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Abstract

A dynamic treatment regimen incorporates both accrued information and long-term effects of 

treatment from specially designed clinical trials. As these trials become more and more popular in 

conjunction with longitudinal data from clinical studies, the development of statistical inference 

for optimal dynamic treatment regimens is a high priority. In this paper, we propose a new 

machine learning framework called penalized Q-learning, under which valid statistical inference is 

established. We also propose a new statistical procedure: individual selection and corresponding 

methods for incorporating individual selection within penalized Q-learning. Extensive numerical 

studies are presented which compare the proposed methods with existing methods, under a variety 

of scenarios, and demonstrate that the proposed approach is both inferentially and computationally 

superior. It is illustrated with a depression clinical trial study.

Key words and phrases

Dynamic treatment regimen; Individual selection; Multi-stage; Penalized Q-learning; Q-learning; 
Shrinkage; Two-stage procedure

1. Introduction

Developing effective therapeutic regimens for diseases is one of the essential goals of 

medical research. Two major design and analysis challenges in this effort are taking accrued 

information into account in clinical trial designs and effectively incorporating long-term 

benefits and risks of treatment due to delayed effects. One of the most promising approaches 

to deal with these two challenges has been recently referred to as dynamic treatment 

regimens or adaptive treatment strategies (Murphy, 2003), and has been used in a number of 

settings, such as drug and alcohol dependency studies.

Reinforcement learning, one of the primary tools used in developing dynamic treatment 

regimens, is a sub-area of machine learning, where the learning behavior is through trial-

and-error interactions with a dynamic environment (Kaelbling et al., 1996). Because 

reinforcement learning techniques have been shown to be effective in developing optimal 

dynamic treatment regimens, the area is attracting increased attention among statistical 

researchers. As a recent example, a new approach to cancer clinical trials based on the 

specific area of reinforcement learning called Q-learning, has been proposed by Zhao et al. 

(2009) and Zhao et al. (2011). Extensive statistical estimating methods have also been 
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proposed for optimal dynamic treatment regimens, including, for example, Chakraborty et 

al. (2010), who developed a Q-learning framework based on linear models. Other related 

literature includes likelihood-based methods (Thall et al., 2000, 2002, 2007) and 

semiparametric methods (Murphy, 2003; Robins, 2004; Lunceford et al., 2002; Wahed and 

Tsiatis, 2004, 2006; Moodie et al., 2009).

In contrast to the substantial body of estimating methods, the development of statistical 

inference for optimal dynamic treatment regimens is very limited. This sequential, multi-

stage decision making problem is at the intersection of machine learning, optimization and 

statistical inference and is thus quite challenging. As discussed in Robins (2004), and 

recognized by many other researchers, the challenge arises when the optimal last stage 

treatment is non-unique for at least some subjects in the population, causing estimation bias 

and failure of traditional inferential approaches. There have been a number of proposals to 

correct this. For example, Moodie and Richardson (2010) proposed a method called Zeroing 

Instead of Plugging In. This is referred to as the hard-threshold estimator by Chakraborty et 

al. (2010), who also proposed a soft-threshold estimator and implemented several bootstrap 

methods. There is, however, a lack of theoretical support for these methods. Moreover, 

simulations indicate that neither hard-thresholding nor soft-thresholding, in conjunction with 

their bootstrap implementation, works uniformly well. We are therefore motivated to 

develop improved, asymptotically valid inference for optimal dynamic treatment regimens.

In this paper, we develop a new reinforcement learning framework for discovering optimal 

dynamic treatment regimens: penalized Q-learning. The major distinction of penalized Q-

learning from traditional Q-learning is in the form of the objective Q-function at each stage. 

While the new method shares many of the properties of traditional Q-learning, it has some 

significant advantages. Based on penalized Q-learning, we propose effective inferential 

procedures for optimal dynamic treatment regimens. In contrast to existing bootstrap 

approaches, our variance calculations are based on explicit formulae and hence are much 

less time-consuming. Theoretical studies and extensive empirical evidence support the 

validity of the proposed methods. Since penalized Q-learning puts a penalty on each 

individual, it automatically initiates another procedure, individual selection, which selects 

those individuals without treatment effects from the population. Successful individual 

selection, i.e., correctly identifying individuals without treatment effects, is the key to 

improved statistical inference.

While the proposed individual selection procedure shares some similarities with certain 

commonly used variable selection methods, the approaches differ fundamentally in other 

ways. These issues will be addressed in greater detail below.

2. Statistical Inference with Q-learning

2.1. Personalized Dynamic Treatment Regimens

We now introduce the multi-stage decision problem, since we illustrate with two-stage 

clinical trial data. Consider data from a sequential multiple assignment randomized trial 

(SMART), where treatments are randomized at multiple stages (Lavori and Dawson, 2000; 

Murphy, 2005). The longitudinal data on each patient take the form  Where 
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 are sequences of random variables collected at two 

stages, t = 1, 2. As components of H t, At is the randomly assigned treatment to patients, Ot 

is the observed patient covariates prior to the treatment assignment and Rt is the clinical 

outcome, each at stage t. The observed data consist of n independent and identically 

distributed copies of H. Our goal is to estimate the best treatment decision for different 

patients using the observed data at each stage. This is equivalent to identifying a sequence of 

ordered rules, which we call a personalized dynamic treatment regimen, d = (d1, d2)T , one 

rule for each stage, mapping from the domain of the patient history S t, t, to the domain of 

treatment At, t, where S1 = O1 and .

