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Abstract

Flexibility and dynamics are important for protein function and a protein’s ability to accommodate 

amino acid substitutions. However, when computational protein design algorithms search over 

protein structures, the allowed flexibility is often reduced to a relatively small set of discrete side-

chain and backbone conformations. While simplifications in scoring functions and protein 

flexibility are currently necessary to computationally search the vast protein sequence and 

conformational space, a rigid representation of a protein causes the search to become brittle and 

miss low-energy structures. Continuous rotamers more closely represent the allowed movement of 

a side chain within its torsional well and have been successfully incorporated into the protein 

design framework to design biomedically relevant protein systems. The use of continuous 

rotamers in protein design enables algorithms to search a larger conformational space than 

previously possible, but adds additional complexity to the design search. To design large, complex 

systems with continuous rotamers, new algorithms are needed to increase the efficiency of the 

search. We present two methods, PartCR and HOT, that greatly increase the speed and efficiency 

of protein design with continuous rotamers. These methods specifically target the large errors in 

energetic terms that are used to bound pairwise energies during the design search. By tightening 

the energy bounds, additional pruning of the conformation space can be achieved, and the number 

of conformations that must be enumerated to find the global minimum energy conformation is 

greatly reduced.
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1 Introduction

Computational structure-based protein design (CSPD) algorithms use a protein’s three-

dimensional structure to predict mutations to the native protein sequence that will confer a 

desired function [1]. Because protein conformational space is vast, CSPD algorithms often 
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limit their search space to highly-populated discrete side-chain positions curated from 

protein crystal structures, called rigid rotamers [2, 3]. Rigid rotamers approximate a region 

of side-chain space using a single conformation, causing the protein design search to 

become brittle [4–9], and ignore proteins’ inherent flexibility [10–12] and ability to make 

small adjustments in response to a side-chain mutation [13, 14]. We have shown previously 

that the common practice of subsampling rigid rotamers does not adequately recover side-

chain movements within their rotameric wells [4]. However, allowing rotamers to 

continuously minimize during the design search can discover unique low-energy sequences 

that are missed by rigid rotamer techniques. The use of continuous rotamers was critical to 

successfully design a change in specificity of a non-ribosomal peptide synthetase 

adenylation domain [15], predict resistance mutations in MRSA DHFR [16, 17], design 

peptide inhibitors of a cystic fibrosis agonist [18] and design improved HIV antibodies [19].

The only CSPD software that is able to take advantage of continuous rotamers is the open-

source package OSPREY [20]. In addition to using continuous rotamers, OSPREY utilizes 

provable techniques, meaning that it is guaranteed to find the global minimum energy 

conformation (GMEC) with respect to the protein design input model (i.e., the input 

structure, rotamer library, energy function, and allowed flexible degrees of freedom in the 

protein). OSPREY divides the CSPD problem into two separate steps: pruning and 

conformation enumeration (Fig 1). The initial pruning step uses the precomputed rotamer 

energies to prune rotamers from the search that are guaranteed not to be part of the GMEC 

or any low-energy conformations. OSPREY uses several dead-end elimination (DEE) 

criteria to efficiently prune as many rotamers as possible [21–24]. The conformation 

enumeration step searches through the remaining unpruned rotamers to find the low-energy 

protein conformations. OSPREY uses the best-first search algorithm, A*, to enumerate 

conformations in order of their lowest energies [25].

While vital to finding the low-energy conformations predicted by the CSPD input model, 

continuous rotamers increase the CSPD conformational search space and computational 

complexity of a design. Traditionally, CSPD algorithms evaluate the actual energies of 

discrete rotamer pairs and optimize these energies to find the GMEC. However, continuous 

rotamers introduce an infinite number of discrete conformations to the search problem, so it 

is no longer feasible to calculate actual energies for the discrete rotamer pairs. Instead, the 

continuous rotamer CSPD algorithms, minDEE [26], iMinDEE [4] and DEEPER [27], 

calculate energy bounds over a voxel of conformation space for each intra-rotamer and 

pairwise rotamer interaction.

The difference between the energy bounds used during the design search and the actual 

energies of full protein conformations (the bound error) introduces specific challenges to the 

CSPD problem. Specifically, the pruning power of the DEE criteria are reduced because 

they must account for the bound error and cannot prune rotamers that are within this error 

window. The A* enumeration step is lengthened because A* must enumerate conformations 

in order of low-energy bounds instead of actual energies. Therefore, all conformations with 

low-energy bounds less than the GMEC energy must be computed and fully minimized. In 

addition to these specific challenges, the inherent difficulty of CSPD increases when 
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allowing minimization because flexibility increases the number of viable rotamers compared 

to a rigid approach that uses a similar rotamer library.

Previously, we developed the iMinDEE algorithm [4], which greatly increases the ability of 

osprey to efficiently prune continuous rotamers. Here we focus on methods to improve the 

conformation enumeration step by reducing the number of conformations that must be 

enumerated before the GMEC is found. We present two new algorithms that can solve more 

complex protein designs and reduce the number of conformations that must be enumerated 

with continuous rotamers. First, we present a divide-and-conquer strategy, PartCR, that 

partitions continuous rotamers to reduce the bound error for loosely (i.e., poorly) bounded 

rotamers. PartCR takes advantage of the weighted constraint satisfaction problem (WCSP) 

formulation of the CSPD problem [28] to create an efficient search over continuous 

rotamers. Second, we present the HOT algorithm that specifically targets higher-order 

partial rotamer conformations with large bound errors and improves these bounds. HOT 

utilizes a novel modified version of the integer linear programming (ILP) protein design 

formulation [29] to incorporate higher-order energy costs into the search. Both of these 

novel methods have been implemented and tested in the OSPREY CSPD software suite.

