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Abstract

Lipid droplets (LDs) are found in most cells, where they play central roles in energy and 

membrane lipid metabolism. The de novo biogenesis of LDs is a fascinating, yet poorly 

understood process involving the formation of a monolayer bound organelle from a bilayer 

membrane. Additionally, large LDs can form either by growth of existing LDs or by the 

combination of smaller LDs through several distinct mechanisms. Here, we review recent insights 

into the molecular process governing LD biogenesis and highlight areas of incomplete knowledge.

Lipid droplets (LDs) are ubiquitous, dynamic cellular organelles that serve as important 

reservoirs of lipids. These lipids provide energy and serve as substrates for membrane 

synthesis, making LDs crucial metabolic hubs. Indeed, many of the enzymes that synthesize 

phospholipids (PLs), triacylglycerols (TGs), and their intermediates, as well as lipases and 

lipolytic regulators, localize to LD surfaces. In addition to their known role in lipid 

metabolism, increasing evidence suggests that LDs also participate in protein degradation 

[1,2], response to ER stress [3], protein glycosylation [4], and pathogen infection [5]. 

Further details about the general aspects of LD cell biology and physiology are discussed in 

numerous recent reviews [6–10]. However, despite recent focus and the application of new 

technologies to study LDs, a number of basic questions remain unanswered. Chief among 

these are the molecular processes governing how LDs form and grow. Here, we review 

recent advances in this area.
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Lipid Droplet Composition

LDs span a wide range of sizes (tens of nm to several microns in diameter) and can grow 

and shrink in response to cellular signals. LD cores contain neutral lipids, predominantly 

sterol esters (SE) or TGs, and depending on cell type, may also include retinyl esters, waxes, 

and ether lipids. These lipids are surrounded by a phospholipid monolayer comprising 

mostly phosphatidylcholine (PC) and phosphatidylethanolamine (PE) [11]. The surface 

composition is highly relevant to regulating LD size and their ability to interact with other 

LDs or organelles, such as the endoplasmic reticulum (ER) ([12,13] and reviewed in 

[6,14,15]).

LD surfaces are decorated by specific proteins, and, not surprisingly, many of these function 

in lipid metabolism. LD proteins have been identified by microscopy analyses of individual 

proteins in yeast and mammalian cells [16,17] and through studies employing non-biased 

mass spectrometry analyses (reviewed in [18]). The latter approach is highly sensitive, but 

not always specific. From these data, it seems likely that most LDs have in the neighborhood 

of 50–200 different proteins at their surface (for example, see [4]). The composition of 

proteins can differ between LDs of different sizes [19–21] or different lipid compositions 

[22] within the same cell. Specific targeting signals for LD proteins are reviewed elsewhere 

[6,23].

LD Formation

LDs could either form de novo or could be derived from existing LDs by fission. Most 

evidence favors the former process as a major source, however, fission of LDs has been 

observed [24]. De novo formation of LDs in eukaryotes occurs from the ER [25,26], where 

neutral lipids are synthesized [27]. Precisely how LDs form, however, remains mostly 

unanswered. Here we present a model for LD formation in three stages (Figure 1): (1) 

neutral lipid synthesis, (2) lens formation (intra-membrane lipid accumulation), and (3) drop 

formation. We highlight recent advances in the understanding of each of these stages.

Step 1: Neutral lipid synthesis

Neutral lipids are synthesized by enzymes of the membrane-bound O-acyltransferase 

(MBOAT) [i.e., acyl-CoA:cholesterol acyltransferase (ACAT)-1, ACAT2, and acyl-

CoA:diacylglycerol acyltransferase (DGAT)-1] and DGAT2 gene families [28]. Generally, 

these enzymes localize to the ER, where they encounter their substrates. One common 

substrate is fatty acyl-CoA produced by acyl-CoA synthetase (ACSL) enzymes (reviewed in 

[29]), which activate fatty acids for use in metabolic pathways. Fatty acyl-CoAs join with 

lipid alcohols to form neutral lipids. For example, DGAT enzymes utilize fatty acyl-CoAs 

and diacylglycerol to form TGs. Similarly, cholesterol esters are produced by condensation 

of fatty acyl-CoA with cholesterol. Neutral lipid synthesis is essential for LD formation. 

Yeast lacking all enzymes of neutral lipid synthesis are viable but lack detectable LDs [30]. 