Denote the distribution of H by P and the expectations with respect to this distribution by E. 

Let Pd denote the distribution of H and the expectations with respect to this distribution by 

Ed where the dynamic treatment regimen d(·) is used to assign treatments. Define the value 

function to be V(d) = Ed(R1 + R2). Thus, an optimal dynamic treatment regimen, d0, is a rule 

that has the maximal value, i.e., d0 ∈ arg maxdV (d). We use upper case letters to denote 

random variables and lower case letters to denote values of the random variables. In this 

two-stage setting, if we define Q2(s2, a2) = E(R2|S2 = s2, A2 = a2) and Q1(s1, a1) = E(R1 + 

maxa2∈ 2 Q2(S2, a2)|S1 = s1, A1 = a1), then the optimal decision rule at time t is dt(st) = 

argmaxat∈ t Qt(st, at), where Qt are the Q-functions at time t.

2.2. Q-learning for personalized dynamic treatment regimens

Q-learning is a backward recursive approach commonly used for estimating the optimal 

personalized dynamic treatment regimens. Following Chakraborty et al. (2010), let the Q-

function for time t = 1, 2 be modeled as

(2.1)

where St is the full state information at time t introduced in the previous section and St(1) and 

St(2) are given features as functions of St. For example, they can be subsets of St selected for 

the model. They can be identical or different. Moreover, the constant 1 is included in St(1) 

and St(2). The action At takes value 1 or −1. The parameters of the Q-function are 

 where βt reflects the main effect of current state on outcome, while ψt 

reflects the interaction effect between current state and treatment choice. The true values of 

these parameters are denoted θt0, βt0, and ψt0 respectively. We note that the additive 

formulation of rewards is not restrictive. In fact, we can always define the intermediate 

rewards to be zeros while the final stage reward to be the final outcome we are interested in. 

This won't change the value function we aim to maximize. The linear models studied here 

are also general if we let state variables in the regression be some basis functions of 

historical variables (for instance, using kernel machine). Furthermore, one can always 

perform model diagnostics to check linearity assumption.

Suppose that the observed data consist of (Sti, Ati, Rti) for patients i = 1,…, n and t = 1, 2, 

from a sample of n independent patients. The two-stage empirical version of the Q-learning 

procedure can be summarized as follows:
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Step 1. Start with a regular and non-shrinkage estimator, based on least squares, for the 

second stage:

Where θ2̃ is the least squares estimator, Z2 is the stage-2 design matrix with each row of 

 and R2 = (R21,…, R2n)T. Here and in the sequel, Sti(k) denotes the kth 

component of St for subject i, where k = 1, 2, t = 1, 2 and i = 1,…, n.

Step 2. Estimate the first-stage individual pseudo-outcome by 

, Where

(2.2)

where HM is the index for the hard-max estimator.

Step 3. Estimate the first-stage parameters by least squares estimation:

where Z1 is the stage-1 design matrix whose ith row is . The 

corresponding estimator of ψ1, denoted by , is referred to as the hard max estimator 

in Chakraborty et al. (2010), because of the maximizing operation used in the definition.

2.3. Challenges in Statistical Inference

When the Q-function takes the linear model form (2.1), the optimal dynamic treatment 

regimen for patient i is

where sgn(x) = 1 if x > 0 and −1 otherwise. We use sti to denote the observed value of St for 

patient i and sti(k) denotes the observed value of St(k) for stage t = 1, 2, component k = 1, 2 

and patient i. The parameters ψ2 are of particular interest for inference on the optimal 

dynamic treatment regimen, as ψ2 represents the interaction effect of the treatment and 

covariates.

During the Q-learning procedure, when there is a positive probability that , the 

first-stage hard max pseudo-outcome  is a non-smooth function of ψ~2 As a linear 

function of , the hard max estimator  is also a non-smooth function of ψ~2 
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Consequently, the asymptotic distribution of  is neither normal nor any 

well-tabulated distributions if . In this non-standard case, standard 

inference methods such as Wald-type confidence intervals are no longer valid.

2.4. Review of Existing Approaches

To overcome the difficulty of inference for ψ1 in Q-learning, several methods have been 

proposed, which we briefly review in the two-stage set-up. Since all the methods are also 

nested in the Q-learning procedure, we update the two-stage version of Q-learning as 

follows.

Step 2. Estimate the first-stage individual pseudo-outcome by shrinking the second-

stage regular estimators via hard-thresholding or soft-thresholding. Specifically, the 

hard-threshold pseudo-outcome is denoted  with

(2.3)

Where Σ̂
2/n is the estimated covariance matrix of ψ~2, α is a pre-specified significance 

level and zα/2 is the (1 − α/2)-quantile of the standard normal distribution. The soft-

threshold pseudo-outcome is denoted , with

(2.4)

where x+ = xI{x > 0} and λi is a tuning parameter.

Step 3. Estimate the first-stage parameters by least squares estimation:

Where Ŷ1
º is either a hard-threshold or soft-threshold pseudo-outcome, as defined in 

either (2.3) or (2.4), respectively. The corresponding estimator of ψ1, denoted , can be 

the hard-threshold estimator  or the soft-threshold estimator .

