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Hepatitis B virus (HBV) can replicate within hepatocytes without causing direct cell damage.
The host immune response is, therefore, not only essential to control the spread of virus
infection, but it is also responsible for the inflammatory events causing liver pathologies.
In this review, we discuss how HBV deals with host immunity and how we can harness it to
achieve virus control and suppress liver damage.

Innate and adaptive immunity have evolved
different tasks to control infections. Through

recognition of viral nucleic acids, viral proteins
or tissue-damage innate immunity is triggered
during the early phases of viral infections. Ac-
tivation of different families of cellular receptors
(toll-like receptors [TLRs], RIG-1) leads to rap-
id production of antiviral cytokines, such as
interferon (IFN)-a, and, in concert with acti-
vation of natural killer (NK) cells, limits the
initial spread of hepatitis B virus (HBV). The
activation of innate immunity is also necessary
for the efficient recruitment of the adaptive
immune system (Akira et al. 2006) which acts
through functional maturation and expansion
of distinct B- and T-cell clones that specifically
recognize and kill infected hepatocytes. This
process eventually leads to the control of an
infection and generates a memory response,
which protects the host from subsequent infec-
tions with the same pathogen.

As different pathogens target different or-
gans and cause a variety of clinical conditions,

they also evolved distinct strategies to escape
host immunity. HBV infection of hepatocytes
is characterized by several unique features (Ber-
toletti et al. 2010). Although many virus infec-
tions are characterized by an initial logarithmic
phase of virus production, HBV infections show
delayed virus amplification and spread through
the liver. Similarly, febrile symptoms occur im-
mediately in many acute viral infections, where-
as acute HBV infections are mostly asymptom-
atic. Finally, although low viral load and protein
expression is characteristic of most chronic viral
infections (e.g., hepatitis C virus [HCV], hu-
man cytomegalovirus), HBV persistence is of-
ten associated with the production of large
amounts of viral proteins, such as the hepatitis
B surface (HBsAg) and e (HBeAg) antigens, re-
spectively (Bertoletti and Ferrari 2003; Wieland
and Chisari 2005).

Another peculiarity of HBV infections is
that the immune system often cannot complete-
ly resolve infections. Although “recovered” pa-
tients maintain protective immunity for the re-
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mainder of their lives, trace amounts of HBV
DNA can still be detected sporadically (Reher-
mann 1996). These trace amounts of HBV DNA
are infectious and stimulate HBV-specific B-
and T-cell responses, which, in turn, control
viremia (Rehermann 1996). The basis for the
apparent persistence is the covalently closed cir-
cular DNA (cccDNA) that persists in infected
hepatocytes in the form of a minichromosome
(Seeger and Mason 2000). Thus, successful
HBV immunity must often be considered pro-
tective rather than sterilizing.

In this review, we will summarize the role of
different components that contribute to anti-
HBV immunity, and discuss how we can exploit
recent knowledge gained about the immune re-
sponse to achieve control of chronic HBV infec-
tions in the future.

INNATE IMMUNITY DURING HBV
INFECTION: RECOGNITION DEFECT
OR ACTIVE INHIBITION?

Technical limitations restrict our knowledge
of innate host response against HBV. Data
obtained during acute natural infection are lim-
ited by the difficulty in recruiting patients at
the earliest presymptomatic stages (reviewed
in Bertoletti et al. 2010). In addition, despite the
recent discovery of the putative receptor of HBV,
we still lack a robust HBV in vitro infection
system. In vitro HBV infection efficiency is of-
ten poor and the level of HBV replication is low
(Gripon et al. 2002; Hantz et al. 2009). Equally,
animal models of hepadnavirus infections are
plagued by ethical issues and high costs (chim-
panzees), the scarcity of reagents to analyze
immunological events (woodchucks, ducks)
(Roggendorf and Tolle 1995; Guy et al. 2008),
or technical difficulties involved with the pro-
duction of human livers in chimeric mice (Dan-
dri et al. 2001; Jo et al. 2013).

