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Abstract

Objectives—To evaluate the effect of a novel divided attention task—walking under auditory 

constraints—on gait performance in older adults and to determine whether this effect was 

moderated by cognitive status.

Design—Validation cohort.

Setting—General community.

Participants—Ambulatory older adults without dementia (N=104).

Interventions—Not applicable.

Main Outcome Measures—In this pilot study, we evaluated walking under auditory 

constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 

randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally 

charged auditory stimulation with happy or sad sounds.

Results—The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The 

mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 

steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed 

using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal 

cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and 

sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase 

of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in 

cadence (F1.75,180.42=10.12; P<.001) as compared with trials without auditory stimulation. In 

contrast, older adults with minimal cognitive impairment (Blessed test score, 5–10; n=8) showed 
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an average reduction of 5.45cm/s in gait velocity (F1.87,190.83=5.62; P=.005) and an average 

reduction of 3.88 steps/min in cadence (F1.79,183.10=8.21; P=.001) under both auditory stimulation 

conditions. Neither baseline fall history nor performance of activities of daily living accounted for 

these differences.

Conclusions—Our results provide preliminary evidence of the differentiating effect of 

emotionally charged auditory stimuli on gait performance in older individuals with minimal 

cognitive impairment compared with those without minimal cognitive impairment. A divided 

attention task using emotionally charged auditory stimuli might be able to elicit compensatory 

improvement in gait performance in cognitively intact older individuals, but lead to 

decompensation in those with minimal cognitive impairment. Further investigation is needed to 

compare gait performance under this task to gait on other dual-task paradigms and to separately 

examine the effect of physiological aging versus cognitive impairment on gait during walking 

under auditory constraints.
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Walking is the most commonly reported physical activity in adults.1–5 Even in young 

healthy individuals, walking is a complex motor task, similar to catching a moving object, 

and has been shown to require higher-level cognitive resources, such as executive function.6 

Performing gait analysis during a simultaneous cognitive challenge represents an 

opportunity to screen elderly individuals who may be at a higher risk of falls and may 

facilitate their identification before a sentinel event.7–16

The walking while talking task is a divided attention task that involves both cognitive and 

motor components and has been shown to be a reliable and valid test to identify older adults 

at high risk of multiple adverse outcomes such as falls,9 frailty, disability, and death.17,18 

Walking while talking replicates what many would consider a “typical” experience for 

elderly individuals because many individuals may engage in intermittent conversation 

during ambulatory activity. However, walking during listening to background auditory 

stimuli is an even more ubiquitous occurrence.19–24 Walking while listening to background 

auditory stimuli may be more ecologically valid because it has been shown that older adults 

have greater difficulty focusing on tasks when distracted by irrelevant information.25 

Acoustically novel stimuli demand attention and produce a distracting effect that can persist 

for a period of time. In fact, the degree of distraction and its effect on cognitive tasks have 

been shown to increase with age.26 The increased distractibility may be partially due to an 

age-related reduction in processing speed and attention.27

However, all auditory stimuli are not the same. Some types of auditory stimuli have been 

shown to increase function. For example, rhythmic auditory stimulation has been shown to 

increase gait velocity and stride length via motor entrainment.28–34 Affective nonverbal 

vocalizations—laughing and crying—have also been shown to activate the human amygdala 

regardless of attentive state,35–39 suggesting that we might be more sensitive to emotionally 

salient background auditory stimuli. Emotional states have also been shown to have specific 

effects on gait40–43: for example, depressive states decrease ground reaction forces, pleasant 
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emotional states facilitate initiation of forward gait, and anxiety states increase the 

attentional demand for locomotion.44 Given the sensitivity of gait parameters to different 

emotional states, an emotionally salient listening task may be an ideal interference task to 

challenge the cognitive reserve for mobility and assess fall risk in elderly individuals.

The objective of this preliminary study was to evaluate the effect of a novel divided 

attention task—walking under auditory constraints—in older adults. A second objective was 

to determine whether this effect was moderated by cognitive status. We hypothesized that 

emotionally charged auditory stimuli would elicit compensation (improvement in gait 

performance) in cognitively intact older adults, but decompensation (decline in gait 

performance) in older adults with minimal cognitive impairment.