2 Methods

2.1 Continuous Rotamers

Side-chain conformations observed in high-resolution protein structures cluster in specific 

regions of dihedral space [2, 3]. The rigid rotamers used in CSPD represent these highly 

populated regions as a single side-chain conformation. Using the rigid rotamer model, a 

protein conformation a can be represented as a vector of n rotamers:

(1)

where n is the number of residue positions allowed to mutate during the design search. The 

total energy for the conformation, a, is defined as

(2)

where Etempl is the template energy (i.e., the energy of the backbone atoms and side-chain 

residues that are not allowed to move or mutate), E(ai) is the internal energy of rotamer ai 

plus the energy of ai with the template, and E(ai, aj) is the pairwise energy between rotamers 

ai and aj. Protein energies are very sensitive to small changes in protein atom coordinates, so 

using rigid rotamers can make the CSPD search brittle [4]. Continuous rotamers can be used 

to make the search more robust and identify lower energy sequences. A single continuous 

rotamer represents a region of side-chain dihedral space known as a voxel. In comparison, a 

traditional rigid rotamer would only be a single point within this voxel. Given a pair of 

continuous rotamers, (ir, js), their voxels are known, but their positions within their voxels 

cannot be determined until all rotamers in a conformation (Eq. 1) are assigned. Thus, the 

pairwise decomposition of a protein conformation’s energy with assigned continuous 
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rotamers can no longer be broken down into a pairwise sum. Instead, CSPD algorithms must 

use energetic bounds over the rotamer voxels. The minimum energy bound of a 

conformation can be written as:

(3)

where E⊖(ai) is the minimum energy of ai within its voxel and E⊖(ai, aj) is the minimum 

energy of the rotamer pair (ai, aj) within their voxels [26, 4]. Because continuous rotamers 

allow side chains to minimize within their voxels, for a design with the same rotamer 

library, the GMEC using rigid rotamers can differ greatly from the GMEC using continuous 

rotamers in both conformation and sequence [4, 20, 27]. To distinguish the rigid rotamer 

GMEC from the continuous rotamer GMEC, we use the terms rigidGMEC and minGMEC, 

respectively.

2.2 A* Conformation Enumeration with Continuous Rotamers

The A* algorithm used by OSPREY to enumerate conformations requires an admissible 

heuristic that can bound the energy of any partial protein conformation during the search 

[25, 30]. Since the protein conformation energy with continuous rotamers cannot be 

pairwise decomposed, the energy lower bounds E⊖(ai) and E⊖(ai, aj) are used during the A* 

enumeration step [26, 4]. Therefore, protein conformations are enumerated in order of their 

lower energy bound E⊖(a) instead of their actual energy ET(a), as was the case for rigid 

rotamers. However, once a full protein conformation with continuous rotamers is generated 

from A*, its actual energy ET (a) can be computed by minimizing all rotamers at once. Let g 
be the minGMEC and ℓ be the conformation with the lowest energy bound. A* can guarantee 

that the minGMEC, g, is found when the stopping criterion is satisfied [26, 4], i.e. the lower 

bound of the mth conformation generated by A* is greater than any conformation found so 

far:

(4)

All conformations D = {a | E⊖(a) ≤ ET(g)} with a lower energy bound less than the 

minGMEC energy must be enumerated before the minGMEC is guaranteed to be found. It is 

unknown how to efficiently determine exactly how many conformations are in D, but the 

overall number is related to the energy gap between the minGMEC energy and the 

conformation with the lowest energy bound, I = ET (g) − E⊖(ℓ). If I is large for a protein 

design system, a large number of conformations must be enumerated before the minGMEC 

is found. Therefore, it is important to understand what characteristics of a CSPD system 

cause large I values and develop techniques that reduce the value of I.

Since ET (g) is defined by the CSPD system and is constant during the design search, the 

only way to improve I is to increase the value of E⊖(ℓ). The quantity ε(ℓ) = ET (ℓ) − E⊖(ℓ), 

called the bound error, represents the discrepancy between the actual energy and the 

pairwise energy bounds for conformation ℓ. By increasing E⊖(ℓ) to more tightly bound ET 
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(ℓ), the bound error is reduced and I is improved. When g ≠ ℓ, we know that ET (g) < ET (ℓ). 

If the energy bound of ℓ is increased such that ET (g) < E⊖(ℓ) ≤ ET (ℓ), ℓ would be removed 

from D and would no longer need to be enumerated by OSPREY. After improving E⊖(ℓ), 

the I value for the CSPD system becomes I = ET (g) − E⊖(ℓ′), where ℓ′ ∈ D − {ℓ} is the 

conformation in D − {ℓ} with the lowest-energy bound. Continually improving the lower 

bounds of conformations in D will reduce I and reduce the number of conformations 

OSPREY must enumerate.

The I value is also present in the iMinDEE pruning criterion [4] used by HOT and PartCR:

(5)

Similar to iMinDEE, the rotamer pruning that HOT and PartCR can accomplish is directly 

related to the current estimate of I, . As Im+1 decreases, more 

rotamers can be pruned from the search.

2.3 Understanding Large Bound Errors

To improve the bound error for a given conformation, it is critical to understand where the 

error comes from. Because the bounds are pairwise, when E⊖(ir, js) is determined, side 

chains at other mutable residue positions are excluded from the calculation. This leads to 

two general situations that can cause bounds to be overoptimistic (Fig. 2). First, it is possible 

that when calculating E⊖(ir, js), ir minimizes to the dihedral angles (χ1, χ2, χ3, χ4), but for 

E⊖(ir, kt), ir minimizes to another dihedral position ( ). Therefore, when the 

partial conformation (ir, js, kt) is chosen, it is impossible for ir to simultaneously optimize its 

interaction with both js and kt. Second, rotamers ir and js might both minimize to similar 

Cartesian positions when their interaction with kt is optimized, but cannot both occupy the 

same space when the partial rotamer assignment (ir, js, kt) is chosen. In both situations, when 

rotamers ir, js, and kt are simultaneously minimized they are prevented from choosing their 

optimal pairwise positions, leading to a difference between the pairwise bounds and the 

actual energy.