Despite these limits, information gained
from animal studies and human liver specimen
established a scenario of weak activation of in-
nate immunity as the hallmark of acute HBV
infection in adults. Proinflammatory cytokines
are low or undetectable within the first 30 days
of HBV infection, their production is of lower

magnitude, and the kinetics were also delayed
compared with HCV- and HIV-infected pa-
tients (Dunn et al. 2009; Stacey et al. 2009).
These observations are consistent with results
obtained in chimpanzees, in which a limited
induction of IFN-related genes was observed
after HBV infection, in contrast to the rapid
up-regulation observed in HCV (Wieland et
al. 2004). Lack of induction of known IFN-a-
stimulated genes was not only observed during
acute HBV infection, but also during chronic
reactivation and in the livers of woodchucks
chronically infected with woodchuck hepatitis
virus (WHV) (Fletcher et al. 2012).

The reason for the apparent lack of a ro-
bust IFN-a-mediated innate response during
HBV infections is still controversial. One pos-
sibility is that HBV escapes innate recognition
by sequestering cccDNA to the cell nucleus,
and replicative RNA and DNA intermediates
to cytoplasmic core particles and, hence, pre-
venting their recognition by host-sensing recep-
tors (Wieland and Chisari 2005). Recent reports
have, however, challenged this view, claiming
that HBV is sensed by the innate immune sys-
tem, but that it actively suppresses its activation
(Durantel and Zoulim 2009). For example, HBV
replication in HepaRG cells, which are physio-
logically closer to normal hepatocytes than es-
tablished hepatoma-derived cell lines, activates
IFN-b and other IFN-stimulated genes (ISGs)
(Lucifora et al. 2010). In addition, acute infec-
tion of woodchucks with high doses of WHV
can induce ISGs immediately after infection
(Guy et al. 2008). Also, Kupffer cells, despite
not replicating the virus, seem to be able to sense
HBV with up-regulation of interleukin (IL)-6
production (Hösel et al. 2009). The physiologi-
cal relevance of these observations needs to be
confirmed in natural infections that occur with
much lower doses of virus (Unterholzner and
Bowie 2011). Thus, overexpression of HBV in
HepaRG cells (Lucifora et al. 2010) and the ex-
ceedingly high dose of WHV used to infect
woodchucks (Guy et al. 2008) might have trig-
gered the observed stimulation of the innate sys-
tem. Indeed, the quantity of initial viral inocu-
lum is known to be an important parameter,
which can influence the outcome of HBV infec-
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tions (Michalak et al. 1994; Coffin and Michalak
1999; Asabe et al. 2009).

However, the ability of the innate immunity
to sense and react to HBV was recently support-
ed by the demonstration of a transient activa-
tion of ISGs in human hepatocytes infected
with HBV in chimeric mice (Lütgehetmann
et al. 2011). The viral and cellular factors in-
volved in ISG activation have not yet been
elucidated. Possible cellular candidates might
belong to the growing family of pathogen-rec-
ognition receptors (PRRs) (Sharma and Fitz-
gerald 2011). A similar lack of information is
apparent concerning the mechanism(s) that
suppress IFN-a/b production in HBV-infected
cells. For example, evidence has been obtained
that the HBV polymerase can interfere with IRF-
3 and IRF-7 signaling by binding to the RNA
helicase DDX3 (Fig. 1) (Foster et al. 1991; Chris-
ten et al. 2007; Wu et al. 2007; Wang and Ryu
2010; Yu et al. 2010).

The HBV X protein (Hbx) has also been
implicated in the inhibition of intracellular in-
nate immunity by interfering with signaling,
mediated by cytosolic sensory molecules, such
as RIG-I (Wang et al. 2010; Wei et al. 2010;

Kumar et al. 2011). Nevertheless, similar to pre-
vious work, intracellular IFN-b production was
activated by heterologous inducers (poly dAT:
dAT, poly I:C, or vesicular stomatitis virus), and
HBx, RIG-I, and IPS-1 were overexpressed in
HepG2 cells. Thus, these studies are important
to reveal potential clues on the interplay be-
tween HBV and innate immunity, but need to
be confirmed with more natural HBV infection
systems.