The hard-thresholding and soft-thresholding methods can be viewed as upgraded versions of 

the hard max methods in terms of reducing the degree of non-differentiability of the absolute 

value function at zero. The first-stage pseudo-outcome for these three existing methods can 

be viewed as shrinkage functionals of certain standard estimators. Even if these estimators 

form shrinkage estimators under certain conditions, they are not optimizers of reasonable 

objective functions in general. Consequently, even if these estimators can successfully 

achieve shrinkage, two drawbacks remain that negate their ability to be used for statistical 
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inference for optimal dynamic treatment regimens. First, the bias of these first-stage pseudo-

outcomes can be large in finite samples, leading to further bias in the first stage estimator of 

ψ1 in regular settings. This point has been demonstrated in the empirical studies of 

Chakraborty et al. (2010). Second, and more importantly, these shrinkage functional 

estimators may not possess the oracle property that with probability tending to one, the set 

 can be correctly identified and the resulting estimator performs as 

well as the estimator that knows the true set ℳ⋆ in advance.

3. Inference Based on Penalized Q-Learning

3.1. Estimation Procedure

To describe our method, we still focus on the two-stage setting as given in Section 2.2 and 

use the same notation. As a backward recursive reinforcement learning procedure, our 

method follows the three steps of the usual Q-learning method, except that it replaces Step 1 

of the standard Q-learning procedure with

Step 1p. Instead of minimizing the summed squared differences between R2 and Q2(S2, 

A2; β2, ψ2), we minimize the following penalized objective function

(3.1)

where pλn(·) is a pre-specified penalty function and λn is a tuning parameter.

Because of this penalized estimation, we call our approach penalized Q-learning. Since the 

penalty is put on each individual, we also call Step 1p individual selection.

Using individual selection enjoys similar shrinkage advantages as do penalized methods 

described by Frank and Friedman (1993), Tibshirani (1996), Fan and Li (2001), Candes and 

Tao (2007), Zou (2006) and Zou and Li (2008). In variable selection problems where the 

selection of interest consists of the important variables with nonzero coefficients, using 

appropriate penalties can shrink the small estimated coefficients to zero to enable the desired 

selection. In the individual selection done in the first step of the proposed penalized Q-

learning approach, penalized estimation allows us simultaneously to estimate the second-

stage parameters θ2 and select individuals whose value functions are not affected by 

treatments, i.e., those individuals whose true values of  are zero.

The above fact is extremely useful in making correct inference in the subsequent steps of the 

penalized Q-learning. To understand why, recall that statistical inference in the usual Q-

learning is mainly challenged by difficulties in obtaining the correct asymptotic distribution 

of  Where ψ̂
2 is an estimator for ψ20. Via our penalized Q-

learning method, we can identify individuals whose  takes value zero; 

moreover, we know that for all individuals,  has the same sign as 

asymptotically. In this case,  is equivalent to
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Hence, correct inference can be obtained following standard arguments. More rigorous 

details will be given in Section 3.3.

The choice of the penalty function pλn(·) can be taken to be the same as used in many 

popular variable selection methods. Specifically, we require pλn(·) to possess the following 

properties:

A1. For non-zero fixed θ, limn→∞ n1/2pλn(|θ|) = 0, , and 

limn→∞ p″ λn(|θ|) = 0.

A2. For any M > 0, inf|θ|≤M n−1/2 pλn(|θ|) → ∞, as n → ∞

Among penalty functions satisfying A1 and A2 are the smoothly clipped absolute deviation 

penalty (Fan and Li, 2001) and the adaptive lasso penalty (Zou, 2006), where pλn (θ) = λnθ/|

θ(0)|ϕ with ϕ > 0 and θ(0) a root-n consistent estimator of θ. To achieve both sparsity and 

oracle properties, the tuning parameter λn in these examples should be taken 

correspondingly. The adaptive lasso method will be implemented in this paper, where λn can 

be taken as scalars satisfying n1/2λn → 0 and nλn → ∞, as n → ∞.

3.2. Implementation

The minimization in Step 1p of the penalized Q-learning procedure has some unique features 

which distinguish it from the optimization done in the variable selection literature. First, the 

component to be shrunk,  is subject-specific; second, this component is a hyperplane 

in the parameter space, i.e, a linear combination of the parameters.

To deal with these issues, in this section, we propose an algorithm for the minimizing 

problem of (3.1) based on local quadratic approximation. Following Fan and Li (2001), we 

first calculate an initial estimator ψ̂
2(0) via the standard least squares estimation. We then 

obtain the following local quadratic approximation to the penalty terms in (3.1):

for ψ2 close to ψ̂
2(0). Thus, (3.1) can be locally approximated up to a constant by

(3.2)

The updated estimators for ψ2 and β2 can be obtained by minimizing the above 

approximation. When Q(·) is (3.2), this minimization problem has closed form solution
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where X22 is a matrix with i-th row equal to  X21 is a matrix with i-th row equal to 

 I is the n × n identity matrix and D is an n × n diagonal matrix with 

.

The above minimization procedure can be continued until convergence. However, as 

discussed in Fan and Li (2001), either the one-step or k-step estimator will be as efficient as 

the fully iterative method as long as the initial estimators are consistent. Since in practice, 

the local quadratic approximation algorithm shrinks  to a very small value instead 

of exactly zero even if the true value is zero, we will set  once the value is 

below a pre-specified tolerance threshold.

The choice of local quadratic approximation is mainly for convenience in solving the 

penalized least squares estimation in (3.1). If least absolute deviation estimation or some 

other quantile regression approach is used in place of least squares, then the local linear 

approximation of the penalty function described in Zou and Li (2008) can be used instead of 

local quadratic approximation, and the resulting minimization problem can be solved by 

linear programming.