Figure 3 describes an example from the protein core design of S. pneumoniae PhtA histidine 

triad (PDB id: 2CS7) where the bound error of the conformation with the lowest energy 

bound, ε(ℓ), is very large. The design allowed 14 residue positions to mutate, which resulted 

in a search space with over 1023 continuous rotamer conformations. The figure shows three 

rotamers from the conformation with the lowest energy bound that create a situation where 

all pairwise bounds look favorable (Panels A and B), but the full conformation results in 

several clashes (Panel C). To accurately quantify this error, the actual rotamer energy 

contributions, , were compared to the rotamer energy 

bounds, , to compute the per rotamer error bounds ε(ir) = 

ET (ir) − E⊖(ir). Pairwise energies are symmetric, so each pairwise term occurs in two 

pairwise rotamer terms. Therefore, pairwise terms were halved when calculating the rotamer 
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energy contributions to avoid double counting. The rotamer error bounds from the three 

problem rotamers account for 66% of ε(ℓ), while the other 11 rotamers account for an 

average of only 3% each. Therefore, improving the pairwise bounds for these three problem 

rotamers would greatly reduce ε(ℓ). Importantly, the partial conformation consisting of these 

three rotamers is not only present in ℓ, but in  conformations, where |Qi| is the 

number of available rotamers at position i, and U is the set of all mutable positions not in the 

triple with poor bounds. Since the bound is very optimistic (i.e., loose), it is likely that many 

of these conformations are in D for the 2CS7 design system. If the bound for these three 

rotamers was specifically corrected, a combinatorial number of conformations would be 

removed from D that would otherwise appear extremely favorable. We hypothesize that 

compared to the number of partial rotamer conformations that exist in a CSPD problem, the 

number with large overoptimistic bounds is small. If we are able to target only the partial 

rotamer conformations with the worst bounds, we can quickly exclude those conformations 

from the search and efficiently find the minGMEC. We present two methods, PartCR and 

HOT, that improve large error bounds during the design search (Fig. 4).

2.4 Partitioning Continuous Rotamers

As described in Section 2.3, one main reason that pairwise bounds can be overoptimistic is 

that a single rotamer, ir, participates in many pairwise bounds and can minimize to a 

different location within its voxel, V, for each pairwise bound. If rotamer ir was forced to 

minimize within a smaller voxel V′, which is contained within V, the pairwise bounds with 

respect to V′ would always be greater than or equal to the original bounds (i.e., E⊖(ir, js|V′) ≥ 

E⊖(ir, js|V) for all js). Therefore, one way to improve the bounds for a given rotamer is to 

decrease the voxel size it can minimize within. However, the voxel size represents the 

allowed flexibility of the side chain during the protein design, so directly reducing the voxel 

size does not maintain the flexibility defined by the input model. Alternatively, the same 

effect can be achieved by partitioning a rotamer’s voxel into several smaller disjoint voxels, 

V1, V2, …, Vn, and creating a new partitioned rotamer, ir1, ir2, …, irn, for each new voxel 

such that the new voxels completely cover the space of the original voxel V, V1 ∪ V2 ∪ … ∪ 

Vn = V. A new bound can be computed for each new rotamer with respect to its new voxel. 

The smaller voxels allow the bounds to be tighter than the original bound for ir, but the new 

bounds still remain valid lower bounds. This partitioning comes at the cost of adding n new 

rotamers to the protein design search so it is important to only partition rotamers when the 

difference between the original bounds and the new bounds, 

, is large.

The rotamer partitioning search scheme shown in Figure 4 and Algorithm 1 details the 

divide-and-conquer method PartCR that uses partitioned rotamers to improve pairwise 

bounds and increase the efficiency of a continuous rotamer design search. Once the 

conformation with the lowest bound, ℓ, is found, the conformation enumeration is paused 

and the rotamers ir within ℓ are ranked by their bound error, ε(ir). The rotamers with the 

largest error are split into partitioned rotamers (Fig. 5A; Alg. 1, Line 10) and new bounds for 

the partitioned rotamers are calculated. Since the algorithm targets the rotamers with the 

worst bounds, it is likely that the pairwise bounds will significantly increase, causing the 
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lower bound of the next enumerated conformation ℓm+1 to increase as well: E⊖(ℓm) ≤ 

E⊖(ℓm+1) (Fig. 5B). Since E⊖(ℓm) ≤ E⊖(ℓm+1), we know that Im+1 ≤ Im and now Im+1 can be 

used to potentially prune additional rotamers. The algorithm continues by iteratively 

enumerating conformations and partitioning rotamers from those conformations with the 

largest error bounds. After each partitioning step, the Im+1 value can be calculated and if 

Im+1 < Im, DEE can be used to prune additional rotamers. These steps can be repeated until 

E⊖(ℓm) ≥ ET (g), which guarantees that the minGMEC is found.

Algorithm 1

Partitioning Continuous Rotamers (PartCR) Algorithm

1: Ebest ← ∞, I ← ∞

2: while I > ECUT do

3:  Prune and remove rotamers using I

4:  Find ℓ using WCSP framework

5:  Ebest ← min(Ebest, ET(ℓ))

6:  I ← Ebest − E⊖(ℓ)

7:  L ← {ℓ}

8:  while E⊖(L) ≤ Ebest do

9:   Find the rotamer ir ∈ ℓ with the largest bound error, ε(ir)

10:   newRots ← PartitionRotamer(ir)

11:   Replace ir with newRots in Emat

12:   Recalculate energies for newRots

13:   L ← newConfs(newRots, ℓ)

14:  end while

15: end while

16: Enumerate remaining conformations with modified A* until minGMEC is found (See text)

Algorithm 1 describes in detail the PartCR algorithm used for the partitioning continuous 

rotamers. The PartCR algorithm takes as input ECUT, which defines the energy cutoff 

where the algorithm switches from improving the energy bounds by partitioning rotamers to 

enumerating conformations. In Line 4, ℓ is the conformation with the lowest bound. Ebest is 

the energy of the best conformation found so far, ET (ℓ) is the minimized energy of 

conformation ℓ, and E⊖ (L) is the lower bound for all conformations in L. The function 

PartitionRotamer takes as input a rotamer, ir, and returns a set of partitioned rotamers that 

partition the voxel of ir. The function newConfs takes as input a parent rotamer, ir, a set of 

partitioned rotamers, and the current set of conformations L and returns a new set of 

conformations where the parent rotamer has been replaced by each partitioned rotamer. 