HOST IMMUNITY AND CONTROL
OF HBV REPLICATION

Another important aspect of antiviral immu-
nity concerns the mechanisms that reduce and
control HBVreplication. Although killing of in-
fected hepatocytes by NK or cytotoxic T lym-
phocytes (CTLs) will reduce HBV load, noncy-
tolytic mechanisms are also believed to play a
critical role in the control of HBV replication
(Guidotti 1999). IFN-a can inhibit HBV repli-
cation in cell lines and human hepatocytes in
chimeric mice by several mechanisms, includ-
ing induction of epigenetic changes in histones
of the cccDNA minichromosome (Belloni et al.
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Figure 1. Proposed mechanisms for the suppression of the host innate immune response by different hepatitis B
virus (HBV) proteins. Induction of interferon (IFN)-a/b (type I IFN) production might be suppressed by HBV
polymerase through binding to DDX-3 (Wang and Ryu 2010; Yu et al. 2010) or by HBx through down-
regulation of the mitochondrial antiviral-signaling protein MAV-5 (Wang et al. 2010; Wei et al. 2010; Kumar
et al. 2011). IFN-a-induced response can also be blocked by the HBV polymerase as a result of a block of signal
transducer and activator of transcription (STAT)-1 nuclear translocation (Foster et al. 1991; Christen et al. 2007;
Wu et al. 2007). PRR, Pathogen-recognition receptor.
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2012) and accelerated decay of replication-com-
petent HBV nucleocapsids (Xu et al. 2010). At
very high doses, IFN-a has also been shown to
induce direct degradation of cccDNA through
activation of APOBEC3A cytidine deaminase
(Lucifora et al. 2014). However, the antiviral
activity exerted by IFN-a during natural HBV
infections is weak and lower than observed
in HCV infections. In HCV-infected patients,
IFN-a-based therapies result in a sharp decrease
in viremia within the first 48 h (Neumann et al.
1998), whereas in patients with chronic hepati-
tis B (CHB), HBV titers begin to drop only 3–
4 wk after the start of therapy. Therefore, it is
likely that therapeutic effect of IFN-a in CHB is
indirect through activation of other compo-
nents of the innate immune system, such as
NK cells.

The limited direct antiviral efficacy of IFN-
a has been investigated in vitro and in vivo. In
human hepatocytes in chimeric mice, HBV pre-
vents IFN-a-mediated signaling by inhibiting
nuclear translocation of signal transducer and
activator of transcription (STAT)-1 and, thus,
interfering with transcription of ISGs (Lütge-
hetmann et al. 2011). Interestingly, IFN-a has
also been shown to promote HBV infection in
HBV transgenic mice or mice inoculated with
HBV DNA by hydrodynamic transfection. This
activity was detectable only when the viral load
was low (Tian et al. 2011) and might explain
why IFN-a-based therapies are generally not
very effective against HBV. In this model, IFN-
a activated STAT-3, which, in turn, stimulated
HBV gene expression and replication. A possi-
ble explanation of why the pro-HBV effect can
be detected only when HBV replicates at low
level might be that, at higher levels of HBV rep-
lication, the viral polymerase and X proteins are
produced at levels sufficient to inhibit STAT
methylation (Christen et al. 2007) and other
IFN-a-mediated cellular responses (Foster et al.
1991; Wu et al. 2007).

Suppression of HBV replication can also be
mediated by IFN-g and tumor necrosis factor
(TNF)-a (Cavanaugh et al. 1998; Nakamoto
et al. 1998; Guidotti 1999). Production of these
cytokines has been associated mainly with an
efficient HBV-specific T-cell response in trans-

genic mice and chimpanzees (Guidotti et al.
1996; Guidotti 1999; Phillips et al. 2010). How-
ever, IFN-g and TNF-a are also secreted by NK
and natural killer T (NKT) cells at levels suffi-
cient for inhibition of HBV. This was, for exam-
ple, not only shown with HBV transgenic mice
(Kimura et al. 2002), but also with HBV-in-
fected chimpanzees treated with TLR agonists,
which can stimulate not only IFN-a, but also
an IFN-g-dependent antiviral response (Lan-
ford et al. 2013). More important, the hu-
man intrahepatic environment is enriched for
NKbright cells and a type of NKT cells called
mucosal-associated invariant T (MAIT) cells,
which can produce large quantities of IFN-g
after activation with IL-12 and IL-18 (Tu et al.
2008; Jo et al. 2014; Ussher et al. 2014).