Methods

Subjects

One hundred and five community-residing older adults who were participants in the Latent 

Mobility Abnormality Study45,46 were included for the walking under auditory constraints 

protocol. Informed consent was obtained as per the study protocol approved by the local 

institutional review board (Division of Cognitive and Motor Aging, Saul R. Korey 

Department of Neurology, Albert Einstein College of Medicine, Bronx, NY). Inclusion 

criteria were age ≥70 years and ambulatory status. Participants who were ambulatory but 

used walking aids were excluded from this sub-study. Exclusion criteria included severe 

audiovisual loss (unable to follow questions asked in a loud voice or corrected vision 

<20/200), dementia (as diagnosed by a consensus case conference), and being bed bound or 

institutionalized.

A detailed neuropsychological test battery was administered, consisting of the Blessed 

Information-Memory-Concentration Test for general cognition,47 the Free and Cued 

Selective Reminding Test48 for memory, the digit symbol substitution test for cognitive 

processing,49 the letter fluency test50 for executive function, and the digit span test49 for 

attention. For the purposes of this study, the Blessed-Information-Memory Concentration 

Test47 and the Geriatric Depression Scale51 were used to test associations between gait and 

cognitive status.52 Dementia diagnosis was assigned at consensus case conferences using the 

Diagnostic and Statistical Manual, Fourth Edition, criteria53 and subtyped using established 

criteria.45,46 The consensus case conference included a neurologist with geriatric expertise, a 

psychologist, and a social worker54 who reviewed all available clinical history, examination, 

and neuropsychological test findings, as previously described.55,56 The literature57,58 

supports a high correlation between consensus diagnoses and pathological findings. We 

excluded 1 subject who met the study criteria for dementia. Of the 105 subjects, 104 (99%) 

were eligible for this analysis.

At the baseline study visit, all subjects were assessed on their ability to perform 7 activities 

of daily living (ADL): bathing, dressing, grooming, feeding, toileting, walking around the 

home, and getting up from a chair. For each task, participants were asked, “At the present 

time, are you unable to or do you need help from another person to complete the task?” If 

the response was “yes,” the task was scored as 2. If the response was “no,” participants were 
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asked a follow-up question: “Do you have difficulty in completing the task?” The task was 

scored as 1 for the response of “yes” and 0 for the response of “no.” The disability score was 

calculated as a sum of the scores from 7 ADLs, with a maximum disability score of 14 

(requiring help for all 7 ADLs) and a minimum of 0. Disability was defined as inability or 

requiring personal assistance in any of the 7 ADLs.59 The interviewer also assessed fall 

history over the last 12 months or 1 calendar year during the same baseline study visit. A fall 

was defined as an event which results in a person coming to rest inadvertently on the ground 

or other lower level and other than as a consequence of the following: sustaining a violent 

blow; loss of consciousness; sudden onset of paralysis, as in a stroke; or an epileptic 

seizure.60

Quantitative gait

Gait parameters were obtained using a computerized mat (457.2×90.17×0.63cm) embedded 

with pressure sensors. Start and stop points were marked by white lines on the floor and 

included 3ft each for initial acceleration and terminal deceleration for a total length of 6.4m. 

Subjects were instructed to walk on the mat at their “normal pace” for 2 trials in a quiet, 

well-lit hallway, wearing comfortable footwear. They were asked to resume walking as soon 

as they could in case they stopped walking for any reason during the trial. Trial 

administrators did not advise or encourage subjects during the trials and intervened only in 

situations in which subject safety was an issue. A trial was not repeated if it was interrupted 

for any reason. Monitoring devices were not attached to the participants during the test.

The GAITRite walkway systema computed quantitative gait parameters on the basis of 

footfalls recorded. Each trial was 1 walkway in length, and values analyzed were the mean 

of 2 trials computed automatically by the software. The following variables were obtained 

from the gait mat: step length, the distance between heel points of the current footfall and 

previous footfall on the opposite foot; cadence, the number of steps taken in a minute; stride 

length, the distance between the heel points of 2 consecutive footfalls of the same foot; gait 

velocity, the distance covered on 2 trials divided by ambulation time; and gait variability, 

the SD of stride length. Measurements made using this equipment have shown excellent 

reliability and validity.46,61

Auditory trials

Subjects were asked to walk on a computerized walkway twice for each of the 3 randomly 

assigned conditions: without auditory stimulation, with positively valenced auditory 

stimulation (happy sounds, the sound of a baby’s laughter), and with negatively valenced 

auditory stimulation (sad sounds, the sound of a woman wailing). Each sound track was 

approximately 10 seconds in length, lacked any specific rhythm, was begun before the start 

of walking, and was looped continuously for the duration of the walking trial. At the end of 

each trial, subjects were asked to rate the emotional valence of the happy or sad sounds on a 

scale of 1 (no emotion) to 10 (highest emotion) and their feelings in relation to just having 

heard the happy or sad sounds on a scale of 1 (no feeling) to 10 (highest feeling).

