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Abstract

Background—Whole-exome sequencing (WES) has recently emerged as an appealing approach 

to systematically study coding variants. However, the requirement for a large amount of high-

quality DNA poses a barrier that may limit its application in large cancer epidemiologic studies. 

We evaluated the performance of WES with low input amount and saliva DNA as an alternative 

source material.

Methods—Five breast cancer patients were randomly selected from the Pathways Study. From 

each patient, four samples, including 3 µg, 1 µg, and 0.2 µg blood DNA and 1 µg saliva DNA, 

were aliquoted for library preparation using the Agilent SureSelect kit and sequencing using 

Illumina HiSeq2500. Quality metrics of sequencing and variant calling, as well as concordance of 

variant calls from the whole exome and 21 known breast cancer genes, were assessed by input 

amount and DNA source.

Results—There was little difference by input amount or DNA source on the quality of 

sequencing and variant calling. The concordance rate was about 98% for single nucleotide variant 

calls and 83–86% for short insertion/deletion calls. For the 21 known breast cancer genes, WES 

based on low input amount and saliva DNA identified the same set variants in samples from a 

same patient.

Conclusions—Low DNA input amount, as well as saliva DNA, can be used to generate WES 

data of satisfactory quality.
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Impact—Our findings support the expansion of WES applications in cancer epidemiologic 

studies where only low DNA amount or saliva samples are available.
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Introduction

The advent of next-generation sequencing (NGS) techniques and the reduction in cost 

overtime have transformed the landscape of human genetic research by offering a widely 

accessible tool to interrogate the genome at an unprecedented pace and scale (1). Compared 

to whole genome sequencing (WGS), which remains costly for population-wide 

applications, whole-exome sequencing (WES), which targets the approximately 1% coding 

sequences of the human genome, provides an appealing solution with a balanced trade-off 

between cost, genome coverage, functional annotation, and analytical burden (2, 3). It thus 

has been widely adopted to study Mendelian diseases (4, 5) and characterize cancer 

genomes (6), and begun to make its way into clinical practice for novel diagnosis and 

identification of therapy targets (7–9).

In epidemiologic research, WES is emerging as a new powerhouse in searching for coding 

risk variants (10–12), surpassing genome-wide genotyping microarrays that are limited to 

common and known variants. Several previous studies have evaluated the performance of 

different WES technologies and platforms (13–15). However, two practical issues remain 

that may impede the application of WES to large epidemiologic populations, namely the 

apparent need for relatively large amounts of high-quality DNA, and the current need to 

source this from peripheral blood. The large amount of needed genomic DNA (e.g., 3 µg) 

poses a practical challenge to studies where such amounts are unavailable or would deplete 

the resource. As saliva samples are now routinely collected in many epidemiologic studies 

as an inexpensive alternative source of genomic DNA using non-invasive methods, there 

could be broader use of WES if it were shown that saliva DNA performs comparably well to 

blood DNA on WES platforms.

To address these two aforementioned issues in WES, we evaluated the WES performance of 

the Agilent SureSelect Human All Exon kit in conjunction with the Illumina HiSeq 2500 

platform, which is currently one of the few mainstream choices for WES library preparation 

and sequencing, respectively (16, 17). Our goal was to determine the performance of 

sequencing, variant calling for single nucleotide variations (SNVs) and short insertion/

deletion (indels), and the accuracy in identifying coding variants in known breast cancer-

related genes, using different DNA input amounts (0.2 µg, 1 µg, and 3 µg genome DNA) 

from peripheral blood, and different DNA sources (1 µg DNA from saliva).
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Materials and Methods

Genomic DNA samples

Genomic DNA samples were obtained from the Pathways Study, a prospective cohort study 

that recruited recently-diagnosed breast cancer patients from the Kaiser Permanente 

Northern California (KPNC) health plan membership (18). At the baseline in-person 

interview after patient consent, blood samples were collected from 90% of participants via 

phlebotomy, and saliva samples were also collected from 96% of participants by the 