Innate immune pathways induced by the
lymphotoxin-b receptor (LT-bR) might also
play a role in the suppression of HBV replica-
tion through activation of nuclear deaminases,
which target cccDNA (Lucifora et al. 2014). The
physiological ligands of LT-bR are two members
of the TNF-superfamily ligands, expressed on
subsets of activated T, B, and NK cells. One is
the heterotrimeric LT-a1b2 formed by a single
molecule of LT-a and two of LT-b. The hetero-
trimer activates LT-bR signaling by inducing
dimerization of the LT-bRs expressed on hepa-
tocytes (Sudhamsu et al. 2013). The other LT-
bR ligand, termed LIGHT (homologous to
lymphotoxin [LT]-inducible expression, and
compete with herpes simplex virus [HSV] gly-
coprotein for herpes simplex entry mediator,
expressed by T lymphocytes), is expressed on
immature dendritic cells and activated T cells,
can bind to LT-bR in a soluble form, and has
been shown to play a role in maturation of the
adaptive immune system and also in hepatitis
(Anand et al. 2006). Despite the potential im-
portance of the LT-bR pathway in the control of
HBV, information about the role of this pathway
during natural HBV infections is limited to
studies in CHB infections, in which expression
levels of LT-a/b were shown to be up-regulated
and associated with hepatocellular carcinoma
(HCC) development (Haybaeck et al. 2009).

Indeed, a note of caution about the antivi-
ral effect of cytokines in HBV infections is nec-
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essary. Most of the experiments performed
to measure the ability of cytokines to inhibit
HBV replication have been performed in ex-
perimental systems devoid of chronic inflam-
matory events. However, intrahepatic levels of
SOCS3, a negative regulator of cytokine signal-
ing, are known to be increased in patients and
woodchucks with chronic hepadnavirus infec-
tions (Koeberlein et al. 2010; Fletcher et al.
2012). SOCS3, a predictor of poor IFN-a re-
sponses in HCV-infected patients (Kim et al.
2009), may also attenuate the antiviral efficacy
of IFN-a and other cytokines in patients with
chronic HBV infections. IL-10 (Das et al. 2012),
TGF-b (Sun et al. 2012), and arginase (Das et al.
2008), all factors that impair T and NK func-
tions, are also elevated in chronic HBV infec-
tions (Peppa et al. 2010). It is, therefore, impor-
tant to keep in mind that the impact of the
activation of different components of innate
and adaptive immunity might be modulated
in a liver microenvironment characterized by
chronic inflammatory events.

NK AND NKT CELLS IN HBV INFECTION

NK cells recognize and kill virus-infected cells.
Loss of major histocompatibility complex
(MHC) class I on the surface of virally infected
cells, along with up-regulation of host or path-
ogen-encoded ligands that signal cell stress, op-
timize NK cell recognition. NK cells can also be
directly activated by cytokines induced in viral
infections, such as type 1 interferons, IL-12, and
IL-18 (Biron and Brossay 2001). The cytokine-
mediated pathway of NK activation can be par-
ticularly important in the liver where NKbright

cells, which are highly responsive to cytokine-
mediated activation, are preferentially compart-
mentalized (Tu et al. 2008). Other cells at the
crossroads between innate and adaptive immu-
nity, which are extremely abundant in the liver,
are invariant natural killer T (iNKT) and MAIT
cells. Classical iNKT cells, a lymphocyte pop-
ulation that is activated after recognition of
lipid antigen associated with MHC class I–
like molecule CD-1, are abundant in mouse liv-
er, and elegant work has shown their ability to
be directly activated by hepatocytes overexpress-

ing HBV antigens (Zeissig et al. 2012). These
data suggested that direct activation of NKT
cells by HBV-infected hepatocytes represent
the first step of innate immune activation dur-
ing HBV primary infection. However, the im-
pact of such innate immune cells during natural
HBV infections in humans is controversial be-
cause such CD-1-restricted NKT cells are abun-
dant in mouse, but extremely rare in human
livers. Instead, in human livers, different types
of NKT cells, such as MAIT cells, which do not
recognize antigens presented by CD-1 cells, are
abundant (Tang et al. 2013). However, the role
of MAIT cells, lymphocytes that are known
to play a major role in antibacterial immunity,
during acute or chronic HBV infection, is not
known.

The role of classical NK cells in HBV infec-
tion has been investigated in more detail. Stud-
ies of patients around the time of first detection
of HBsAg and HBV DNA revealed an increase
in the number of circulating NK cells (Webster
et al. 2000; Fisicaro et al. 2009), but their acti-
vation and effector function was suppressed as
viral load increased and peaked only once vire-
mia had resolved (Dunn et al. 2009). The im-
portance of NK cells in the immediate early
response to infection was also shown in wood-
chucks infected with high doses (1011) of WHV,
which displayed an activation of a gene related
to NK cell activation immediately after infec-
tion (8–12 h) (Guy et al. 2008). Moreover, the
initial IFN-g production detected in acutely in-
fected chimpanzees was suggested to be sus-
tained by NK cell activation (Guidotti 1999).