aGAITRite; CIR Systems Inc./GAITRite.
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Statistical analysis

Two-way factorial analysis of variance with a 1-between factor (cognitively intact and 

minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli) 

(mixed factorial design) was used on each of the gait parameters of interest to determine the 

effect of walking under auditory constraints. We included the Blessed test score that 

indicated cognitive impairment as a moderating variable to determine the effect of cognitive 

status on walking under auditory constraints. Subjects were dichotomized as cognitively 

intact for a Blessed test score of <5 and as having minimal cognitive impairment for a 

Blessed test score between 5 and 9.62 Continuous variables were reported with means and 

SDs, whereas categorical variables were reported as percentiles.

Because of the sample size imbalance between cognitively intact and minimal cognitive 

impairment groups, equality of variance assumptions were occasionally violated in the 

subsequent tests. To account for these discrepancies, statistical corrections were made where 

appropriate. A Greenhouse-Geisser correction for the effective degrees of freedom was 

implemented when Mauchly’s test of sphericity was violated, and the subsequent statistics 

were reported. A Python extension for SPSS version 20b called Fuzzy was used to search for 

8 cognitively intact subjects matched to the group with minimal cognitive impairment on 

emotional ratings of both auditory stimuli, and the mixed factorial analysis of variance was 

performed again on the matched groups. In addition, fall history and performance of ADLs 

were compared between the 2 groups to further validate the results. SPSS for Mac version 

20 was used for all analyses.

Results

The mean age of the 104 subjects was 80.6±4.9 years. Emotionally charged auditory 

stimulation had a significant effect on gait velocity (F1.86,191.7=3.9; P=.02) and cadence 

(F1.75,180.4=10.1; P<.001) for the entire sample.

Subjects were then separated into cognitively intact (n=96) and minimal cognitive 

impairment (n=8) groups on the basis of their Blessed test scores (1 subject met amnestic 

mild cognitive impairment syndrome criteria and 7 did not). Demographic information for 

both groups of subjects is given in table 1. Adding cognitive status as a between-subjects 

factor showed significant interaction effects with emotionally charged stimuli for both 

cadence and velocity, but not for walking time, stride length, swing time, or gait variability 

(table 2). Post hoc pairwise comparisons showed that in both happy and sad auditory 

stimulation trials, cognitively intact older adults (n=96) showed an average increase of 

2.68cm/s in gait velocity (F1.86, 191.71=3.99; P=.02) (fig 1A) and an average increase of 2.41 

steps/min in cadence (F1.75,180.42=10.12; P<.001) (fig 1B) as compared with trials without 

auditory stimulation. In contrast, older adults with minimal cognitive impairment (Blessed 

test score, 5–10; n=8) showed a reduction of 5.45cm/s in gait velocity (F1.87,190.83=5.62; P=.

005) and a reduction of 3.88 steps/min in cadence (F1.79,183.10=8.21; P=.001) under both 

auditory stimulation conditions (see fig 1; for additional statistics, see table 3). Additional 

post hoc tests showed that velocity was significantly different between the cognitively intact 

bSPSS version 20; IBM Corp.
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and minimal cognitive impairment groups under the sad condition (P=.043). There were no 

significant differences between groups at baseline or under the happy condition.

The mean rating scores of emotional valence for happy and sad sounds in subjects with 

minimal cognitive impairment were significantly higher than those in cognitively intact 

subjects (happy ratings: t54.5=5.97; P<.01; sad ratings: t102=2.18; P=.03) (fig 2). Subjective 

feeling scores were also compared between the 2 groups for happy and sad sounds. The 

mean feeling scores of happy and sad sounds in cognitively intact subjects were 6.7±3.2 and 

3.7±3.1, respectively. In contrast, the rating scores in subjects with minimal cognitive 

impairment were 8.8±2.8 and 7.3±2.6, respectively. The t tests showed a near-significant 

between-group difference in happy feelings (t102=1.8; P=.07) and a significant between-

group difference in sad feelings (t102=3.1; P=.02).

To further validate the main findings in light of group differences in stimuli ratings, subjects 

with minimal cognitive impairment were matched to an equal number of subjects without 

cognitive impairment. Congruent with previous analyses (see figs 1 and 2), subjects with 

minimal cognitive impairment showed contrasting effects compared with the 8 cognitively 

intact subjects on gait velocity (F2,28=3.65; P=.039) and cadence (F2,28=4.56; P=.019), 

which were reduced with happy and sad sounds.

