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Abstract

The majority of reports in which microvascular network properties are quantified rely on manual 

measurements, which are time consuming to collect and somewhat subjective. Despite some 

progress in creating automated image analysis techniques, the parameters measured by these 

methods are limited. For example, no automated system has yet been able to measure support cell 

recruitment, which is an important indicator of microvascular maturity. Microvessel alignment is 

another parameter that existing programs have not measured, despite a strong dependence of 

performance on alignment in some tissues. Here we present two image analysis programs, a semi-

automated program that analyzes cross sections of microvascular networks and a fully automated 

program that analyzes images of whole mount preparations. Both programs quantify standard 

characteristics as well as support cell recruitment and microvascular network alignment, and were 

highly accurate in comparison to manual measurements for engineered tissues containing self-

assembled microvessels.

Introduction

The quantification of microvascular network characteristics is of interest to a wide variety of 

researchers. Changes in the microvasculature have been implicated in a variety of disease 

processes, from neurological disorders to cancer.[1], [2] In addition, the development of 

microvascular networks in vitro has been pursued by many for either tissue engineering 

purposes or as a model for the study of endothelial cell (EC) biology. In all of these areas the 

quantification of microvessel characteristics is of critical importance in order to statistically 

differentiate between different treatments or experimental conditions.

A commonly used metric is capillary density, which actually comprises several different 

metrics. One is quantified from tissue cross sections and reported as capillaries/mm2.[3]–[5] 
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A second, also reported as capillaries/mm2, is quantified via nailfold capillaroscopy, in 

which a finger is viewed under light microscopy and the skin capillaries counted.[6], [7] 

Although these quantification methods are reported with the same units, they are quite 

different and should not be compared directly. Both methods typically rely on manual 

counting, which is tedious and can introduce bias.

Another parameter commonly quantified is the network length per image area.[8], [9] This 

parameter is typically used when the entire microvascular network can be viewed, for 

example in a whole mount tissue preparation or a dorsal window chamber. However, this 

method also relies on manual measurement of the lengths of the capillaries, which is time 

consuming. A high degree of subjectivity is also introduced, as the image often contains 

capillaries that are varying distances from the focal plane, and the observer must decide 

which capillaries should be included in the measurement.

The introduction of subjectivity into measurements is extremely problematic in the analysis 

of engineered microvascular networks, as the observer must first define what qualifies as a 

capillary. In cross section, not all EC structures contain lumens, and some structures contain 

multiple lumens either because it was sectioned near a bifurcation point or because the 

several small lumens have not yet matured into a single lumen. In whole mount 

preparations, microvessels often have abnormal morphology that must be measured 

accurately or endothelial cell debris that must be eliminated from measurements. These 

conditions increase the variability in both inter- and intra-observer measurements.

Some work has been done to automate the detection and counting of capillaries. Both 

Ranefall et al. and Kim et al. reported methods for automated capillary counting in 

immunostained sections imaged under light microscopy.[10], [11] Although these methods 

were shown to be relatively accurate, they counted capillaries by counting positive EC 

staining rather than the lumens themselves. This poses a problem for use with engineered 

microvessels, in which a positively stained object may correspond to zero or several lumens. 

Additionally, characteristics such as lumen size or shape, which are also of importance in 

microvascular networks both in vitro and in vivo, were not quantified. The alignment of 

capillaries was also not quantified, which would be present in longitudinal sections of 

anisotropic native or engineered tissues such as muscle. Finally, the use of 

immunohistochemistry rather than immunofluorescence limits the possibility of identifying 

additional cell types, such as support cells, in the same section, because it would be difficult 

to distinguish the different cell types in the light microscopy image. Without identifying 

both cell types in the same section, it would be impossible to accurately quantify parameters 

such as the recruitment level of the support cells, which is an important indicator of 

microvessel maturity.

Much more work has examined automated methods for quantifying microvessel length. 

Methods have been developed for analyzing both brightfield and fluorescent images, both in 

vitro and in vivo networks, and both single images and z-stacks for 3D reconstruction.[12]–

[19] Each method has its advantages and disadvantages; some require the input of a binary 

image, which is at times non-trivial to obtain,[17] some require perfusion of the network for 

imaging,[13], [16] which cannot always be done for engineered microvessels, and some 
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require extensive serial sections to create a 3D image of the network.[14] None of these 

methods, however, address the quantification of mural cell recruitment or network 

anisotropy, which are important parameters to assess both in vitro and in vivo, as they 

provide information about the maturity and alignment of the network, respectively.