Therefore, L is repeatedly updated to reflect all the conformations created by partitioning the 

rotamer dihedral space.

Several improvements can be made to Algorithm 1 to make it run faster in practice. First, to 

reduce the number of rotamers the weighted constraint satisfaction problem search at Line 4 

must search through, rotamers can be temporarily pruned immediately before the 

conformation search using I = 0 and then immediately unpruned once ℓ has been found. 
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Next, an additional criterion can be added to the loop at Line 8 to ensure that rotamers are 

not split unnecessarily. Splitting a rotamer that already has a tight bound will likely just add 

a rotamer and complicate the conformation search without any improvement in bounds. 

Therefore, we can stop splitting rotamers when the majority of the bound error has been 

ameliorated. In our implementation, rotamers were partitioned until the split rotamers 

cumulatively accounted for more than 75% of the bound error or if the bound error ET (ℓ) − 

E⊖(L) becomes less than 70% of the original bound error ET (ℓ) − E⊖(ℓ).

In the last step of the PartCR design protocol (Line 16), the A* heuristic has been modified 

so that all partitioned rotamers that came from the same parent rotamer are considered part 

of the same conformation. For example, if node x is expanded at residue position i and there 

are six available rotamers, normally six nodes will be added to the queue. However, if three 

of the six rotamers ir1, ir2, and ir3are partitioned rotamers that all came from the same parent 

rotamer, ir, all three rotamers will be assigned to the same A* node, resulting in only four 

new nodes added to the A* tree. Therefore, each leaf node will correspond to a parent 

rotamer conformation, but several partitioned rotamers can be assigned to the conformation. 

Once the leaf node is extracted from the A* tree, a quick WCSP search over the allowed 

partitioned rotamers can find the actual rotamer assignment with the lowest bound. osprey 

was modified to use the WCSP solver Toulbar2 for the WCSP searches [28, 31].

2.5 Bounding Higher Order Rotamer Tuples

As illustrated in Section 2.3, when the lower bound for a given conformation is loose, this is 

usually because a subset of rotamers in the conformation have poor pairwise bounds. By 

identifying these poorly bounded rotamers during conformation enumeration, a new bound 

can be be obtained for the higher-order partial rotamer conformation to improve the bound 

for subsequent conformations. The HOT algorithm calculates higher-order bounds and 

incorporates them into the design search to efficiently reduce the number of conformations 

that must be enumerated to find the minGMEC (Fig. 4).

When a conformation is enumerated from A* based on its lower bound and is fully 

minimized, ε(ir) can be determined for every rotamer. A new bound for the three rotamers 

with the largest ε(ir) values can be calculated by minimizing those three rotamers together 

while ignoring the energy contributions from all other mutable residues. This is analogous to 

calculating pairwise bounds, except that three rotamers are present instead of two. This 

ternary bound will be tighter than the individual pairwise bounds: E⊖(ir, js, kt) ≥ E⊖(ir, js) + 

E⊖(ir, kt) + E⊖(js, kt), which can improve the bounds of all conformations in D that contain 

these three rotamers. This new bound can be incorporated into the enumeration search to 

create a more accurate energy landscape. Once new bounds are computed, the conformation 

enumeration can resume, alternating between enumerating conformations based on their 

lower bound and computing higher-order bounds. As more higher-order bounds are included 

in the search, only conformations with tight bounds will be enumerated, which uncovers a 

quick path to the minGMEC. If needed, even higher-order bounds (quaternary, quinary, up 

to n-ary) can be obtained by minimizing partial rotamer conformations that contain four or 

more rotamers. In practice, the HOT algorithm uses a heuristic (Algorithm 2 Line 13) to 

determine when to stop increasing the size of the partial conformation used to calculate 
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additional higher-order bounds and switch back to enumerating the next protein 

conformation with the lowest energy bound.

Algorithm 2 describes in detail how the HOT algorithm improves poor energy bounds by 

incorporating higher-order minimization of rotamer tuples into the design search. The 

function pop is the standard function for a queue that removes and returns the first element 

in the queue. The partial conformation s is minimized to calculate a higher-order term that 

provides a much tighter energy bound on the conformation ℓ. Finally, the function 

newBound recalculates the energy bound on the conformation ℓ given the energy of the 

partial conformation s.

HOT and ILP—The HOT algorithm is similar to PartCR, but it calculates higher-order 

bounds rather than partitioning rotamers. These higher-order bounds cannot be easily 

incorporated into the DEE pruning step because traditional DEE criteria only consider single 

and pairwise rotamer terms. However, the higher-order terms can be incorporated into the 

conformation search at Line 4 of the HOT algorithm (Algorithm 2). We developed 

enhancements for both the A* [25] and integer linear program (ILP) [29] CSPD 

conformational search methods that allows the methods to account for higher-order terms 

during the search. These enhancements were implemented in OSPREY and used to test the 

HOT algorithm. Here we focus on how we modified the traditional ILP CSPD formulation 

[29] to incorporate higher-order terms.