To assess the validity of differentiation by cognitive status, the 2 groups were also compared 

for fall history and performance of ADLs. We found no significant differences between the 

cognitively intact (mean score ±SD, 1.5±0.5) and minimal cognitive impairment (mean 

score ±SD, 1.6±0.5) groups in falls history over a period of 1 year before the study visit 

(t102=.54; P=.57). There were also no differences between the cognitively intact (1.6±1.6) 

and minimal cognitive impairment (1.7±1.9) groups in ADL performance (t101=.19; P=.84).

Discussion

To our knowledge, this is the first study to characterize gait performance under emotionally 

charged auditory stimulation conditions in an elderly population. As hypothesized, our 

findings reveal that gait performance improved in individuals who were cognitively intact 

when they walked amid a background of emotionally charged auditory sounds. In contrast, 

gait performance declined under the same conditions in individuals with minimal cognitive 

impairment.

Gait performance improves under emotionally charged auditory conditions in cognitively 
intact elderly individuals

Walking parameters have been shown to be influenced by time-evolving auditory stimuli, 

including television sounds.30 The effect of rhythmic auditory stimuli on ambulation is also 

well documented29,31,33,34,63 and is often ascribed to an “entraining” effect.34 In our study, 

older adults with intact cognition were able to improve gait performance (faster velocity and 

cadence), suggesting effective recruitment of their cognitive resources when challenged. In 

our study, auditory stimulation represents a distraction. Previous literature64 supports the 

idea that older adults compensate for increased distractibility by focusing more strongly on 

task-relevant stimuli.
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Neuroimaging evidence suggests that neural activity associated with cognitive aging is 

characterized by both age-related increases and decreases in brain activity in specific 

regions. Failure to activate brain regions typically recruited by younger adults during 

cognitive tasks usually suggests neurocognitive decline. However, additional neural 

recruitment during task performance beyond that seen in younger adults is thought to 

indicate neural compensation.65–67 Functional imaging studies have revealed that neural 

compensation results in increased brain activation in the contralateral prefrontal cortex, also 

known as hemispheric asymmetry reduction in old adults.68 Thus, low-performing older 

adults appear to use a similar strategy as do younger adults, but use it inefficiently. In 

contrast, high-performing older adults appear to counteract age-related neural decline 

through a plastic reorganization of neurocognitive networks by symmetrical brain activation 

in functionally relevant neural networks,66,68 thereby increasing the availability of cognitive 

resources69 for task performance.

Gait performance declines under emotionally charged auditory conditions in elderly 
individuals with minimal cognitive impairment

We found that individuals with minimal cognitive impairment, as suggested by their Blessed 

test scores,47,62,70 decreased their gait velocity and cadence when walking under auditory 

constraints. These findings may be explained by a reduced ability to allocate additional 

cognitive resources to maintain gait performance when distracted. These findings, therefore, 

support the decline-compensation hypothesis,65–67 where an inability to compensate 

neurally or functionally when challenged uncovers a picture of rapid decline. Even rhythmic 

auditory stimulation at a comfortable tempo has been shown to produce deleterious effects 

on gait in those with Alzheimer dementia.71 Our findings extend this phenomenon to 

individuals at predementia stages.

It is known that divided attention markedly impairs the ability to regulate gait in individuals 

with Alzheimer disease.10,11,14 It appears that performance deficits in aging are due to 

higher distractibility, in combination with deficits in orienting-reorienting mechanisms.66 

The literature72 suggests strong associations between age and speed reduction and between 

cognitive status and speed reduction under dual-task conditions. Neuroimaging reveals a 

common prefrontoparietal neural network for performing 2 tasks simultaneously or 

successively.73,74 It has been suggested that smaller prefrontal area volume may contribute 

to a slower gait through reduced information processing speeds.75 Frontal and 

temporoparietal metabolic impairment on positron emission tomographic scans has been 

shown to be closely related to the progression of Alzheimer disease.76 These networks are 

also thought to explain age-related differences in processing of auditory information. Thus, 

auditory distraction represents an ecologically valid approach to evaluate cognitive reserve 

for mobility. The decline in gait velocity during walking under auditory constraints may be 

an early indication of reduced cognitive reserve.