The methods outlined here for analysis of cross sections and whole mount preparations of 

engineered microvessels (Figure 1) address the limitations noted above. The cross section 

algorithm detected lumens within fluorescent images based on dark areas surrounded by EC 

staining which, once identified, can be counted and measured as desired. The whole mount 

program quantifies microvessel length as well as bifurcation points. Both programs also 

share two major improvements over others: the inclusion of methods to measure support cell 

recruitment to the network and network anisotropy. These inclusions provide additional 

quantitative information regarding microvascular maturity and alignment, which are useful 

in many types of microvascular studies. The particular images used here to demonstrate the 

programs are of engineered microvessels made from human blood outgrowth endothelial 

cells and GFP-expressing human brain pericytes,[20] but apply to any source of ECs and 

support cells.

Methods

Cross Section Algorithm Description

An image analysis program for use with cross sections of engineered tissues containing 

microvascular networks was developed in Matlab v. 2012b (The Mathworks) using the 

Image Analysis Toolbox. The images used for this analysis were obtained from 10 μm cryo 

sections of engineered microvessels formed as previously described.[20] The sections were 

immunostained using an antibody against human CD31 (Dako) and imaged using a scanning 

laser confocal microscope. The support cells were GFP-labeled, and DAPI was used as a 

nuclear stain. The images were 512×512, with each pixel representing 0.877 μm. The 

algorithm first thresholded the CD31+ image using several threshold values, which were 

automatically generated using the graythresh function. The resulting binary images were 

then dilated and eroded (using disks of size 1 and 2 pixels) to improve connectivity of 

CD31+ regions. Holes in the image smaller than 20 pixels in area were filled in using imfill 

and bwareaopen, effectively setting the lower limit on the size of lumens to 20 pixels. 

Several threshold values and several dilations/erosions were used to capture the most 

possible lumens, as each of the binary images generated were assessed for lumens later in 

the algorithm. It was important to identify as many lumens as possible to reduce the manual 

portion of the algorithm.

The most dilated image was then presented to the user for input. A custom function was 

developed that enabled the user to click two points on the image, after which the values of 

the pixels in a straight line between the points were changed to 1. The user was able to 

connect CD31+ regions using this function and thereby enclose lumens that would have 

otherwise gone undetected (Figure 2a–c). This method of user input maximized accuracy in 

lumen detection while minimizing the user impact on the size and shape of the detected 

lumens. A while loop enabled the user to make as many edits to the thresholded image as 

necessary. The user’s judgment was used to determine which CD31+ regions to connect.
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After the user input was complete, all of the binary images generated thus far (including 

images that were dilated, not dilated and incorporating user input) were assessed for lumens, 

which were defined as a region of zeros completely surrounded by ones. To be clear, this 

meant that the same field was assessed for lumens using multiple binary representations. 

The imfill function was used to fill in such regions, and subtracting the original binary image 

resulted in a lumen image, one of which was created for each binary image. The union of all 

of the lumen images was taken as the first lumen image. Due to the thresholding and 

dilation, the first lumen image contained artifacts, creating the need for further processing to 

remove non-lumens.

The hallmark of a lumen is a bright ring of CD31+ staining surrounding a dark region. 

Therefore, the ratio of staining intensity between each region in the first lumen image and its 

immediate surroundings was used to detect true lumens. Individually, each potential lumen 

was dilated by two pixels, and the lumen was subtracted to yield a ring of pixels just outside 

the lumen, where CD31 staining would typically be present (“the adjacent region;” Figure 

2d–f). The average pixel intensity of the adjacent region in the original image was then 

compared to the intensity of the lumen in the original image, and the ratio of the two values 

was defined as the intensity ratio. Lumens with intensity ratios below a given threshold were 

deleted from the lumen image, forming the second lumen image. The threshold value can be 

modified for each image set to minimize user input, although the variation in optimal 

thresholds is small in general. This step is the most computationally expensive, but is critical 

to minimize user input.