We will use five-fold cross-validation to choose the tuning parameter, where we partition 

data into five folds, perform the estimation on four folds, and validate the least squares 

fitting on the other fold. We set ϕ = 2 as the parameter used in adaptive lasso. We 

acknowledge the insufficient theory support for using this method. The general guideline for 

choosing tuning parameters and ϕ is of great research interest but it is beyond the scope of 

the current paper.

3.3. Asymptotic Results

In this section, we establish the asymptotic properties for the parameter estimators in our 

penalized Q-learning method. We assume that the penalty function pλn (x) satisfies A1 and 

A2 and that the following conditions hold

B1. The support of S2(2) contains a finite number of vectors, say, v1, …, vK. Moreover, 

 for k ≤ K1 and  for k ≤ K1. Let nk = #|{i : S2i(2) = vk, i = 1,…,n}|, 

where for a set A, #|A| is defined as its cardinality.

B2. The true value for , minimizes
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while, the true value for , minimizes

In both expressions and in the following, we always assume that the limits exist.

B3. For t = 1, 2, with probability one, Qt(St, At; θt) is twice-continuously differentiable 

with respect to θt in a neighborhood of θt0 and moreover, the Hessian matrices of the 

two limiting functions in B2 are continuous and their values at θt = θt0, denoted It0, are 

nonsingular.

B4. With probability one, nk/n = pk + Op(n−1/2) for some constant pk in [0, 1].

Condition B2 says that θ10 and θ20 are the target values in the dynamic treatment regimens. 

Condition B3 can be verified via the design matrix in the two-stage setting: if Qt takes the 

form of (3.2), this condition is equivalent to linear independence of [St(1), St(2)At] with 

positive probability. We note that the numerical performance for data from population with 

a very small probability of linear independence is likely to be unstable with small sample 

sizes.

Under these conditions, our first theorem shows that in Step 1p of the penalized Q-learning 

procedure, there exists a consistent estimator for θ2.

Theorem 1—Under conditions A1−A2 and B1−B4, there exists a local minimizer θ̂2 of 

W2(θ2) such that ‖θ̂2−θ20‖ = OP(n−1/2+an), where .

According to the properties of pλn(·), we immediately conclude that θ̂
2 is n1/2-consistent. 

From Theorem 1, we further obtain the following result, which verifies the oracle property 

of the penalized method:

Theorem 2—Define the set . Then under conditions 

A1−A2 and B1−B4, , for any .

The set  consists of those individuals whose true value functions at the second stage have 

no effect from treatment. Thus Theorem 2 states that with probability tending to one, we can 

identify these individuals in  We also need the asymptotic distribution of θ̂2 in order to 

make inference.

Theorem 3—Under conditions A1−A2 and B1−B4, n1/2(I20 + Σ){θ̂2 − θ20 + (I20 + Σ)−1b} 

converges in distribution to N(0, I20), where , 

and .
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Using the results from Theorems 1–3, we are able to establish the asymptotic normality of 

the first stage estimator θ1̂:

Theorem 4—Under conditions A1–A2 and B1–B4, let  and 

. Then n1/2(θ̂
1−θ10) converges in distribution to , 

where , with F1(θ10) = ∇θ1 Q1(S1, 

A1;θ10){Y1 − Q1(S1, A1;θ10)}, F1(θ20) = (I20 + Σ)−1∇θ2 Q2(S2, A2;θ20)(R2 − Q2(S2, A2;θ20)) 

and cov represents the variance-covariance matrix.

3.4.Variance Estimation

The standard errors can be obtained directly since we are estimating parameters and 

selecting individuals simultaneously. A sandwich type plug-in estimator can be used as the 

variance estimator for θ̂2:

where  is the empirical Hessian matrix and 

. As Σ̂ converges to zero as n goes to 

infinity, hence often negligible, we use

(3.3)

instead, and this performs well in practice. The estimated variance for θ1̂ is then

(3.4)

Where Î10 is the empirical estimator for I10 and F̂
2(θ2̂) = (Î20 + Σ̂)−1∇θ2Q2(S2, A2;θ̂2)

{R2−Q2(S2, A2;θ̂2)}. These variance estimators have good accuracy for moderate sample 

sizes; see section 4. This success of direct inference for the estimated parameters makes 

inference for optimal dynamic treatment regimens possible in the multi-stage setting.

4. Numerical Studies

We first apply the proposed method to the same simulation study conditions as designed in 

Chakraborty et al. (2010). A total of 500 subjects are generated for each dataset. We set R1 = 

0 and (O1, A1, O2, A2, R2) is collected on each subject, where (Ot, At) denotes the covariates 

and treatment status at stage t (t = 1, 2). The binary covariates Ot's and the binary treatments 

At's are generated as follows:

Song et al. Page 10

Stat Sin. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where expit(x) = exp(x)/{1 + exp(x)}.

where ε ∼ N(0, 1). Under this setting, the true Q-functions for time t = 1, 2 are

(4.1)

(4.2)

The true values  and  are

(4.3)

where q1 = 0.25(expit(δ1 + δ2) + expit(−δ1 + δ2)), q2 = 0.25(expit(δ1 − δ2) + expit(−δ1 − 

δ2)), , f1 

= γ5 + γ6 + γ7, f2 = γ5 + γ6 − γ7, f3 = γ5 − γ6 + γ7, f4 = γ5 − γ6 − γ7. Let γ = (γ1, …, γ7)T. We 

consider six settings, with values of  and γ for each setting listed in Table 4.1.

