MD, whereas the US study
determined the overall rate of visual field loss from
the average of pointwise linear regression slopes. The
variability in each dataset was estimated using a
bootstrap procedure, with 10,000 new random data-
sets produced by sampling (with replacement) from
the original distribution and 2.5% and 97.5% limits
for histogram bin frequencies then calculated.

Candidate models were fitted to these data using a
maximum likelihood procedure. In brief, an initial
estimate of a model’s parameters was made and the
likelihood of obtaining each progression rate in the
empirical dataset then determined. The log of these
likelihoods were then summed, creating a value that
gave the log-likelihood of obtaining the set of
progression rates in the dataset given the model.
The model parameters were then systematically
adjusted (Solver module, Version 14.3.6; Microsoft
Excel for Mac 2011, Microsoft, Redmond, WA) in
order to maximize this likelihood. Even with optimum
model parameters such likelihoods are typically very
small (i.e., a large negative value in log units),
reflecting that the particular empirical data represents

just one example of the many combinations that could
be drawn from the same underlying distribution. The
absolute likelihood is not a direct measure of
goodness of fit therefore, and is heavily influenced
by the size of the sample (and, therefore, the number
of potential other combinations that exist). Of most
importance is the relative likelihoods between models,
which quantifies the relative support obtained for
each model from the data. These relative likelihoods
are mathematically equivalent of those calculated
using an Aikaike’s Information Criterion (AIC),14

which are in turn equivalent to the version of the AIC
corrected for finite samples (AICC) given that both
the number of data points and the number of free
parameters are identical for the models being
compared. We also quantified absolute goodness of
fit by calculating the coefficient of determination R2

(i.e., the fraction of the total variance in the y-
direction that is explained by our nonlinear models,
similar to the r2 value used in linear regression) for the
maximum likelihood fit.14

To average fits across datasets, we took the
average of the fitted parameters for each dataset,
consistent with the mean coefficient technique de-
scribed by Anastasi and coworkers.17

Results

Figure 1 shows the fit of the three models to the
Canadian data, along with the corresponding coeffi-
cients of determination. Log10 likelihoods for the
modified Gaussian, modified Cauchy and modified
hyperbolic secant models were �3036.8, �2891.1,
�2893.9, respectively, indicating that the modified
Cauchy model fitted best and was 583 times (�2891.1
minus �2893.9 ¼ 2.8 log units) more likely than the
next best fitting model, the modified hyperbolic
secant. While the shape of the modified Cauchy
distributions well captures the extended tails of the
empirical data, the modified Gaussian distribution
must substantially increase its spread in order to
encompass these tails, resulting in a comparatively
poor representation of the more central portion of the
distribution. The modified hyperbolic secant im-
proves the representation of the central portion of
the fit while retaining broad tails, although still
underestimates the peak of the data.

The Swedish dataset (Fig. 2) had a more extended
tail for negative progression rates than the Canadian
dataset. Log-likelihoods for the best-fit model to the
Swedish data were �695.2, �701.3, and �684.1,
indicating the modified hyperbolic secant gave the
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best fit (by 1.0 3 106 times, compared with the
modified Cauchy distribution). For the US data (Fig.
3), log-likelihoods were �412.3, �412.1, and �402.8,
indicating the modified hyperbolic secant gave the
best fit (by 2.8 3 109 times). Summing likelihoods
across datasets, the hyperbolic secant was strongly

Figure 1. Maximum-likelihood fits of the three parametric models
to the distribution of visual field progression rates for a clinical
cohort of glaucoma patients and suspects, derived from data
reported by Chauhan et al.5 Each model (thick line) is in histogram
bins identical to those of the empirical data although, for ease of
reading, line segments are drawn between the model height at
each bin-midpoint. Bootstrap limits (2.5% and 97.5%) on the
empirical histogram frequencies are represented by the thin lines,
drawn as continuous functions for ease of reading.

Figure 2. Maximum-likelihood fits of the three parametric models
to the distribution of visual field progression rates for a clinical
cohort of glaucoma patients (primary open-angle and
pseudoexfoliation glaucoma) from data reported by Heijl et al.13

Remaining details are as given for Figure 1.
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favored (by 26.7 log units) compared with the next
best-fitting model, the modified Cauchy. For all three
datasets, the modified Gaussian distribution fit had
the lowest likelihood and the lowest goodness of fit R2

values.
The three dataset analyzed are represented in the

literature with different histogram bin widths. Figure
4 shows the best-fit models presented with identical
binning strategies (0.1-dB/yr bin widths) to aid
comparison. For all datasets the upper limit on
positive progression rates is similar. The peaks and
negative tails of the distributions differ, however, with
the Canadian dataset showing the lowest amount of
progression and the Swedish dataset the highest. For
all models, the average fit is similar to that for the US
data, which is also seen in the similarity between the
USA best-fit parameters and the average parameters
(Table 1).

Discussion

Our results show that parametric models can
describe well the distribution of visual field progres-
sion rates in treated glaucoma, with the best-fitting
model achieving an R2 never less than 0.96 for the
three datasets analyzed. The best-fitting model
differed depending upon the dataset fitted, but was
either the modified Cauchy and modified hyperbolic
secant. In each situation, these two models returned
fits with R2 of at least 0.94. In contrast, the modified
Gaussian provided a comparatively poor fit to the
Canadian data (Fig. 1) and was never the best-fitting
model. When evidence was summed across datasets,
the modified hyperbolic secant model was strongly
favored.