Oragene™ DNA Self-Collection kit (DNA Genotek Inc., Kanata, Ontario, Canada) as an 

alternative source of genomic DNA. The biospecimens were shipped to Roswell Park 

Cancer Institute (RPCI) for processing and storage under the auspices of the RPCI Data 

Bank and Biorepository (DBBR) (19). Whole blood was aliquoted for DNA extraction using 

the Qiagen FlexiGene kit (Valencia, CA). DNA from approximately 2 ml saliva samples 

was extracted using the Oragene kit. Nucleotide concentration of DNA samples was 

determined by both NanoDrop and PicoGreen techniques. DNA samples were stored at 

−80°C until analysis. For this study, we included randomly-selected samples from five 

women diagnosed with triple-negative breast cancer [estrogen receptor (ER)-negative, 

progesterone receptor (PR)-negative, and human epidermal growth factor receptor 2 (Her2)-

negative] who had DNA available from both peripheral blood and saliva samples. The study 

was approved by the Institutional Review Boards (IRB) of RPCI and KPNC.

Library preparation and sequencing

Genomic DNA from whole blood (3 µg, 1 µg, and 0.2 µg DNA) and from saliva (1 µg DNA) 

was captured using the Agilent SureSelect Human All Exon v5 Kit (Santa Clara, CA). The 3 

µg and 1 µg input amounts were fragmented to a size range of 150–200 bp followed by end 

repair, adaptor ligation, and low PCR cycle (5 cycles). The 0.2 µg input followed the same 

procedures, except using a higher number of PCR cycles (11 cycles). Individual libraries 

were barcoded, pooled (5-plex) and loaded to four lanes of a HiSeq Flow Cell, followed by 

101 bp paired-end sequencing using Illumina HiSeq 2500 (San Diego, CA) according to 

manufacturer’s protocol. To eliminate potential batch effects, the libraries were randomly 

assigned to four sequencing lanes using the OSAT program to ensure that the distribution of 

DNA input amount and DNA source was even across lanes (20). The library preparation and 

sequencing was performed by the RPCI Genomics Shared Resource.

Variant calling for SNVs and Indels

The raw sequence reads were aligned to the Human Reference Genome (NCBI build 37) 

using the Burrows-Wheeler Aligner (21). After removing PCR duplicates using Picard (22), 

the GATK software version 3.0 (23) was used for local realignment, base quality 

recalibration, and variant calling of SNVs and small indels. In the variant-calling step, 

variants were first called in each sample separately, and then joint genotyping analysis was 

performed on the samples from the same DNA source and same DNA input amount, 

followed by variant recalibration to generate analysis-ready variants. Only the variants that 

passed the GATK quality filter (tranche sensitivity threshold 99.9%) were used in our 

analysis.
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Benchmark rate of variant calling concordance

As the bioinformatics pipeline may have a major impact on variant calling concordance, we 

estimated the concordance level of our pipeline based on a reference WES dataset with high-

quality variant callsets and used the concordance rate as a benchmark in our evaluation. The 

publicly-available WES data of a CEU trio (NA12878, NA12891, and NA12892) was 

downloaded from the 1000 Genomes Project. The WES data were originally generated using 

Agilent SureSelect All Exon v2 Kit, followed by 76 bp paired-end sequencing. Variant calls 

for NA12878 from our pipeline were compared with two comprehensive variant callsets 

compiled by the Genome in a Bottle Consortium (GIBA) for this particular individual (24). 

The two callsets contain high-quality variant calls in the whole exome and in the high-

confidence portion of the exome, respectively. The high-confidence portion of the exome 

excludes simple repeats, known segmental duplications, known structural variants reported 

in dbVar (25) for NA12878, regions paralogous to the 1000 Genomes Project “decoy 

reference”, and regions in the RepeatSeq database (26). The calculated concordance rates of 

SNV and indel calls for the NA12878 subject were then used as guidelines for assessing the 

consistency of variant calling for samples of varying DNA input amount and DNA source 

from each patient in our study.