Significance of using emotionally salient auditory backgrounds

When asked to rate the emotional significance of auditory stimuli, subjects with minimal 

cognitive impairment consistently rated both happy and sad conditions higher than did 

subjects without cognitive impairment. This may explain the difference in gait metrics 
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between the 2 groups. The valence scores also provide qualitative support for the effect of 

auditory emotional stimuli on gait during dual-task conditions. Emotionally charged 

auditory stimuli activate the amygdala and auditory cortices,35–38 and affect regulation using 

cognitive control may be achieved through active cortical suppression of the amygdalar 

structures.39 Subjects with minimal cognitive impairment may be unable to suppress 

amygdalar activation as seen in patients with early dementia,77–79 resulting in higher 

emotional ratings. However, when a subsample of cognitively intact subjects with identical 

emotional ratings was matched to subjects with minimal cognitive impairment in this study, 

the effect on gait velocity and cadence remained. This suggests that the underlying cognitive 

impairment, rather than the emotional rating alone, accounts for the effect on gait velocity 

and cadence.

Study limitations

The main limitation of this study was the small number of subjects with minimal cognitive 

impairment. A second limitation was that auditory stimuli were not matched against more 

conventional dual-task paradigms, such as serial 3s or verbal fluency, to compare task 

effects. Furthermore, although the effects of auditory stimulation on gait metrics were 

statistically significant, they were not large. In the future, we will incorporate minimal 

clinical difference analyses and use larger cohorts in longitudinal studies to determine the 

clinical relevance of the effects of auditory stimulation on gait. In addition, we found 

differences in velocity and cadence metrics and not in the other measured gait variables. In a 

recent study, principal component analysis was used to cluster the variables derived from 

quantitative gait analyses into statistically independent gait domains: rhythm, pace, and 

variability.17 Velocity and step length belong to the pace domain; abnormalities in this 

domain have been shown to predict falls.17 Cadence, swing time, and step time belong to the 

variability domain, and abnormalities in this domain have been shown to predict dementia.17 

Thus, the walking under auditory constraints task may differentially affect the control of 

pacing and variability during gait, and velocity and cadence may be the dominant variables 

in these domains. However, discrete effects may also be due to the small sample size.

Conclusions

The distinct performance responses to the walking under auditory constraints task in 

cognitively intact older individuals versus individuals with minimal cognitive impairment 

provide insights into the nature of cognitive reserve utilization under real-world conditions. 

Our findings should be replicated in larger samples with a wider spectrum of cognitive 

impairment and compared with accepted dual-task paradigms. Further exploration is needed 

to separately examine the effects of physiological aging and cognitive impairment on the 

relation between auditory stimulation and gait performance.
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List of abbreviations

ADL activities of daily living
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Fig 1. 
Effect of walking under auditory constraints on (A) gait velocity and (B) cadence compared 

between cognitively intact subjects (gray boxplots) and subjects with minimal cognitive 

impairment (white boxplots). There was a significant interaction effect betw6een the 2 

groups (tables 2 and 3). *P<.05.
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Fig 2. 
Rating of emotional stimuli in cognitively intact subjects (gray boxplots) and subjects with 

minimal cognitive impairment (white boxplots). *P<.01.
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Table 1

Demographic statistics for both groups of subjects

Statistic No Cognitive Impairment (n=96) Minimal Cognitive Impairment (n=8)

Height (cm) 161.2±9.2 163.4±10.5

Weight (kg) 73.4±14.5 76.3±16

Education (y) 14.9±3 13.3±4.6

Age (y) 80.6±5.1 80.9±4

Geriatric Depression Scale score (range, 0–15) 2.3±2.5 2.3±2.8

Blessed score 1.2±1.3 6.4±1.2

Sex: female 60 (62.5) 6 (75)

NOTE. Values are mean ±SD or as n (%).
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Table 2

Gait parameters for both groups of subjects

Gait Variables No Cognitive Impairment (n=96) Minimal Cognitive Impairment (n=8)

Velocity

 Neutral 98.3±2.1 93.8±7.29

 Happy 101±2.07 91±7.19

 Sad 100.8±2.05 85.6±7.1

Cadence

 Neutral 104.8±1 108.1±3.5

 Happy 107.5±1 105.8±3.5

 Sad 107±1.1 102.7±3.7

NOTE. Values are mean ±SE.
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Table 3

Gait variables and their interaction with cognitive status

Gait Variable Interaction Effect

Time F1.43,145.59=.69; P=.46

Velocity F1.87,190.8=5.6; P=.005

Cadence F1.79,183.1=8.21; P=.001

Stride length F2,204=2.21; P=.11

Swing time F1.87,191.13=1.18; P=.31

Gait variability (stride length SD) F2,204=.61; P=.55

Arch Phys Med Rehabil. Author manuscript; available in PMC 2016 April 01.