Once the second lumen image was finalized, it was presented to the user for input. A custom 

function enabled the user to draw a polygon and delete all lumens within that polygon. Non-

lumens present in the second lumen image often result from CD31+ structures located near 

each other; these regions may become completely surrounded by CD31+ staining when the 

binary image is dilated (Figure 2g–i). A while loop enabled the user to remove as many 

lumens as necessary; after this step was complete, the lumen image was final (Figure 2j–kl). 

The lumen density was expressed as the number of lumens per area.

At this point the function regionprops was used to calculated properties of the lumens such 

as their size (area) and length (major axis length). The original thresholded image (using the 

automatically generated threshold level from the graythresh function) was also used to 

calculate the total level of CD31 staining. Additional processing using the imfill function 

filled in the original binary images to produce information about the number of endothelial 

structures present in the image. This filled image was also used to calculate an anisotropy 

index for the image, which describes the alignment of the structures. The length of each 

structure was divided into components parallel and perpendicular to the alignment direction, 

which was defined as the average angle of all structures. The anisotropy index was then 

defined as the ratio of the sum of structure lengths in the direction parallel to alignment to 

the sum of structure lengths in the direction perpendicular to alignment. The length and 

angle of each structure was calculated using regionprops (major axis length and orientation).

The program was also able to detect the recruitment of support cells (labeled with a different 

fluorophore) to CD31-positive structures. The support cell image was thresholded and 
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objects 10 pixels in area or smaller (noise) removed using bwareaopen. The intersection of 

the support cell image and the CD31 image was taken, and support cells that contained an 

area of overlap (of any size) with the CD31 image were considered recruited (Figure 3). The 

support cell recruitment level was expressed as the fraction of total support cells that were 

recruited. The total number of support cells per area was also recorded.

Finally, the total cell number per area was also recorded from nuclear staining. The image 

was thresholded and noise removed as above, and the total number of nuclei was counted.

Whole Mount Algorithm Description

A second program was developed in Matlab to analyze images of whole mount CD31-

stained engineered microvessels. Although lumens are difficult to detect in whole mount 

staining, other important network characteristics such as total vessel length and 

interconnectivity are much more easily evaluated from these images than images of cross 

sections. Engineered microvessels within fibrin gel were formed in the wells of 96 well 

plates as previously described.[21] After culture, the gels were removed from the plate and 

stained whole using an antibody against human CD31 (Dako). The support cells expressed 

GFP, and nuclei were stained with DAPI. Images were collected using an epi-fluorescence 

microscope at 692×520, with each pixel representing 1.02 μm.

Prior to thresholding the CD31 image, the grayscale image was dilated (using a disk of size 

5 pixels) and eroded (using a disk of size 2 pixels). This manipulation had the effect of 

“blurring” the staining within the EC structures but maintained a relatively strong difference 

between the structures and the background. The blurring made the level of staining within 

the structure more even, enabling easier identification via thresholding. The function 

graythresh was used to automatically detect a threshold level. A binary image was created 

using a threshold level obtained by multiplying the output of graythresh by 0.9. Using a 

threshold level slightly lower than that determined by graythresh produced a binary image in 

which the identified endothelial structures had a similar interconnectivity to the original 

image (Figure 4a–b). Any rounded cells were removed using bwareaopen, which removed 

objects smaller than 500 pixels in area. The total number of objects (structures) was then 

counted.

Next the function bwmorph (“thin, Inf” command) was used to skeletonize the image 

(Figure 4c). Although quite accurate, the skeletonization process created small segments that 

were not part of the original EC geometry, often due to variations in microvessel diameter. 

To obtain accurate information about the network characteristics, it was necessary to remove 

these artifacts. This was done with the following process. A custom function was used to 

find network bifurcation points using a look up table (LUT), which specified that a pixel 

was a bifurcation point if 3 or more of the 8 pixels immediately surrounding it also had a 

value of 1. These bifurcation points were then removed from the skeletonized image, and 

bwareaopen was used to delete small segments (20 pixels or less), which were typically 

artifacts of the skeletonization process. The remaining segments were considered true 

segments of the EC network, and their properties were quantified (Figure 4d). The number 

of segments was counted, and their areas (equaling their lengths; from regionprops) were 

both averaged and summed to obtain the average segment length and the total vessel length, 
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respectively. All of these parameters were normalized to the area of the image. The 

orientation of each segment was also quantified using regionprops and used in conjunction 

with each segment’s length to calculate an anisotropy index, indicating the strength of 

alignment of the segments. Each segment length was divided into components parallel and 

perpendicular to the direction of alignment (determined to be the average angle of all 

segments). The anisotropy index was then defined as the ratio of the sum of segment lengths 

in the direction parallel to alignment to the sum of segment lengths in the direction 

perpendicular to alignment.