Algorithm 2

Higher-Order Terms Algorithm

1: Ebest ← ∞, I ← ∞

2: while True do

3:  Prune rotamers with I using iMinDEE [4]

4:  Find the conformation ℓ with the lowest energy bound

5:  Ebest ← min(Ebest, ET(ℓ))

6:  if I < Ebest − E⊖(ℓ) then

7:   Exit ▷ The minGMEC has been found

8:  else if E⊖(ℓ) > Ebest then

9:   I ← min(ET(ℓ) − E⊖(ℓ), 2I)

10:  end if

11:  rots ← Rotamers of ℓ in order of largest bound error, ε(ir)

12:  s ← {rots.pop()}

13:  while E⊖(ℓ|s) < E⊖(ℓ) + I and E⊖(ℓ|s) < Ebest do

14:   s ← s ∪ {rots.pop()}

15:   Minimize the partial rotamer conformation s

16:   Add s to the list of calculated higher-order bounds

17:   E⊖(ℓ|s) ← newBound(ℓ, ET(s))

18:  end while

19: end while
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Integer linear programming is a general mathematical technique to optimize an objective 

function given a set of linear constraints where all the variables must be integers. Many 

standard techniques and software packages exist for solving ILP problems [32, 33], which 

CSPD can exploit when the CSPD problem is represented as an ILP. To convert CSPD into 

an ILP, the protein design problem can be represented as a graph search problem [29]. In 

this framework, the graph G is an undirected p-partite graph with node sets V1, …, Vp for 

each residue position, where Vi includes a node u for each rotamer ir at position i. Each 

internal node is assigned a weight equal to the intra-rotamer energy E(ir) and an edge is 

placed between every interacting rotamer pair ir and js where the weight of the edge is E(ir, 

js). The GMEC is determined by finding a single node u per Vi that minimizes the weight of 

the induced subgraph.

This graph problem can be formulated as an integer linear program (ILP) as follows [29]:

(6)

subject to

where x(ir), x(ir, js) ∈ {0, 1}. When the decision variable x(ir) or x(ir, js) is set to 1, this 

corresponds to choosing rotamer ir or rotamer pair (ir, js) respectively.

We modified the standard CSPD ILP framework to incorporate higher-order energy terms as 

follows. Let H be the set of all partial rotamer conformations for which higher-order bounds 

have been calculated. To modify the CSPD ILP to include higher-order bounds, a new 

decision variable, x(t), can be added to the ILP for every higher-order rotamer conformation 

t ∈ H. Every new decision variable x(t) has an associated cost function c(t) such that the 

new ILP objective function is:

(7)

In addition, corresponding constraints must be added to the ILP to require x(t) = 1 if and 

only if all the rotamers in t are selected as part of the GMEC:

(8)

The partial conformation t can be represented as a subset of a fully assigned conformation a 
(Eq. 1). Hence, we use |t| to denote the number of elements in t, and we use ir ∈ t to denote 
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an assigned rotamer in t. The second set of constraints in Eq. (8) ensure that x(t) cannot be 

set to 1 if any of the rotamers in t are not chosen.

In this framework, the decision variables for the intra-rotamer and pairwise energies in t are 

still turned on in the ILP objective function when a conformation a is chosen that contains 

the partial conformation t. To avoid double counting energies, c(t) should not be the energy 

of the partial conformation, but rather a correction term that represents the added cost of 

simultaneously minimizing all the rotamers in the partial conformation t. Specifically, c(t) is 

the energy difference between the pairwise bound of conformation t and the conformation’s 

higher-order bound: . However, this term 

still double counts energetic contributions when multiple smaller partial conformations are 

contained in (i.e., have the same rotamers as) a larger partial conformation, t1, t2, ···, tm ∈ t. 
To prevent this double counting, c(t) must be modified to include the costs from all the other 

higher-order bounds that are contained within it. Finally, c(t) should never be negative, 

because it is the cost associated with moving from pairwise terms to higher-order terms. 

Using all of this information, we have

(9)

This newly constructed ILP can be used at Line 4 to incorporate the higher-order terms into 

the conformation search. This ILP framework was implemented in OSPREY and solved 

using the Gurobi optimization suite application programming interface (Version 5.6) [32].

Rotamer Combination Methods—In Step 14 of the HOT algorithm, rotamers ir are 

added to the partial conformation s in order of their bound error, ε(ir). This ordering was 

chosen because rotamers with the largest bound error provide the greatest opportunity for 

improving the bound. This approach assumes that the rotamers with large ε(ir) values all 

affect each other during minimization, so if they are minimized together the overall bound 

will be improved. This is a likely scenario because a large bound error implies that two or 

more rotamers minimize to similar positions in 3D space and are prevented from doing so 

when all rotamers are minimized together. However, this is not the only scenario that can 

result in a large ε(ir) value.

Consider the scenario in Figure 6 where two rotamers (ir, kt) minimize favorably with one 

another (Note, this scenario is a specific instantiation of the general case shown in Figure 

2B). It is possible that a third rotamer, js, interacts with ir and kt but has no bound error (i.e., 

ET(kt) − E⊖(kt) = 0), meaning that its conformation stays the same between pairwise and 

global minimizations. If js is located in between ir and kt in the protein conformation, 

minimizing the partial conformation (ir, js, kt) reveals that js disrupts the favorable 

interactions between (ir, kt). The disruption of the favorable pairwise minimization of (ir, kt) 

means that both of these rotamers would have relatively large bound errors. Because of their 

large bound errors, ir and kt will be quickly added to the higher-order term used by HOT. 

However, since js has a bound error of zero, it would be the last rotamer added to the higher-
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order term, yet js would improve the bound the most. Therefore, for this particular case 

another strategy is needed to correctly build useful higher-order terms for HOT. One such 

strategy is described below.

An amino acid generally interacts most strongly with the side chains that are closest to it in 

Cartesian space, implying that rotamer minimization is most impacted by rotamers that are 

in the closest proximity. Therefore, an alternative approach for adding rotamers to the 

higher-order term is to add additional rotamers based on their distance to the rotamer with 

the largest ε(ir). This fixes the problem described above, where the crucial rotamer kt was 

the last rotamer to be included in the higher-order term. Adding rotamers to the higher-order 

term in order of their proximity to the rotamer with the largest bound error constructs partial 

conformations where each rotamer in the partial conformation is likely to affect the 

minimization of the others. In practice, however, we find that ordering rotamers 17 based on 

their error bounds works well, so we do not further analyze the distance-based method in the 

results.