In mammals, knockout mouse studies show that ACAT1, ACAT2, and DGAT1 are not 

essential for life, whereas DGAT2 is [28]. DGAT2-deficient mice die shortly after birth due 

to lack of energy stores and skin defects related to essential fatty acid deficiency [31], 

Neutral lipid synthesis in the ER functions, in part, to maintain membrane lipid homeostasis, 
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specifically by preventing the accumulation of excess lipids such as cholesterol or 

diacylglycerol.

Several different enzyme isoforms (for ACSL, glycerol-3-phosphate acyltransferase 

(GPAT), 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT), phosphatidic acid 

phosphohydrolase (PAP), and DGAT) catalyze each step of the Kennedy pathway for TG 

synthesis. This raises the possibility that different isoforms prefer specific substrates (e.g., 

exogenous versus de novo–synthesized fatty acids). For example, knockout and inhibitor 

studies indicate that GPAT4 [32] and DGAT1 [33–35] appear to prefer exogenous or 

lipolysis-derived fatty acids, while GPAT1 [32] and DGAT2 [33–35] handle mostly 

endogenously synthesized fatty acids. Several isoforms, such as DGAT2, AGPAT3, and 

GPAT4, also localize to LDs under conditions of fatty acid excess (discussed below) 

[21,36–38]. Furthermore, recent studies show that DGAT2 prefers the substrate sn-1,3-

diacylglycerol, one of the products of lipolysis by adipose triglyceride lipase (ATGL) on 

LDs [39]. This supports a role for DGAT2 in LD-localized re-esterification of fatty acids. In 

contrast, GPAT1, AGPAT1, AGPAT2, and DGAT1 localize to the ER [21,37,40]. 

Interestingly, the functions of these isoforms are not exclusively correlated with localization, 

as DGAT1 and DGAT2 can compensate for each other under certain conditions [41].

Step 2: Neutral lipid accumulation and lens formation

At relatively low concentrations, neutral lipids will accumulate between leaflets of the ER 

bilayer. Several groups have measured TGs in cellular membranes in the range of 3–7 (w/w)

% [42,43], in agreement with biophysical [44] and in silico predictions [45] for the capacity 

of bilayer membranes to hold TG. As the concentration increases, lipid lenses may form in 

the ER (Figure 1), though this has not been clearly demonstrated. A simulation predicts that 

TGs form in “blisters” in the bilayer of at least 17 nm in diameter [45].

What determines lens formation sites within the ER is an open question. Recent data in yeast 

[26] and COS cells ([46] and J. H. and R.F., unpublished observations) indicate that they 

form in discrete foci dispersed throughout the ER. In the starvation-refeeding model in COS 

cells, LDs appear to form at pre-existing sites marked by an LD-targeted protein, suggesting 

that lenses form at sites of previous LDs [46]. Localization studies have found DGAT1 and 

DGAT2 are continuously distributed along the ER [37], but not perfectly overlapping [47], 

suggesting that neutral lipids accumulate in spots that are dissociated from the enzymes that 

synthesize them. Interestingly, the plant homologue of GPAT4 (called GPAT9) localizes to 

the same ER subdomains as DGAT2, suggesting that they might form sub-complexes for 

neutral lipid synthesis within the ER [47]. In yeast, the DGAT2 homolog Dga1p also 

distributes throughout the ER in the absence of LDs [25]. Thus, it is possible that TGs are 

synthesized throughout the ER and diffuse through the bilayer to LD formation sites. 

Alternatively, enzyme activity for TG synthesis may occur specifically at regions of the ER 

where LDs form. Several proteins have been implicated in organizing LD formation sites 

(e.g., seipin (BSCL2)[48], lipin (Pah1p) [49], and fat-storage inducing transmembrane 

protein (FITM)-2 [50]), although their precise roles remain undefined. Seipin is an ER 

protein whose deficiency dramatically alters LD numbers and size. Seipin is thought to 

localize at LD-ER junctions in yeast [51] and deficiency increases phosphatidic acid levels, 
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which may contribute to LD fusion [12]. FIT2 is also an ER protein that binds TG and 

appears to be involved in organizing LDs [52]. Pah1 is required for normal LD formation in 

yeast [53].