NK cells also play a role in chronic HBV in-
fection (Dunn et al. 2007; Oliviero et al. 2009;
Peppa et al. 2010). Their functionality seems
often suppressed by the presence of different
immunomodulatory cytokines, such as IL-10
or TGF-b (Peppa et al. 2010), whereas other
data have suggested an increased cytotoxic abil-
ity and involvement in liver damage (Zhang
et al. 2011b). One other interesting possibility
is that NK cells, during chronic HBV infection,
act as a rheostat of HBV-specific T cells. Intra-
hepatic NK cells were shown to induce apopto-
sis of HBV-specific T cells with up-regulated
PD-1 expression (Peppa et al. 2013).
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NK cell activation has also been associated
with IFN-a treatment efficacy. NK cell prolifer-
ation and activation is detectable immediately
after IFN-a therapy (Tan et al. 2014). HBV in-
hibition during IFN-a treatment coincided
with an increase in the frequency of circulating
CD56bright NK cells, increased expression of
the activating receptor NKp46, and the cytotox-
ic receptor TNF-related apoptosis-inducing li-
gand (TRAIL) by NK cells and recovery of their
IFN-g production (Micco et al. 2013).

ADAPTIVE IMMUNITY AGAINST HBV

The adaptive immunity has generally been rec-
ognized as a crucial player in the clearance of
HBV infection; it comprises a complex web of
effector cell types. CD4 T cells are robust pro-
ducers of cytokines and required for the effi-
cient development of effector CD8 CTLs and
B-cell antibody production. CD8 T cells clear
HBV-infected hepatocytes through cytolytic

and noncytolytic mechanisms, reducing the
levels of circulating virus (Chisari 1997), where-
as B-cell antibody production neutralizes free
viral particles and can prevent reinfection (Fig.
2) (Alberti et al. 1978). This antiviral immune
response is induced in adults after acute HBV
infection and leads to HBV control. In contrast,
chronic HBV patients fail to mount such an
efficient antiviral response.

Although little is known about the induc-
tion and kinetics of the B-cell response in acute
HBV, HBV-specific CD4 (helper) and CD8 (cy-
totoxic)-mediated responses become generally
detectable at the time of exponential increase
in HBV replication, which follows an initial
phase of negative or weakly positive HBV
DNA levels lasting for �4–7 wk after infection
(Webster et al. 2000; Fisicaro et al. 2009). CD4
T helper cells recognize preferentially epitopes
of the capsid protein, whereas CD8 T cells typ-
ically recognize epitopes located within differ-
ent HBV proteins. HBV-specific T cells are Th1

Virus

HBV-infected
hepatocytes

CTL
Clearance of HBV-

infected cells

Helper T cells
Expansion of immune response
modulates inflammatory events

B cells
Neutralize free virus through Ab

production

INF-γ /
TNF-α

CTL

Target

Th1 Th2

Figure 2. Antiviral adaptive immune response during hepatitis B virus (HBV infection). CTL, Cytotoxic T
lymphocyte; INF, interferon; TNF, tumor necrosis factor.
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oriented and much stronger in self-limited than
in chronic infection (Bertoletti and Ferrari
2003; Rehermann and Nascimbeni 2005; Wie-
land and Chisari 2005; Bertoletti et al. 2010).

In self-limited infections, HBV DNA de-
clines by .90% within 2–3 wk after the peak
of viral replication and before detection of liver
damage, indicating that a large quantity of vi-
rus is eliminated by noncytopathic mechanisms
controlled by IFN-g and TNF-a, secreted by
CD8 T cells (Guidotti 1999; Guidotti and Chi-
sari 2006). Intrahepatic recruitment of HBV-
specific CTLs, which is facilitated by the secre-
tion of chemokines (i.e., CXCL-10) and platelet
activation (Iannacone et al. 2005, 2007; Sitia
et al. 2007, 2004), also leads to killing of infected
hepatocytes with subsequent recruitment of an-
tigen-nonspecific cells that amplify hepatocel-
lular damage.