We applied penalized Q-learning with adaptive lasso to these six settings. The one-step local 

quadratic approximation algorithm is used with least squares estimation for the initial 

values. The tuning parameter λ in the adaptive lasso penalty is chosen by five-fold cross-

validation. We take ϕ = 2 as the parameter in the adaptive least absolute shrinkage and 

selection operator penalty. When the estimated value , it will be set as zero 

in the stage-1 estimation. The simulation results shown in Tables 4.2 and 4.3 were 

summarized over 2000 replications. We included the oracle estimator which knows in 

advance the true set , the hard max estimator and the soft-threshold 

estimator for comparison. Theoretical standard errors for the hard max estimator and the 
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soft-threshold estimator are not available. Results on average length of the Confidence 

Intervals are presented in the Web Appendix.

The true values  and  of stage-1 parameters are linear combinations of four 

absolute value functions |f1|, |f2|, |f3|, and |f4| from (4.3). It can be shown by definition that, 

with a bias of order o(n−1/2), the hard max estimators of stage-1 parameters are linear 

combinations of four corresponding absolute value functions, with stage-2 estimators instead 

of true values to plug into |f1|, |f2|, |f3|, and |f4|. Therefore the performances of the hard max 

estimators are greatly affected by the estimation of each of the four absolute value functions. 

Furthermore, the bias of the hard max estimators mainly come from that of estimating four 

absolute value functions. We now discuss the performance of our estimator, hard max 

estimator and the oracle estimator in these six settings.

Setting 1 is a setting where there is no second-stage treatment effect, as  for all 

values of S2(2). The hard-max estimator will incur asymptotic biases for all the four terms |

f1|, |f2|, |f3| and |f4|, all four at about the same order of , as in this case 

. As shown in (13), the biases in the estimation of |f1|, |f2|, |f3| and |f4| will be 

almost completely canceled out in the estimation of  and  due to the fact that the sum 

of the coefficients are zero. These biases of estimating |f1|, |f2|, |f3| and |f4| are largely 

canceled out in the estimation of  as the sum of the coefficients are close to zero. The 

hard-max estimator of  has a significant bias because the coefficients of the four absolute 

value terms, q1, q2, 0.5 − q1 and 0.5 − q2, are all positive and sum to 1.

The simulation results of Setting 1 are consistent with the theoretical observations in terms 

of the hard-max estimation. The oracle estimator automatically sets the estimator of ψ2 to be 

zero. It has no significant bias, with standard errors accurately predicted by the theory and 

95% confidence interval coverage close to the nominal value. The penalized Q-learning 

based estimator's performance is actually identical to the oracle estimator. The hard-max 

estimator has a significant bias and inferior mean square error in β̂
11 while remaining 

consistent for estimation of the other three stage-1 parameters.

Setting 2 is regular but very close to Setting 1 with  all equal to 0.01 for all values of 

S2(2). The hard-max estimator's performance is very similar to setting 1. Its 95% confidence 

interval shows poor coverage for  and . As the value of  is nonzero, the oracle 

estimator reduces to the hard-max in this setting. Although the penalized Q-learning based 

estimator demonstrates a small bias (-0.009) in the estimation of  the bias is less than one 

fifth of that of the oracle estimator and the mean square error is less than half of the oracle 

estimator. Its standard error estimate remains close to the empirical values.

Setting 3 is another setting where there is no second-stage treatment effect. Setting 3 is 

another setting where there is no second-stage treatment effect for a positive proportion of 

subjects in the population. The value of  is equal to 0 when A1 = −1 with probability 

one half. The hard-max estimator incurs bias on the order of O(n−1/2) in the estimation of |f2| 
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and |f4|, but not |f1| and |f3|, as f2 = f4 = 0 and f1 = f3 = 1. As seen from (13), the hard-max 

estimation of  and  is still approximately unbiased, due to the canceling-out of the 

coefficients of the four absolute value terms. The estimation of  is biased from the true 

value at approximately half of the bias of Setting 1, due to the values of the |fi|'s and their 

coefficients. The estimation of  is also biased, with similar magnitude of bias as in β̂
11 

but with reversed sign. The simulation study exactly confirms the theoretical observations of 

the hard-max estimator. The oracle estimator has no statistically significant bias and its 

standard error is precisely predicted by the theoretical calculation. The penalized Q-learning 

based estimator has a bias in ψ̂
11 but the bias is still three times smaller than that of the hard-

max estimator. Otherwise, the penalized Q-learning based estimator has almost exactly the 

same performance as the oracle estimator.

Setting 4 is a regular setting but very close to Setting 3. The hard-max estimator's 

performance is similar to Setting 3. The oracle estimator reduces to the hard-max estimator. 

The penalized Q-learning based estimator outperforms the oracle estimator, with both a 

smaller bias (5 times smaller), and a correctly predicted standard error. This phenomena is 

consistent with findings in Setting 2.

In Setting 5, the term  is equal to zero when (O2, A1) = (−1, −1) with probability one 

fourth. The hard-max estimator will incur bias in the estimation of |f4|, since f4 = 0. 

Consequently, all the four stage-1 parameter estimators will be biased. The bias in β̂
11 will 

be approximately a quarter of that in Setting 1. The bias in β̂
12 is about half of that of β̂

11 

with reversed sign. The bias in ψ̂
11 is about the same magnitude as that of β̂

11 with reversed 

sign. The bias in ψ̂
12 is about half of that of β̂

11. In this setting, the oracle estimator has the 

best performance, with no significant bias and well predicted standard errors. The penalized 

Q-learning based estimator has a bias in ψ̂
11 but the bias is much smaller than the hard-max 

estimator. The penalized Q-learning based estimator has no noticeable bias in the other three 

parameter estimations and the standard error calculations are accurate when compared to 

Monte-Carlo errors.