The bifurcation points were then added back into the skeletonized image creating the final 

skeletonized image. The number of bifurcation points was then quantified (using the custom 

LUT function described above) and normalized to the image area. Additional parameters of 

interest were then calculated including the average length per continuous structure (defined 

as total length/number of structures), the average length per segment (defined as total length/

number of segments) and the average diameter (defined as total structure area/total length).

Finally the number of total cells, the number of support cells, and the level of support cell 

recruitment were quantified using the same algorithm as described above for the cross 

section program (Figure 5).

Program Validation

Both of the programs were validated via comparison to manual measurements. For the cross 

section program, lumens were manually counted using ImageJ in 6 cross sections of 

engineered microvessels and compared to the lumen counts subsequently generated by the 

program. For the whole mount program, the total microvessel length, network anisotropy 

index, and support cell recruitment were measured for 9 images in ImageJ and compared to 

values subsequently generated by the program. Support cell recruitment and anisotropy 

index were not quantified for the cross section program because the analysis methods were 

very similar. Paired t-tests were used to examine differences between manual and automatic 

counts; p values less than 0.05 were considered significant.

Results

For the cross section program, no difference was observed between manual and 

semiautomated lumen density measurements (Figure 6a). The percent errors between the 

counts for individual images were at or under 10%, and the variability in lumen counts 

appeared to be similar between manual and automated measurements.

For the whole mount program, there were no differences in the measured total network 

length, support cell recruitment fraction, and network anisotropy index between manual 

measurement and automated quantification (Figure 6b–d). The relative percent errors (based 

on the means) between measurements of individual images were slightly larger that of the 

cross section comparison, but still relatively small. All errors were under 25%, and most 

were under 10%. The variability was similar across both quantification methods for all 

measurements.
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Discussion

Despite the previous development of automated image analysis programs for both cross 

section and whole mount preparations, the majority of recent publications quantifying 

microvascular networks relied upon manual measurements.[3]–[9], [22]–[24] This may be 

due to the complex nature of image processing algorithms, although some have created 

graphical user interfaces that obviate the need for understanding the algorithms. Another 

reason may be that existing programs may not be robust enough to quantify another user’s 

images or a parameter of interest to a particular user may not be quantified by the existing 

program. The Image Processing Toolbox of Matlab, used to create the programs described 

here, provides a balance in terms of complexity: the built-in functions reduce the level of 

knowledge of image processing techniques required to use the programs, yet enables users 

to modify the programs to fit their needs. Once the program was optimized for a user’s 

images and quantification needs (by setting the Matlab function parameters), the time 

required to analyze images would be reduced dramatically, and the objectivity of the 

analysis would improve dramatically. The algorithm provided here for cross sections still 

includes a manual component, which is suboptiomal, but it was not possible to identify 

lumens completely and accurately without a manual component. Future work is needed to 

refine algorithms in order to minimize the manual component further or eliminate it entirely.

Both programs developed here were designed to measure multiple microvascular network 

characteristics. Previous automated image analysis programs have measured some of these 

characteristics, but two are completely novel. The first is the measurement of the level of 

support cell recruitment. Higher levels of recruitment are indicative of microvascular 

maturity,[25] and the measured value from engineered microvascular networks could be 

compared to native levels of recruitment in the tissue of interest. The second is the 

measurement of microvascular anisotropy. Native capillaries of cardiac and skeletal muscle 

are highly aligned with the muscle fibers, and the degree of alignment of the engineered 

microvessels could be compared to that of native muscle capillaries. Additionally, alignment 

of engineered microvascular networks may be necessary to facilitate perfusion in vitro.[20]

A high level of agreement was observed between manual and automated measurements of 

lumen density (cross section program) and total vessel length, support cell recruitment and 

network anisotropy (whole mount program). These data suggest that the programs produce 

highly accurate results. Some subjectivity is introduced into the cross section program via 

user input; however, this input is minimized in terms of both impact on the resulting 

measurements and the time required for input. For example, in the first user input step, the 

user connects areas of positive CD31 staining by clicking on the two endpoints of a line 

between the two areas to be connected. This not only creates a more accurate shape of the 

lumen as compared to tracing the entire lumen manually, but also drastically reduces the 

time required to define the lumen. Future work should certainly attempt to fully automate 

the cross section program to remove all observer subjectivity and further reduce the time of 

analysis.