2.6 Protein Core Design Tests

The 73 protein core designs from [4] were used to compare the iMinDEE algorithm to the 

new PartCR and HOT algorithms. The energy function weights are the same as those used in 

the native sequence recovery portion of [4]. Continuous rotamers were defined using the 

Lovell rotamer library [2] as in [26, 4], where each rotamer voxel was defined as ±9° to each 

rotamer dihedral. Each design was run on a single processor and given 4GB of RAM.

3 Results

The iMinDEE algorithm for CSPD with continuous rotamers must enumerate many con- 

formations before it can identify the minGMEC. The large number of conformations causes 

the A* tree to become large, which slows down the design search and can ultimately cause 

the design to require large amounts of memory. The algorithms presented here specifically 

target and reduce loose pairwise bounds to reduce the number of conformations that must be 

enumerated to find the minGMEC.

The original iMinDEE algorithm was compared to the novel HOT and PartCR algorithms 

for 73 protein core designs. The iMinDEE algorithm was unable to complete 28 of the 73 

design systems tested. Both the HOT and PartCR algorithms were able to successfully find 

the minGMEC for every design system in the test set. If the design systems are sorted by the 

minimum time it takes any of the three algorithms to complete, there appear to be three 

different regimes. For easy protein design problems (problems where at least one algorithm 

finished within 15 seconds), iMinDEE and HOT are often able to complete the designs 

faster than PartCR (Fig. 7). In this regime, the median time to completion for iMinDEE and 

HOT is 7.8 and 8.9 seconds, respectively, while PartCR increases to 48 seconds. For all but 

these easiest problems, PartCR and HOT solve the problem faster than iMinDEE. For 

problems of medium difficulty (those that take greater then 15 but less than 975 seconds) 

HOT dominates PartCR and iMinDEE with a median completion time of 118 seconds, 

compared to 354 seconds and 579 seconds, respectively. However, on the most difficult 

problems, PartCR outperforms HOT with a median completion time of 4576 seconds 
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compared to 9000 seconds (iMinDEE does not complete for any of these systems). When 

looking at individual designs, PartCR was able to obtain as much as a 44-fold speedup over 

HOT, and PartCR solved the most complex design 3.8 days faster than HOT.

The new CSPD algorithms are able to speed up the CSPD search because they improve the 

energy bounds over the pairwise bounds used by iMinDEE. By improving the bounds, the 

number of conformations that must be enumerated before the GMEC is found is reduced, 

which speeds up the overall run. Figure 8 shows the reduction in enumerated conformations 

for the 73 protein design systems tested. For all but the most simple designs, PartCR and 

HOT greatly reduce the number of conformations that must be enumerated. For the 28 

designs that were unable to complete with iMinDEE, PartCR and HOT never enumerated 

more than 1269 or 776 conformations, respectively. That is two orders of magnitude smaller 

than what iMinDEE required to complete the simpler design systems. For the design 

systems that iMinDEE did complete, the average fold decrease in the number of enumerated 

conformations was 135- and 132-fold for PartCR and HOT. While the runtime of the design 

correlates with the number of conformations that must be enumerated, PartCR and HOT 

must do additional work for every enumerated conformation. On average, PartCR and HOT 

take 16 and 40 seconds per conformation, while iMinDEE only takes 2 seconds per 

conformation. Therefore, the new algorithms take longer per conformation than iMinDEE, 

but the large reduction in the number of conformations greatly outweighs this extra required 

work.

The HOT and PartCR algorithms both rely on the principle that only a few rotamer 

combinations with a large bound error must be improved to find the minGMEC. Even if a 

small fraction of all partial conformations had to be improved, this would be prohibitively 

expensive. For all of the systems tested, the number of rotamer partitions and higher-order 

terms that needed to be calculated were very small (Fig. 9). The design systems had a 

maximum conformation space of 1025 potential conformations, but the maximum number of 

rotamer partitions and higher-order terms needed for any design were merely 1078 and 

2577, respectively. This shows the power of only improving the rotamer interactions with 

the worst bounds.

Specifically, consider the design system for Cytochrome c555 from A. aeolicus (PDB id: 

2ZXY), which has 14 mutable positions and 174 continuous rotamers remaining after 

iMinDEE pruning for a total of 1014 possible conformations. In order to find the minGMEC, 

iMinDEE had to enumerate over 125,000 conformations. The PartCR algorithm was able to 

find the minGMEC after only enumerating 44 conformations and splitting 39 rotamers. 

Similarly, HOT had to enumerate only 107 conformations and calculate higher-order bounds 

for only 390 partial rotamer conformations. This demonstrates that only a fraction of the 

pairwise bounds in the design system must be improved to generate full conformation 

bounds that are tight and can be used to directly find the minGMEC.

HOT and PartCR both increase the speed of CSPD with continuous rotamers by improving 

large error bounds that arise during the search. One key difference between the two 

algorithms is that PartCR maintains the pairwise nature of the design by not adding any 

higher-order terms to the search. By partitioning the search space into rotamers with reduced 
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voxel sizes, the partitioned rotamers can be analyzed by DEE to prune additional rotamers 

(Fig. 4). Partitioning rotamers increases the value of E⊖(ℓ) (see Section 2.4), which reduces 

the I value in the iMinDEE pruning criterion, ultimately strengthening its pruning capability. 

After rotamers are partitioned and DEE is run with the new Im+1 pruning value, not only can 

newly added partitioned rotamers be pruned, but original parent rotamers can be pruned that 

were unpruned in previous DEE steps. During the PartCR designs, up to 83% more rotamers 

were pruned over the initial iMinDEE pruning (Fig. 10). As with all DEE pruning, this 

removal of additional rotamers exponentially reduces the number of conformations that the 

conformation enumeration step searches over. By not adding higher-order terms to improve 

the search, PartCR can take advantage of advanced DEE pruning methods to quickly narrow 

the search space.