Setting 6 is a completely regular setting with values of  well above zero. The 

penalized Q-learning based estimator has almost identical performance as the oracle 

estimator, which is the same as the hard-max estimator. Both estimators are unbiased with 

accurately calculated standard errors.

In summary, the behavior of the PQ-estimator, including its bias, mean square error, 

theoretically computed standard error and coverage probability of theoretically computed 

95% confidence intervals, are consistent in all six settings.

Chakraborty et al. (2010) proposed several bootstrapped confidence intervals for the hard 

max estimator as well as hard-threshold estimators with α in Step 2 set to be 0.08 or 0.20 

and the soft-threshold estimator. In order to compare the confidence intervals from the 

proposed penalized Q-learning based estimator with these bootstrapped methods, we re-ran 

the simulations with the penalized Q-learning based estimator with sample size n = 300 and 

1000 replications. The coverage probabilities from different inferential methods in the six 
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settings are compared in Figure 1, where the results from the hard max, hard threshold and 

soft threshold methods based on hybrid bootstrapping for variance estimation are shown. 

Overall, the competing methods cannot provide consistent coverage rates across all six 

settings while our penalized Q-learning based method always gives coverage probabilities 

that are not significantly different from the nominal level.

We also apply percentile bootstrapping or double bootstrapping variance estimation in the 

other competing methods and find that the hard max estimator with the double bootstrapped 

confidence interval and the soft-threshold estimator with the percentile bootstrapped can 

give reasonable coverage probabilities. Nonetheless, the penalized Q-learning based 

estimator has a significant computational advantage over these two inference methods. In a 

comparison run of analyzing one dataset with sample size 300, the hard max with double 

bootstrap confidence interval at 500 first-stage and 100 second-stage bootstrap iterations 

needs 316.35 seconds. The soft thresholding with percentile confidence interval at 1000 

bootstrap iterations takes 10.98 seconds. In contrast, the penalized Q-learning based 

estimator takes only 0.14 second.

Finally, we analyze data from the mental health study described in Fava et al. (2003) using 

the proposed method. The details are given in the online Supplemental Material.

5. Discussion

The proposed penalized Q-learning provides valid inference based on an approximate 

normal distribution for the estimators of the regression coefficients. Recently while this 

paper is under review, Chakraborty et al. (2013) proposed m-out-of-n bootstrap as a remedy 

to the non-regular inference in Q-learning. This modified bootstrap is consistent, and can be 

used in conjunction with the simple hard-max estimator.

Under some special cases, the proposed method is the same as variable selection but in 

general, it is for individual subject selection instead of individual variable selection. In small 

samples, our penalization on the linear predictor would possibly impose some constraints as 

demonstrated in the following example provided by a referee. Suppose that ψ2 = (ε, −ε)T and 

that the following four feature vectors are in the support of S2(2): (1, 1)T, (1, 1 + a)T, (1 + a, 

1)T, (1 + a, 1 + a)T for a > 0. For small value of ε and large value of a, say a = 100/ε, it is 

possible that the penalized estimator ψ̂
2 shrinks the entire coefficient vector to zero due to 

the penalty put on |ψTS2(2)|. Every patient is thus deemed to have no treatment effect. The 

true treatment effect for subject (1, 1+ a)T and (1 + a, 1)T, however is non-negligible.

This dilemma is due to the finite rank of the covariate space and lack of power to distinguish 

groups with small effects in small samples. One possibility to alleviate the dilemma is to use 

a penalty of the form
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where  is a consistent initial estimator of ψ2. This penalty can shrink estimated  to 

zero if the truth is zero; otherwise, it will force  to be not far from .

Although the linear model form of the Q-functions presented here is an important first step, 

as well as being useful for illustrating the ideas of this paper, this form may not be 

sufficiently flexible for certain practical settings. Semiparametric models are a potentially 

very useful alternative in many such settings because such models involve both a parametric 

component which is usually easy to interpret and a nonparametric component which allows 

greater flexibility. Generalizations of Q-functions to allow diverse data such as ordinal 

outcome, censored outcome and semiparametric modeling, are thus future research topics of 

practical importance.

The theoretical framework is based on discrete covariates. This condition is not as restrictive 

as it looks. For example, in a practical two-stage setting where continuous covariates are 

presented, unless in the rare case where the parameter ψ20 is zero, the set 

 will not have positive probability. Having said that, we can always 

discretize continuous covariates, though with a loss of information. Future research to 

extend our work to continuous covariates would also be very useful in practice. Likewise, 

the framework works for two-level treatments. The generalization to multilevel treatments 

will be a natural and useful next step.

In many clinical studies, the state space is often of very high dimension. To develop optimal 

dynamic treatment regimes in this case, it will be important to develop simultaneous 

variable selection and individual selection. More modern machine learning techniques such 

as support vector regression and random forests can be nested into our penalized Q-learning 

framework as powerful tools to develop optimal dynamic treatment regimes.