These programs were optimized for use with engineered microvascular networks, and no 

modifications were necessary to use the programs to analyze different image sets. However, 
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it is unclear how many adjustments would be required to use the programs to quantify 

images of other engineered microvascular networks (e.g. those formed from a different cell 

type or within a different scaffold) or native networks. Modification of these algorithms 

might be necessary to adapt these programs to accurately measure the characteristics of all 

engineered or native capillary networks.
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Highlights

• Semi-automated image processing tools developed for quantification of 

engineered microvascular.

• Techniques presented to quantify microvessel alignment and support cell 

recruitment to microvessels.

• Quantification of data from cross sections and whole mount preparations 

included.
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Figure 1. 
Flow chart of processing steps for the cross-section (A) and whole mount (B) algorithms.
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Figure 2. 
Semi-automated lumen detection in cross sections. (A–C) User input was required in this 

program for accuracy due to occasional areas of dim CD31 staining. The region outlined in 

white in (A) is enlarged in (B) and (C). Although the lumen indicated by the arrow is 

obvious to the eye based on CD31 staining (red; A), the program did not initially recognize 

the lumen due to a small area of dim staining, which left a gap in the binary image (B; 

circled). The program enabled the user to correct this error by connecting the ring of CD31 

staining with a 1 pixel wide line (C; circled). Scalebar = 20 μm. (D–F) To eliminate some 

non-lumens that would have otherwise been detected as lumens, the program compared 

intensity levels (obtained from the original image; D) between the lumen region (E) and the 

region immediately surrounding the lumen (F). The region outlined in white in (D) is 

enlarged in (E) and (F). Lumen regions that had similar intensity values to their surrounding 

regions were determined to be non-lumens and eliminated. This lumen had high intensity 

values in the surrounding region compared to the lumen region, so the lumen was retained. 

Scalebar = 20 μm. (G–I) User input was again required after lumens were detected to 

remove any non-lumens. The region outlined in white in (G) is enlarged in (H) and (I). The 

area between lumens in the original image (G; arrow) was detected by the program as a 

lumen (H; arrow) due to the close proximity of the surrounding CD31+ structures. The user 

was able to delete this non-lumen prior to quantification (I; arrow), improving program 

accuracy. Scalebar = 20 μm. (J–L) The lumen image (J) resulting from these manipulations 

corresponded well to the original image (K). The lumen image are overlayed the original 

image for clarity (L). Scalebar = 100 μm.
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Figure 3. 
Evaluation of support cell recruitment in cross sections. (A) The original image, in which 

CD31 staining is red, support cells are green and nuclei are blue. Scalebar = 50 μm. (B) The 

support cell image (green) was thresholded and noise removed. (C) The intersection between 

the support cell image and the CD31 image, which defined recruitment. (D) Those support 

cells that coincided with ECs were considered recruited.
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Figure 4. 
Quantification of network morphology in whole mount images. (A) The original CD31 

image. Scalebar = 100 μm. (B) The binary image produced by thresholding and removal of 

rounded cells. (C) The binary image after skeletonization. Many small segments are present 

as artifacts of the skeletonization process. (D) The binary image after bifurcation points and 

the small artifacts were removed. These segments correspond well to the original image.
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Figure 5. 
Support cell recruitment quantification in whole mount images. (A) The original image, in 

which the red indicates CD31 staining, the green indicates support cells, and the blue 

indicates nuclei. (B) The binary image of support cells. (C) The intersection of the red and 

green staining, which indicates regions of adjacent ECs and support cells. (D) Those support 

cells identified in the intersection image were considered recruited.
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Figure 6. 
Comparison of manual and automated quantitation methods. Lumen density was measured 

to evaluate the cross section program (A), and total vessel length was measured to evaluate 

the whole mount program (B). Network anisotropy (C) and support cell recruitment (D) 

were quantified from the whole mount program as an indication of the accuracy of both 

programs, as the algorithm is very similar between the two programs. All automated 

measurements demonstrated good agreement (p < 0.05) with their respective manual 

measurements, both measurements being made on the same 6 images.
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