4 Discussion

A clear challenge in CSPD is to incorporate realistic protein flexibility into the design search 

so that low-energy conformations/sequences are not missed by the search. Rigid rotamers 

neglect a side chain’s movement within its rotameric well. This flexibility can be recovered 

in CSPD with the use of continuous rotamers and has been shown to be crucial for success 

in several protein designs. Continuous rotamers introduce specific challenges to protein 

design because the energy of continuous rotamer interactions can only be bounded and not 

computed exactly. These bounds weaken both the pruning and conformation enumeration 

steps of CSPD. If the pairwise bounds are loose, a large number of conformations must be 

enumerated before the minGMEC is guaranteed to be found. The new algorithms presented 

here, HOT and PartCR, specifically improve partial rotamer interactions that have large 

energy bound errors. These new methods are both able to solve more complex problems 

than previously possible.

The bound errors of continuous rotamers stem from the pairwise nature of the bounds 

calculation. PartCR and HOT target partial rotamer conformations with poor bounds, but in 

different ways. HOT calculates energy bounds for progressively higher-order partial rotamer 

conformations. Because the pruning step in CSPD relies on pairwise interactions, the newly 

computed higher-order terms can only be incorporated during the conformation enumeration 

step. Alternatively, PartCR partitions a rotamer with poor bounds into smaller voxels to 

better bound the rugged energy landscape. This maintains the pairwise nature of the problem 

and allows for both increased pruning and a reduction in the number of conformations that 

must be enumerated. The ability of PartCR to take advantage of further rounds of DEE 

pruning is likely why it performs better on the most difficult problems.

While it is possible to use higher-order DEE criteria [27] to incorporate the higher-order 

bounds calculated by HOT into the rotamer pruning step, it is unclear if this would improve 

the speed of the design search. First, HOT only needs to calculate a small number of higher-

order bounds, whereas m-tuple DEE searches over all m-tuple partial rotamer conformations. 

Second, the runtime of the more complex m-tuple DEE criteria is exponential with respect to 

m, so while the pruning might increase, the overall runtime of the design search might 

significantly increase to accommodate the additional pruning. Third, m-tuple pruning cannot 

directly prune individual rotamers, but rather only prune (m 1)-tuples. As m grows, an 
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increasingly large number of partial conformations must be pruned before a single rotamer 

can be pruned. Therefore, it is likely unproductive to enhance time-consuming higher-order 

DEE criteria with only a small number of higher-order terms calculated by HOT.

The protein design test cases we used focused on continuous rotamers with only side-chain 

flexibility. However, PartCR and HOT can be applied to both side-chain and backbone 

flexibility. The DEEPER algorithm has already demonstrated the ability to use continuous 

rotamers to model side-chain and backbone flexibility simultaneously [27]. Combining 

either PartCR or HOT with the DEEPER protocol for residue conformations (RCs) will 

allow efficient side-chain and backbone flexibility to enable accurate and detailed protein 

designs.

The field of CSPD holds much promise for therapeutics and biological diagnostics. Methods 

that improve the computational design search to allow more realistic protein flexibility are 

crucial to the accuracy of CSPD. The methods presented here make continuous rotamer 

design applicable to large, complex protein design systems and extend the impact of 

computational protein design.

5 Software Availability

The PartCR and HOT algorithms were implemented in the osprey CSPD software suite. 

osprey is free and open source under a Lesser GPL license. The program, user manual, and 

source code are available at www.cs.duke.edu/donaldlab/osprey.php.
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Fig. 1. OSPREY Protein Design Overview
The OSPREY protein design software [20] takes as input an initial protein structure, a 

rotamer library, an energy function to rank conformations, and the allowed flexibility of the 

protein during the search. OSPREY uses DEE criteria to prune rotamers from the search that 

are guaranteed to not participate in any low energy conformations. The rotamers remaining 

after pruning are input to the conformation enumeration step where conformations are 

enumerated in order of lowest energy, or in the case of continuous rotamers, in order of 

lowest energy bound.
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Fig. 2. Two possible ways for large bound errors to occur during the design search
A) When ir is pairwise minimized with two different rotamers, js and kt, the optimal position 

of ir is different for the two pairwise interactions. When all three rotamers are minimized 

simultaneously, ir cannot be in two places at once, so the globally optimal positioning of the 

rotamers is suboptimal with respect to the pairwise interactions. Therefore, the global 

minimum for all three rotamers is higher than the optimal pairwise minima. The shaded box 

represents the continuous voxel for continuous rotamer ir. The colored dots show 

schematically the movement of the ir rotamer within its voxel from its pairwise optimal 

positioning (with js, blue; with kt, red) to its globally optimal positioning (green). B) Two 

rotamers, ir and js, may minimize to the same real space position, but when minimized 

simultaneously protein sterics does not allow the rotamers to occupy the same Cartesian 

coordinates. As in A), the global minimum for all three rotamers is suboptimal relative to the 

pairwise bounds, resulting in a global minimum that is higher than the pairwise minima. The 

shaded boxes represent the continuous voxels for rotamers ir and js. The colored dots show 

schematically the movement of the ir and js rotamers within their voxel from their pairwise 

optimal positioning (blue and red) to their globally optimal positioning (green).
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Fig. 3. Example of large bound error from a protein core design
For the protein core design of S. pneumoniae PhtA histidine triad (PDB id: 2CS7), the triple 

of rotamers, Trp11, Ile26, and Met35, account for 66% of the error between the actual 

minimized energy and the pairwise lower energy bounds for ℓ, the conformation with the 

lowest energy bound. Panels A) and B) show the minimized pairwise interactions between 

Trp11 and Ile26, and Trp11 and Met35 respectively. In both of these cases blue and green 

contact dots show that the rotamers interact favorably (contact dots generated by Probe [34] 

using Protein Interaction Viewer [35]). C) While the rotamers had favorable pairwise 

interactions, when all three rotamers are minimized simultaneously the rotamers clash 