Our method is proposed to the general setting in randomized clinical trials. It will be 

interesting and practically useful to develop the optimal dynamic treatment regime from the 

observational studies. To generalize the proposed methods to observational studies, under 

certain assumptions (for example, no-unobserved confounders), propensity scores weighted 

approach can be incorporated into the proposed PQ-learning. It is beyond the scope of the 

current paper and we are currently investigating this topic.
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Fig. 1. 
Plot of 95% confidence interval's coverage rates with several inference methods in six 

simulation settings. The shaded area indicates coverage rates considered to be 

nonsignificantly different from nominal rate 0.95. Curve “a”: the coverage probabilities 

from the oracle estimator; curve “b”: the coverage probabilities from the penalized Q-

learning method; curve “c”: the coverage probabilities from the hard-max estimator; curve 

“d”: the coverage probabilities from the hard-threshold estimator with α = 0.08; curve “e”: 

the coverage probabilities from the hard-threshold estimator with α = 0.2; curve “f”: the 

coverage probabilities from the soft-threshold estimator. Curves “c”–“f” all use hybrid 

bootstrapping.
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Table 4.1

Values of the linear combination  in the six simulation settings. In Setting 1, γ = (0, 0, 0, 0, 0, 0, 0)T, 

δ1 = δ2 = 0.5. In Setting 2, γ = (0, 0, 0, 0, 0.01, 0, 0)T, δ1 = δ2= 0.5. In Setting 3, γ = (0, 0, − 0.5, 0, 0.5, 0, 

0.5)T, δ1 = δ2 = 0.5. In Setting 4, γ = (0, 0, −0.5, 0, 0.5, 0, 0.49)T, δ1 = δ2 = 0.5. In Setting 5, γ = (0, 0, −0.5, 0, 

1, 0.5, 0.5)T, δ1 = 1, δ2 = 0. In Setting 6, γ = (0, 0, −0.5, 0, 0.25, 0.5, 0.5)T, δ1 = δ2 = 0.1.

S2(2) = (1, O2, A1)T

Setting (1,1,1) (1,1,-1) (1,-1,1) (1,-1,-1)

1 0 0 0 0

2 0.01 0.01 0.01 0.01

3 1 0 1 0

4 0.99 0.01 0.99 0.01

5 2 1 1 0

6 1.25 0.25 0.25 −0.75

Stat Sin. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 19

T
ab

le
 4

.2

Su
m

m
ar

y 
st

at
is

tic
s 

an
d 

em
pi

ri
ca

l c
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f 

95
%

 n
om

in
al

 p
er

ce
nt

ile
 c

on
fi

de
nc

e 
in

te
rv

al
s 

fo
r 

 a
nd

 
 u

si
ng

 th
e 

or
ac

le
 e

st
im

at
or

, t
he

 

pr
op

os
ed

 p
en

al
iz

ed
 Q

-l
ea

rn
in

g 
ba

se
d 

es
tim

at
or

, t
he

 h
ar

d 
m

ax
 e

st
im

at
or

 a
nd

 th
e 

so
ft

-t
hr

es
ho

ld
 e

st
im

at
or

. “
PQ

” 
re

fe
rs

 to
 th

e 
pe

na
liz

ed
 Q

-l
ea

rn
in

g 
ba

se
d 

es
tim

at
or

, “
H

M
” 

re
fe

rs
 to

 th
e 

ha
rd

 m
ax

 e
st

im
at

or
, “

M
SE

” 
re

fe
rs

 to
 th

e 
m

ea
n 

sq
ua

re
s 

er
ro

r,
 “

St
d”

 r
ef

er
s 

to
 th

e 
av

er
ag

e 
of

 th
e 

20
00

 s
ta

nd
ar

d 
er

ro
r 

es
tim

at
es

 

an
d 

“C
P”

 r
ef

er
s 

to
 th

e 
em

pi
ri

ca
l c

ov
er

ag
e 

pr
ob

ab
ili

ty
 o

f 
95

%
 n

om
in

al
 p

er
ce

nt
ile

 c
on

fi
de

nc
e 

in
te

rv
al

. A
 “

*”
 in

di
ca

te
s 

a 
si

gn
if

ic
an

tly
 d

if
fe

re
nt

 c
ov

er
ag

e 

ra
te

 f
ro

m
 th

e 
no

m
in

al
 r

at
e.

β 1
1

β 1
2

bi
as

(×
10

00
)

M
SE

(×
10

00
)

st
d(

×1
00

)
C

P
bi

as
(×

10
00

)
M

SE
(×

10
00

)
st

d(
×1

00
)

C
P

Se
tti

ng
 1

O
ra

cl
e

1
2.

0
4.

5
94

.7
1

2.
0

4.
5

94
.9

PQ
1

2.
0

4.
5

94
.7

1
2.

0
4.

5
94

.9

H
M

61
6.

6
–

88
.7

*
1

2.
1

–
95

.2

ST
7

2.
3

–
96

.2
*

−
1

2.
0

–
94

.9

Se
tti

ng
 2

O
ra

cl
e

52
5.

5
6.

2
90

.0
*

1
2.

1
4.

6
95

.3

PQ
−

9
2.

1
4.

5
94

.7
1

2.
0

4.
5

94
.8

H
M

52
5.

5
–

90
.8

*
1

2.
1

–
95

.1

ST
−

3
2.

2
–

94
.8

−
1

2.
0

–
95

.1

Se
tti

ng
 3

O
ra

cl
e

0
3.

0
5.

5
94

.6
1

2.
0

4.
5

95
.1

PQ
0

3.
1

5.
5

94
.2

2
2.

0
4.

5
95

.2

H
M

30
4.

3
–

93
.0

*
2

2.
1

–
95

.2

ST
−

5
3.

3
–

93
.5

*
−

1
2.