Results

Sequencing performance

From each exome library, we obtained 63–102 million reads, with an average sequencing 

depth of 67–111× and ≥94% bases covered by at least 20× (Table 1). The PCR duplicate 

rates in all samples ranged from 0.03–0.13, except for one outlier library generated from 1 

µg blood DNA with a duplicate rate of 0.30. The mapping rate of the sequenced reads to the 

reference genome in each sample was 98–100%; the exome capture rate was 50% on 

average; and the average insert size was 200 bp. All were within the expected range, 

indicating overall good performance of exome sequencing.

We then examined whether the DNA input amount and DNA source affected sequencing 

quality. In comparisons of the two lower DNA input amounts (1 µg and 0.2 µg) with the 

standard 3 µg blood DNA, no significant differences were found in total sequenced reads, 

sequencing depth, percent bases covered by at least 20×, PCR duplicate rate, or exome 

capture rate. The only significant differences were the mapping rate and the mean insert 

size. The mapping rate from the 0.2 µg DNA input was marginally lower, and the mean 

insert size was shorter than the two higher input amounts (Student’s t-test p-values ≤ 0.001). 

Similarly, in comparisons between saliva DNA and blood DNA, the only significant 

differences were also observed in the mapping rate and the mean insert size (p-values<0.05). 

It should be noted, however, that all the mapping rates exceeded 98%. Using a multivariable 

linear model to relate each of the sequencing statistics in Table 1 with patient ID, DNA 

amount and DNA source, only the mean insert size was significantly different by input 

amount, with shorter insert size when using 0.2 µg DNA compared to 1µg DNA (p<0.001).
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Quality of variant calls

We next investigated the performance of variant calling by DNA input amount and DNA 

source. For each of the five breast cancer patients, we detected 42.6–52.3 k variants 

including SNVs and indels. The number of indels was approximately 10.8–12.0% of the 

number of SNVs, consistent with that from the 1000 Genomes data (27). We investigated 

the overall variant calling quality on the basis of three commonly-used quality metrics: 

transition-transversion ratio (Ti/Tv) for SNV calls, heterozygous-homozygous ratio (Het/

Homo), and percentage of overlap with known variants in dbSNP (Table 2). The Ti/Tv ratio 

for each sample ranged from 2.59–2.64, consistent with that commonly-observed in WES 

studies (13, 28, 29).

The Het/Homo call ratios varied notably by patients’ racial/ethnic background. Among the 

three patients of European descent (PBCTNPLT001, 002, 005) and one patient of Hispanic 

descent (PBCTNPLT003), the ratio ranged from 1.58–1.71, while the ratio was higher in all 

four samples from one patient of African descent (PBCTNPLT004), with values as high as 

2.03–2.04. This racial/ethnic variation is consistent with the literature (16, 30). Of note, 

DNA from this patient also showed the highest number of variants among the five patients 

evaluated, probably due to high genetic diversity in African ancestry (31, 32). The overlap 

between the called variants and known variants from dbSNP was high, and the percentage of 

novel variants was below 2%, with the highest in samples from the two patients of non-

European descent (PBCTNPLT003, 004). Despite these racial/ethnic variations, we noticed 

little difference in any of the above three quality metrics of variant calls by DNA input 

amount or DNA source.

Concordance of variant calls by DNA input amount and DNA source

We next assessed the concordance of variant calls within each patient between each of the 

two lower DNA input amounts and the 3 µg input amount, as well as between saliva DNA 

and blood DNA. In all comparisons, the concordance rate was close to or exceeded 98% for 

SNVs, and for indels the rate ranged from 83–86% (Figure 1 and Supplementary Table 1s). 