(shown by red and yellow contact dots). Therefore, the global minimum energy is much 

higher than the local pairwise bounds. D) Alignment of the Trp11 conformation when 

minimized with Ile26 (blue), Met35 (magenta), or both Ile26 and Met35 (green). E) 
Schematic of Trp11 rotamer minimization. Shaded blue boxes represent the voxel of the 

Trp11 continuous rotamer, and the colored dots represent the optimal placement of Trp11 

when minimized in the presence of the different rotamers.
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Fig. 4. Overview of HOT and PartCR algorithms
Top) The overall scheme for using partitioned rotamers to improve CPSD with continuous 

rotamers. First, the standard iMinDEE protocol [4] is used to prune rotamers and find the 

conformation, ℓ, with the lowest bound. Next, bound errors (ε(ir) = ET(ir) − E⊖(ir)) are 

computed for each rotamer in ℓ. The rotamers with the largest (worst) bounds are split into 

two or more partitioned rotamers. If the lower bound of ℓ is greater than the best energy that 

has been found so far, the search is finished. Otherwise, the 

pruning value can be calculated and can be used to prune additional rotamers with DEE. 

Note that when a rotamer is partitioned the pairwise bounds can increase, which increases 

the E⊖(ℓ) from the previous iteration. Therefore, re-pruning rotamers (a) has the ability not 

only to prune rotamers that weren’t originally pruned, but also to prune partitioned rotamers 

that were just created. The process of pruning rotamers, enumerating conformations, and 

partitioning rotamers continues until the stopping criterion (Eq. 4) is reached, which 

guarantees that the minGMEC has been found. Bottom) The HOT algorithm proceeds 

similarly to the PartCR algorithm. The main difference is that higher-order terms (HOTs) 

are used to improve the search instead of partitioning rotamers. Since traditional DEE 

criteria cannot utilize these higher-order terms, the HOT algorithm only performs DEE once 

and the loop (b) returns directly to the enumeration stage to compute the next conformation 

with the lowest energy bound.
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Fig. 5. Rotamer Partitioning Scheme and Benefits of Partitioned Rotamers
A) An example of how a rotamer is partitioned. In this example the rotamer r with two 

dihedrals is first partitioned along the χ1 dimension to create two new rotamers r1 and r2. 

Next the partitioned rotamer r1 is further split along the χ2 dimension to create the 

partitioned rotamers r1a and r1b. B) In the original iMinDEE protocol, as conformations are 

enumerated the pairwise bounds are never updated so E⊖(ℓ) remain constant. However, 

during a partitioned rotamer design the bounds are updated, which increases E⊖(ℓ) during 

the run. Since the iMinDEE I value is defined as I = ET (g′) − E⊖(ℓ), the Im+1 value 

continuously shrinks during the partitioned rotamer conformation enumeration, allowing for 

additional rotamers to be pruned as more rotamers are partitioned.
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Fig. 6. A problematic scenario can occur if rotamers are combined to form higher-order terms 
based solely on bound error
A) Pairwise minimizations for three pairs of rotamers. Note that when calculating pairwise 

bounds, ir and kt minimize favorably with one another. B) Conformation of all three 

rotamers from A) when they are globally minimized together. When globally minimized, js 

maintains the same conformation as when pairwise minimized, but ir and kt no longer 

interact favorably with one another. C) The three shaded boxes represent the continuous 

voxels for ir, js, and kt. The colored dots schematically show the movement of each rotamer 

from its pairwise minimized conformation (blue and orange) to its globally optimal 

conformation (green). Rotamer js does not change conformations, which means that ε(js) = 

0. However, ir and kt both have large movements, which suggests their bound errors are 

much greater than zero. If rotamers are added to higher-order terms based on bound error, js 

would be the last rotamer added to the higher-order term, yet minimizing ir and kt with js 

would improve the bound the most.
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Fig. 7. Comparison of runtime for iMinDEE vs. two new algorithms that improve pairwise 
bounds during the CSPD search
iMinDEE, PartCR, and HOT were tested on 73 protein core designs. iMinDEE failed on 28 

of the designs (designs to the right of the dotted line), while PartCR and HOT completed all 

of the designs successfully. The bottom inverted graph shows the number of conformations 

that remained after iMinDEE pruning for each design system.
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Fig. 8. Number of conformations that were enumerated by iMinDEE, PartCR and HOT
PartCR and HOT greatly reduce the number of conformations that must be enumerated to 

find the minGMEC. This reduction in the number of conformations corresponds with the 

improvement in runtime achieved by the new algorithms. The bottom inverted graph shows 

the number of conformations that remained after iMinDEE pruning for each design system.
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Fig. 9. Comparison of the number of partial rotamer conformations that were computed by 
PartCR and HOT
PartCR and HOT only needed to target a small number of partial rotamer conformations 

with large error bounds to find the minGMEC. For the design test cases there were as many 

as 1025 conformations possible for a single design problem. PartCR only needed at most 

1078 rotamer partitions to find the minGMEC. Similarly, HOT only needed to compute at 

most 2577 higher-order terms. Thus, the number of partial conformations needed is only a 

small fraction (always less than 10−16% for difficult systems) of the total conformational 

search space. Additionally, the number of partitions and higher-order terms that PartCR and 

HOT must calculate correlate with each other. This suggests that both algorithms need to do 

a similar amount of work as the complexity of the CSPD system increases.

Roberts and Donald Page 26

Proteins. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. Percentage of rotamers pruned by PartCR after pruning by iMinDEE
PartCR prunes additional rotamers after iMinDEE pruning has been conducted. Up to 83% 

additional pruning can be achieved over the stringent iMinDEE criteria in [4]. For five of the 

six systems with no improvement in pruning, PartCR was able to solve the problem by 

enumerating at most two conformations, indicating that these problems were relatively easy 

to solve and most of the pruning was likely done by iMinDEE.
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