1
–

94
.9

Se
tti

ng
 4

O
ra

cl
e

26
4.

0
6.

2
93

.8
*

2
2.

1
4.

6
95

.2

PQ
−

5
3.

1
5.

5
94

.3
2

2.
0

4.
5

95
.1

H
M

26
4.

0
–

93
.4

*
2

2.
1

–
95

.1

ST
−

10
3.

4
–

93
.5

*
−

1
2.

1
–

95
.0

Se
tti

ng
 5

O
ra

cl
e

0
3.

8
6.

1
94

.7
2

2.
7

5.
2

95
.1

PQ
−

2
3.

8
6.

1
94

.4
0

2.
7

5.
2

95
.0

Stat Sin. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 20

β 1
1

β 1
2

bi
as

(×
10

00
)

M
SE

(×
10

00
)

st
d(

×1
00

)
C

P
bi

as
(×

10
00

)
M

SE
(×

10
00

)
st

d(
×1

00
)

C
P

H
M

15
4.

1
–

94
.1

−
5

2.
7

–
94

.3

ST
−

8
4.

0
–

94
.9

−
3

2.
8

–
94

.9

Se
tti

ng
 6

O
ra

cl
e

2
3.

8
6.

2
94

.8
−

1
2.

3
4.

8
94

.7

PQ
1

3.
8

6.
2

94
.7

−
1

2.
3

4.
8

94
.7

H
M

2
3.

8
–

94
.3

−
1

2.
3

–
95

.2

ST
45

6.
3

–
87

.2
*

−
1

2.
3

–
95

.2

Stat Sin. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 21

T
ab

le
 4

.3

Su
m

m
ar

y 
st

at
is

tic
s 

an
d 

em
pi

ri
ca

l c
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f 

95
%

 n
om

in
al

 p
er

ce
nt

ile
 c

on
fi

de
nc

e 
in

te
rv

al
s 

fo
r 

 a
nd

 
 u

si
ng

 th
e 

or
ac

le
 e

st
im

at
or

, t
he

 

pr
op

os
ed

 p
en

al
iz

ed
 Q

-l
ea

rn
in

g 
ba

se
d 

es
tim

at
or

, t
he

 h
ar

d 
m

ax
 e

st
im

at
or

 a
nd

 th
e 

so
ft

-t
hr

es
ho

ld
 e

st
im

at
or

. T
he

 n
ot

at
io

ns
 a

re
 th

e 
sa

m
e 

as
 in

 T
ab

le
 2

.

ψ
11

ψ
12

bi
as

 ×
10

00
M

SE
×1

00
0

st
d×

10
0

C
P

bi
as

×1
00

0
M

SE
×1

00
0

st
d×

10
0

C
P

Se
tti

ng
 1

O
ra

cl
e

−
1

1.
9

4.
5

95
.3

0
2.

0
4.

5
94

.7

PQ
−

1
1.

9
4.

5
95

.3
0

2.
0

4.
5

94
.7

H
M

0
2.

4
–

93
.7

*
−

1
2.

1
–

94
.5

ST
1

2.
3

–
94

.8
−

1
2.

1
–

94
.6

Se
tti

ng
 2

O
ra

cl
e

0
2.

5
5.

8
97

.3
*

−
1

2.
1

4.
6

95
.0

PQ
−

1
1.

9
4.

5
95

.3
0

2.
0

4.
5

94
.8

H
M

0
2.

5
–

94
.8

−
1

2.
1

–
94

.4

ST
1

2.
3

–
94

.8
0

2.
1

–
94

.4

Se
tti

ng
 3

O
ra

cl
e

−
1

2.
9

5.
5

95
.0

0
2.

0
4.

5
94

.8

PQ
−

10
3.

1
5.

5
94

.0
−

1
2.

0
4.

5
94

.6

H
M

−
31

4.
2

–
93

.8
*

−
1

2.
1

–
94

.0

ST
−

11
4.

0
–

95
.0

0
2.

1
–

94
.0

Se
tti

ng
 4

O
ra

cl
e

−
26

4.
0

6.
2

94
.9

−
1

2.
1

4.
5

95
.0

PQ
−

6
3.

1
5.

5
94

.6
0

2.
0

4.
5

94
.6

H
M

−
26

4.
0

–
94

.5
−

1
2.

1
–

94
.0

ST
−

7
3.

4
–

95
.1

0
2.

1
–

93
.9

Se
tti

ng
 5

O
ra

cl
e

−
1

3.
5

6.
1

95
.8

−
1

2.
5

4.
9

94
.3

PQ
−

5
3.

6
6.

1
95

.2
0

2.
5

4.
9

94
.3

H
M

−
16

4.
0

–
94

.6
6

2.
6

–
94

.0

ST
−

3
4.

0
–

95
.2

−
3

2.
6

–
94

.2

Se
tti

ng
 6

Stat Sin. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 22

ψ
11

ψ
12

bi
as

 ×
10

00
M

SE
×1

00
0

st
d×

10
0

C
P

bi
as

×1
00

0
M

SE
×1

00
0

st
d×

10
0

C
P

O
ra

cl
e

2
3.

9
6.

2
95

.0
0

2.
4

4.
8

94
.2

PQ
2

4.
0

6.
2

94
.6

0
2.

4
4.

8
94

.2

H
M

2
3.

9
–

93
.7

*
0

2.
4

–
94

.1

ST
1

4.
6

–
91

.4
*

2
2.

5
–

94
.1

Stat Sin. Author manuscript; available in PMC 2016 July 01.