When comparing the concordance rate of our samples with the benchmark rates estimated 

for our pipeline based on the NA12878 data (see Patients and Methods), we found the 

average SNV concordance rate for each of the five breast cancer patients was higher than the 

reference concordance rates calculated for the NA12878 subject in whole-exome and high-

confidence exome regions, respectively (94.3% and 96.4), while the concordance rate of 

indel calls was only slightly lower than the reference concordance rate of NA12878 in 

whole-exome (87.1%) (Figure 1). When compared to the 3 µg DNA input, the 0.2 µg DNA 

input amount had a marginally-lower concordance rate than the 1 µg DNA input, 

particularly for indel calls (83.9% vs. 85%). For saliva DNA, the SNV concordance 

remained at a high level (98.3%) but the indel concordance was the lowest among all 

comparisons (83.6%), which could be due to shorter DNA fragments from saliva than those 

from blood DNA. Nevertheless, the slightly inferior indel concordance is still in an 

acceptable range (33).

We further investigated the quality metrics of the discordant variant calls by DNA input 

amount and DNA source (Supplementary Figures 1 and 2). We found these variants were 
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enriched with potential false positives, as characterized by lower quality scores, higher novel 

variant percentage, indel length, and Het/Homo call ratio. These findings suggest that we 

might underestimate the actual variant concordance concerning only bona fide variants after 

excluding false variant calls.

Detection of coding variants in known breast cancer genes

Lastly, as all samples evaluated in our study were collected from women diagnosed with 

triple-negative breast cancer, we examined whether the use of a lower DNA input amount or 

saliva samples had any impact on the detection of coding variants that may be underlying 

breast cancer etiology. We compiled a list of 21 breast cancer-related genes from the Cancer 

Gene Census (34) (Supplementary Table 2s) and assessed the concordance of variants 

within these genes among the four samples from each patient. As shown in Figure 2 and 

Supplementary Table 3s, compared to the coding variants detected from the 3 µg blood 

DNA input amount (39–59 per sample including both SNVs and indels), the number of 

variants detected from the two lower DNA input amounts differed slightly by 0 to 2, and for 

DNA sourced from saliva by −1 to 2. The concordance rate was 100%, with the 1 µg blood 

DNA input amount, 97.4–100% with the 0.2 µg DNA input amount, and 94.9–100% with 

the saliva DNA. All discordant calls came from one SNV and four indels (Supplementary 

Table 4s). After manual review of the sequence alignment files, we concluded that these 

discordant calls were either false Indel calls introduced by homopolymer (35), or the 

variants reside in regions where sequencing coverage was too low to make reliable calls. 

Therefore, the true variant concordance rate can reach 100% with respect to true variants.

Discussion

Our results demonstrate that lower DNA input amounts and DNA from saliva have 

relatively small effects on WES quality and variant-calling consistency. To the best of our 

knowledge, this is the first comprehensive evaluation of the impact of lower DNA input 

amount and DNA source on the performance of WES with potential applications for cancer 

epidemiology. We further demonstrated that lower DNA input amount and saliva DNA can 

reliably detect variants in breast cancer-related genes, which supports their use in 

epidemiologic studies searching for coding risk variants, when sample requirements 

according to a manufacturer’s standard protocol cannot be readily met.

Among various commonly-used sequencing and variant-calling quality metrics evaluated, 

we found that the data generated from 1 µg blood DNA was essentially the same as the 3 µg 

blood DNA, and that there was little impact on most quality metrics when using DNA input 

amounts as low as 0.2 µg. The only differences were shorter insert size and lower mapping 

rates when using 0.2 µg DNA. The shorter insert size may result from extra fragmentation in 

the DNA shearing step due to lower DNA amount and high cycle number of PCR (n=11) 

performed. The slightly lower mapping rate could also result from more random errors 

introduced by increased PCR cycles. Nevertheless, the shorter insert size or slightly lower 

mapping rate has little effect on the rate of PCR duplication, sequencing depth, or 

downstream variant calling.
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We demonstrated that the WES performance relevant to sequencing and variant calling 

qualities for saliva DNA samples was similar to that of blood DNA samples. The mapping 

rate to the reference genome and the insert size of saliva samples were only slightly lower 

than that of blood samples (98–99% vs. 100% for mapping rate; 201–214 vs. 207–219 for 

insert size), indicating very low bacterial DNA contamination and shorter DNA fragments in 

the saliva samples. As the saliva samples used in our study were collected and processed 

without any special optimization for NGS applications, we expect this finding has wide 

generalizability to saliva samples collected routinely in many epidemiologic studies.