Differences in how data is binned2,5 can make the
comparison of empirical distributions difficult. By
applying a common binning strategy to our paramet-
ric models, the differences between datasets can be
readily appreciated however (Fig. 4). The Canadian
dataset had a comparatively narrow distribution and
a high modal progression rate. The high mode may
reflect that this distribution includes glaucoma
suspects5 who by definition would show little or no
progression and so should shift the distribution’s
mode to the right. In addition, a robust regression
technique was used to determine progression rates,5

which would be expected to reduce the number of
very extreme rates arising from statistical variability
alone and so narrow the distribution of rates for the
population. In comparison, the Swedish dataset
contained over one-third of patients with pseudoexfo-

Figure 3. Maximum-likelihood fits of the three parametric models

to the distribution of visual field progression rates patients from

the New York Glaucoma Progression Study, derived from data

reported by De Moraes et al.2 The upturn in the leftmost point of

the modified Cauchy results from the unequal bin widths used for

these data: for this model, more people are predicted to have

progression rates between �2 and �10 dB/yr (the limit to which

rates were calculated in the current paper) than between �2 and

�1.5 dB/yr. Remaining details are as given for Figure 1.
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liation glaucoma.13 This likely contributes to the long
tail of rapid progression rates in this distribution,
given that extremely rapid progression can occur in
pseudoexfoliation glaucoma.3 Analyzing glaucoma-
tous progression rates using linear regression of MD
may also be influenced by other factors such as

cataract, learning, or physiological aging at a rate
other than that predicted by average values18: while
such nonglaucomatous factors might be well con-
trolled in clinical trials, their influence may be
expected to be more marked in data collected from
general clinical populations.

Both the Canadian (Fig. 1) and Swedish (Fig. 2)
datasets well demonstrate how bins with zero
frequency can occur in the histogram tails of
progression rate distributions, despite investigating
large numbers of patients. Such zero frequencies
present a problem for nonparametric bootstrapping
procedures (e.g., note that the bootstrapped 2.5% and
97.5% limits are similarly zero for these bins),
although performing a parametric bootstrap (i.e.,
generating bootstrap samples based on the fitted
model) solves this problem. Zero frequency bins also
create problems for Bayesian methods that use
population information to improve progression rate
estimates for an individual,6 as such methods cannot
return a progression rate within this bin as the a priori
probability of such an event is zero (hence, the
posterior probability given via Bayes theorem must
also be zero). This problem is avoided when a
parametric model of the empirical data, rather than
empirical data itself, is used to estimate glaucoma
progression rates in the population.

Creating an ‘‘Average’’ Distribution: Is it
Worth it?

Our current investigation shows that population
distributions are broadly similar across three recent,
large investigations of visual field progression rates
(Fig. 4) despite differences in the specific details of
each study, although it is clear that a single model is
not the best description of all the datasets analyzed. Is
having a model that performs well ‘‘on average,’’ such
as the modified hyperbolic secant in the current study,
of any benefit, given these distributional differences?
In empirical Bayes methods, the distribution of the
population (the prior distribution) is estimated from
the empirical data itself8 and so is therefore very well
matched to the particular cohort of patients analyzed
in terms of such factors as glaucoma type, ethnicity,
and testing procedure. While producing very encour-
aging results, empirical Bayes probably represent an
upper boundary on what performance benefits might
be expected, as any commercially developed, widely-
implemented progression tool will almost certainly
assume a population distribution that differs from
that of the patients the tool is eventually applied to.

Figure 4. Comparison of the maximum likelihood fits for the
three datasets and the three models, along with models using the
average parameters of the fits to the three datasets. Model fits for
the Sweden and US data sets are as given in Figures 2 and 3 except
with histogram frequencies represented in 0.1-dB/yr wide bins.
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Indeed, outside of a research environment, the precise
distribution of glaucoma rates in a given clinical
population is almost certainly unknown and so
recourse to some form of ‘‘average’’ distribution is
required, at least initially. Our data gives some idea of
what variation might be expected between popula-
tions of different geography and patient inclusion
criteria (Fig. 4, Table 1), and it has been argued that
at least one of our hospital-based datasets does not
represent a selected subgroup of glaucoma patients
distinct from that in the wider community.13 Previous
work suggests that modest performance benefits of
Bayesian methods still persists despite discrepancies
between the lower tail of the prior distribution and the
patient data (each modelled with a modified hyper-
bolic secant) that were slightly greater than those seen
in Table 1, suggesting that use of our distribution
defined by average parameters (Fig. 4, thick line) may
still have some benefits in improving individual visual
field progression rate estimates. An average prior
could then be made to better reflect the particular
patient group to which it is applied by progressively
updating the prior to incorporate information from
each patient’s test result, in an approach similar to
that proposed for determining perimetric thresh-
olds.19 Improvements from Bayesian methods are
likely to be modest, however, owing to the fact that
the distribution of progression rates in the population
is quite broad and so does not constrain individual
progression rate estimates much.6 Even if a paramet-
ric model were found that fitted the population
distribution perfectly (as is very nearly the case for
the modified Cauchy distribution fit to the Canadian
data, and the modified hyperbolic secant fit to the
Swedish data), the broad nature of the fit remains:
hence, the goodness of fit of a model is not a
guarantee of its use in a Bayesian method.

Summary

We find that parametric models can well describe
the distribution of visual field progression rates in
glaucoma despite only three free parameters. Aside

from efficiently summarizing the entire shape of the
distribution, such models can be used to compare
incompatibly binned empirical data, perform para-
metric bootstrap procedures, as well as generate prior
distributions for Bayesian progression rate estimators.
Models based on distributions broader than a
conventional Gaussian distribution are better able
to capture the long tails in progression rate distribu-
tions. A modified hyperbolic secant found the greatest
overall support from the empirical data, but was not
the best fit in all cases. Distributions were sufficiently
similar that an ‘‘average’’ distribution may still be of
use in Bayesian methods to improve the reliability of
individual estimates of visual field progression.
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