Step 3: Droplet Formation

Above a certain size, depending on the oil and phospholipid composition, lipid lenses in the 

ER are predicted to be unstable and bud, by a mechanism similar to de-wetting, due to 

thermal fluctuations [6] (Figure 1). The smallest mature cytosolic LDs have diameters in the 

range of 250–500 nm [21,54], which establishes an upper limit for budding size. Reports of 

nascent LD size are quite broad, as simulations predict LD diameters of ~50–100 nm 

[45,55], and one study suggests that they might be even smaller [24]. Defining the lower 

limit of LD formation size is challenging as their formation events reach the temporal and 

spatial resolution limitations of current microscopy techniques. In yeast, some newly formed 

LDs appear to remain connected with the ER [25]. At least in some cells, LDs that have 

budded and separated from the ER have been observed [21,56].

Whether drop formation is protein-mediated is an open question. To date, no single protein 

has been identified that is required for this step. The ubiquity of LDs across organisms 

argues for a highly conserved mechanism. However, the heterogeneity of LDs in terms of 

size and protein composition may allow for multiple mechanisms that include a process that 

is facilitated by proteins. For example, perilipin (PLIN)-3 has been proposed to be a major 

regulator of LD formation [57]. However, LD formation also occurs in systems that do not 

express perilipins. Drop formation is predicted to occur spontaneously based on coarse-

grained simulations [45,58]. However, there is some evidence that TG accumulation alone 

may not be sufficient to drive drop formation in vivo [53,59]. A recent study determined that 

incubating COS cells with increasing amounts of oleate had no effect on the number of LD 

nucleation sites, but did increase the size of forming LDs [46], suggesting these sites may be 

pre-determined. Given the current evidence, we speculate that proteins are not required for 

drop formation per se, but may act to facilitate and/or regulate this step.

Lipid Droplet Growth

Although nascent LDs are small relative to cell size, many cells possess very large LDs. 

Large droplets can arise from two general mechanisms: growth of a LD or by processes in 

which LDs combine to form a single, larger LD (Figure 2).

LD growth occurs by the local synthesis of TGs at the surface of LDs. Droplet growth thus 

requires a cellular trafficking pathway that delivers the enzymes necessary for TG synthesis 

to LDs. Both nascent and mature LDs can acquire enzymes for growth from the ER. 

Interestingly, LDs are often found in close proximity to the ER and, in some instances, have 

been found to be connected to the ER through ER–LD membrane bridges [56]. These ER–

LD connections were first observed in plant cells by electron microscopy [60] and were 

more recently shown to participate in localization of TG enzymes to the LD surface [13,21]. 

This indicates that ER–LD connections are crucial for LD growth. Consistent with this, 

factors maintaining ER structure, such as atlastin, a GTPase that mediates membrane fusion 

to connect ER tubules, play a critical role in regulating LD size [61].
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On the LD surface, coatamer protein (COP)-I machinery plays an important role in 

establishing connections to the ER [13,62]. COPI proteins act at LD surfaces by removing 

phospholipids, thereby increasing LD surface tension and favoring the fusion of LDs with 

other membranes [62]. Once ER–LD bridges are established, specific isoforms of TG 

synthesis enzymes (e.g., GPAT4, AGPAT3, DGAT2) use the connections to relocalize from 

the ER to LDs. The dual localization of these proteins is possible because of the special 

topology of these enzymes, which harbor a hairpin of two α-helices that extends into, 

without completely spanning, a bilayer membrane [21,37,63]. In support of the crucial role 

of localized TG synthesis for LD growth, depletion of DGAT2 or GPAT4 prevents the 

expansion of LDs [21]. It is unclear why, under conditions favoring LD expansion, the 

trafficking of enzymes to the LD is apparently unidirectional.

The expansion of the LD core by TG synthesis is tightly connected to the expansion of the 

phospholipid surface. Although the most abundant phospholipids in the LD monolayer are 

PC and PE, PC is key for coating LDs and preventing their coalescence [20]. Therefore, the 

expansion of droplets leads to an increased need of PC on the surface of LDs. Synthesis of 

PC consists of three enzymatic steps, the second of which is a rate-limiting step catalyzed by 

CTP:phosphocholine cytidylyltransferase (CCT). CCT uses phosphocholine and cytidine 

triphosphate (CTP) to form CDP-choline, which, in turn, is combined with diacylglyerol by 

cytidine diphosphate (CDP)-choline:1,2-diacylglycerol cholinephosphotransferase (CPT) in 

the ER to form PC. Under conditions of LD expansion, CCT is translocated from the cytosol 

to LD surfaces and becomes activated [20]. In this manner, PC synthesis increases in 

response to local demands. Since the last enzyme of the PC synthesis pathway, CPT, is 

exclusively localized at the ER, newly synthesized PC needs to be transferred to expanding 

LDs. How this is achieved is unknown.