Regarding variant calling concordance according to input amount and source of DNA, we 

did observe inferior indel concordance to that of SNV calls, especially in the lower 0.2 µg 

DNA input amount and in saliva DNA. This could be due to the more complex structure of 

indel variants themselves, which make their calling from short-read data more challenging 

than SNVs. In addition, the lower insert size associated with lower DNA input amount and 

saliva DNA had a greater impact on indel calling. Nonetheless, the magnitude of the 

difference was small and negligible in most applications.

Although it is possible to infer copy number variations (CNVs) from WES data and several 

algorithms have been developed for this purpose, previous studies evaluating the 

performance of these algorithms concluded that the sensitivity, accuracy, and power were 

still limited (36, 37). We thus did not evaluate the impact of DNA input amount and saliva 

DAN on CNV detection in our study.

The motivation of our study is to test whether we can reliably detect rare variants related to 

breast cancer etiology using low DNA input and saliva DNA. Therefore, we designed the 

study with a sequencing depth typically used for detecting rare variants. We expect the 

concordance rate would be lower at a substantially lower sequencing depth, particularly 

when DNA input is low or saliva DNA is used. Future studies are warranted to assess the 

impact of varying sequencing depth on the concordance rate.

In summary, we provide compelling evidence that when the standard DNA requirement of a 

manufacturer’s WES protocol cannot be satisfied, lower DNA input amounts (down to 0.2 

µg) or using saliva as an alternative DNA source can generate comparable results. These 

findings may allow the expansion of WES applications in epidemiologic studies in which 

DNA specimens may be a finite resource or only low DNA amounts or saliva samples are 

available. However, caution should taken for indel calls, as we found a larger impact of low 

DNA input and saliva DNA on indels than on CNVs. Currently, there are two exome capture 

platforms that require less than 0.2 µg input DNA: the Ion AmpliSeq™ Exome Kit, which 

can only be run on the Ion Proton™ Sequencer, and the Illumina Nextera Exome Kit. Both 

kits use as little as 50 ng DNA as the starting material. It will be interesting to investigate 

comprehensively the performance of WES data generated using such low input amounts, 

and to compare the performance among different exome-capture platforms with such low 

DNA input. Our study did show larger impact on calling indels than SNVs when lowering 

DNA input amount or using saliva DNA. We may anticipate that the performance difference 

will be even larger when using 50 ng input DNA. In addition, such difference may become 
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stronger when using other exome capture platforms, as the Agilent platform was reported to 

have increased sensitivity for indels than other platforms (16).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Concordance of single nucleotide variant (SNV) calls (upper panel) and short insertion/

deletion (indel) calls (lower panel). Boxplots of concordance rates between each pair of 

samples from the same patient are displayed: 1 µg vs. 3 µg DNA; 0.2 µg vs. 3 µg DNA; and 

1 µg saliva DNA vs. 1 µg blood DNA. The top and bottom of the box correspond to the 3rd 

and 1st quartiles, respectively, and the band inside the box corresponds to the median. The 

ends of the whiskers represent the most extreme data points within 1.5 times the interquartile 

range from the box, and the dots indicate outliers that are beyond 1.5 times the interquartile 

range from the box.
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Figure 2. 
Concordance of variant calls in known breast cancer genes. Boxplots of concordance rates 

between each pair of samples from the same patient are displayed: 1 µg vs. 3 µg DNA; 0.2 

µg vs. 3 µg DNA; and 1 µg saliva DNA vs. 1 µg blood DNA. The top and bottom of the box 

corresponds to the 3rd and 1st quartiles, respectively, and the band inside the box 

corresponds to the median. The ends of the whiskers represent the most extreme data points 

within 1.5 times the interquartile range from the box, and the dots indicate outliers that are 

beyond 1.5 times the interquartile range from the box.
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