Lipid Droplet Coalescence and Ripening

The generation of a large LD from two smaller LDs can occur either by direct coalescence/

fusion or by ripening (diffusion-mediated transfer of core lipids; see [6]). Direct fusion of 

LDs in cells is rare under normal circumstances, but can be induced by modulating the LD 

surface (e.g., by limiting available PC [12,20] or by the addition of surfactants [64]).

In adipocytes, large LDs form by what appears to be a ripening process called permeation. 

Specifically, fat-specific protein of 27 kDa (FSP27), a member of the cell death-inducing 

DFF45-like effector (CIDE) family mainly expressed in adipocytes, is involved in 

transferring lipids between two adjacent LDs [65]. This process occurs over several minutes, 

with transfer of TG from the smaller LD to the larger LD [65]. Experimental observations, 

therefore, are most consistent with permeation, in which TG molecules diffuse to the larger 

LD at a contact site, driven by differences in Laplace pressures of the two LDs. This model 

is supported by the localization of FSP27 to LD–LD contact sites [65]. Additionally, 

overexpression of FSP27 in cells leads to increased LD size whereas depletion abolishes 

LDs with a diameter larger than ~12 μm in adipocytes [66]. Ripening-mediated transfer of 

TG by FSP27 is likely regulated by binding of FSP27 to PLIN1, which increases transfer by 

increasing pore size [66]. Whether other members of the CIDE family promote similar LD 

growth reactions in cell types other then adipocytes is unclear.
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Conclusion

With renewed attention to LD organelles, various aspects of their biology are being 

uncovered. Recent advances have included new insights into their formation and subsequent 

growth. However, many questions remain. What drives lens formation in the ER? What 

determines or regulates the localization of the budding process? What are the functional 

roles of different enzymes in initial formation of LDs versus LD growth? Are ER-LD 

bridges stabilized and maintained, and if so, how? Is LD formation coupled with or distinct 

from ER-LD bridges? How are neutral lipid synthesis enzymes concentrated on LD 

surfaces? What happens to LD proteins during lipolysis and LD catabolism?

Since LDs touch many fields, insights into these questions are likely to arise from many 

avenues of investigation. With increasing knowledge, and model refinement of how each 

step occurs, a detailed insight into the membrane biology of this fascinating organelle will 

emerge, as well as new ideas on how to manipulate these hubs of metabolism for therapeutic 

or industrial benefits.
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Figure 1. 
A step-wise model of lipid droplet formation. Lipid droplets form in at least three discrete 

steps. (a) Neutral lipids are synthesized in the ER and accumulate within the bilayer. Neutral 

lipids are highly mobile in the bilayer and may spontaneously aggregate based on thermal 

fluctuations and electrostatic interactions with integral membrane proteins or other lipids. 

(b) Once the local concentration of neutral lipid reaches a critical threshold, a lens will form 

as the oil phase coalesces. (c) As the lens accumulates additional neutral lipids, the bilayer 

deforms and a nascent lipid droplet buds into the cytoplasm, possibly via a de-wetting 

mechanism. The nascent droplet might remains attached to the ER or separate completely.
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Figure 2. 
Features of lipid droplet growth (expansion) and fusion. Large LDs can form by at least two 

general mechanisms: growth of an LD or processes in which LDs combine to form a single, 

larger LD. Growth of LDs is triggered by relocalization of TG synthesis enzymes from the 

ER to the surface of LDs. (a) The COPI machinery buds small nano-LDs from a mature LD 

leading to a reduction of phospholipids on the LD surface. This leads to an increase in 

surface tension facilitating interactions of the LD with the ER. (b) Once connections are 

established, a subset of TG synthesis enzymes is able to relocalize to the LD surface to 

locally produce TG, which, in turn, leads to the growth of the LD. (c) Alternatively LDs can 

expand by a ripening process called permeation. Here neutral lipids are transferred from a 

smaller LD to a larger LD. In adipocytes, FSP27 is involved in this process. (d) Under 

certain conditions, for example when PC is limited and surface tension is relatively high, 

large LDs can form by fusion/coalescence of two or more LDs.
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