When infection is successfully controlled,
maturation of T-cell memory occurs efficiently
(Wherry and Ahmed 2004; Wherry et al. 2004).
This stage is, however, preceded by a functional
HBV-specific CD8 T-cell impairment, which is
detectable at the peak of disease, when the ma-
jority of HBV-specific CD8þ T cells are activat-
ed but poorly able to proliferate and are func-
tionally exhausted (Dunn et al. 2009; Sandalova
et al. 2010). This functional decline has been
reported to be associated with a peak of IL-10
production (Dunn et al. 2009), but could also
be caused by the increased levels of arginase
released by dying hepatocytes (Chisari 1978).
By depleting the essential amino acid L-argi-
nine, arginase contributes to the down-regu-
lation of the CD3z chain on T cells (Das et al.
2008). These mechanisms of acute phase sup-
pression can represent a homeostatic process
common to many virus infections to avoid ex-
cessive immunopathology and favor T-cell con-
traction (Marshall et al. 2011).

In patients with chronic HBV infection, the
HBV-specific T-cell response is extremely weak.
Irrespective of the primary causes of HBV chro-
nicity (infection at birth, dose of antigen, HLA
class I and II profile), the prolonged expres-
sion of high doses of HBV antigens in hepato-
cytes can delete or cause functional inactivation
of HBV-specific T cells that express inhibitory

molecules like PD-1, CTLA-4, TIM-3, and are
defective in proliferation, cytokine production
(Boni et al. 2007; Fisicaro et al. 2010; Razior-
rouh et al. 2010; Schurich et al. 2011), and are
prone to apoptosis caused by Bim up-reg-
ulation (Lopes et al. 2008). The HBV-specific
T-cell defects present in chronic patients are
inversely correlated to viremia levels (Maini
et al. 2000a; Webster et al. 2004; Boni et al.
2007), with suppression of HBV-specific T-cell
responses more profound in highly viremic pa-
tients and T cells more dysfunctional within the
liver than in the periphery (Fisicaro et al. 2010).

One other important factor influencing the
residual HBV-specific T-cell function in CHB
patients is the length of the chronic infection
(Crispe et al. 2000; Bertolino et al. 2001; Mueller
and Ahmed 2009). Indeed, young CHB patients
show a less-profound defect of HBV-specific T
cells in comparison with adults (Kennedy et al.
2012). These experimental data suggest that the
length of persistent infection affects HBV-spe-
cific T-cell presence, and challenged the popular
notion that the initial phase of HBV chronic
infection is characterized by a state of immuno-
tolerance. So far, such a definition of immune
tolerance has only been supported by clinical
observation, indicating the absence of serolog-
ical markers of liver inflammation. However,
it is now well established that the quantity of
liver enzymes is not directly proportional to
the quantity of HBV-specific T cells. Antiviral
specific T-cell responses within the liver can be
present without any elevation of alanine amino
transferase (ALT) levels. Furthermore, quantity
and function of HBV-specific T cells correlate
with viral control and not with the extent of
liver damage (Maini et al. 2000b; Stabenow
et al. 2010). As such, we think that the defini-
tion of the “immunotolerant” state in HBV in-
fections requires a better immunological defini-
tion and should cover only those subjects who
are unable to mount an HBV-specific T-cell re-
sponse (Bertoletti and Kennedy 2014). Studies
with HBV transgenic mice suggested that HBV
exposure in the early stages of development can
block the proper induction of an HBV-specific
T-cell response (Publicover et al. 2013). Howev-
er, such mouse data contrast with the scenario
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detected in young CHB patients who have a
better HBV-specific T-cell response than adults
(Kennedy et al. 2012). Analysis of immune-re-
sponse profiles in children vertically infected
with HBV is eagerly awaited to better under-
stand the influence of this mode of transmission
on antiviral immunity.

THE EXTENDED T-CELL FAMILY: Treg, Th17,
AND Th22 IN HBV INFECTION

Analysis of HBV-specific T cells in acute and
CHB has been mainly focused on T cells pro-
ducing IFN-g, TNF-a, and IL-2 (so-called Th1/
Th0 cytokine profiles) in relation to their as-
sociation with antiviral property. However, an
extended family of T cells with regulatory or
inflammatory functions can play a role in HBV
pathogenesis (O’Shea and Paul 2010). Treg and
T cells producing IL-10 or TGF-b can have im-
munoregulatory roles, IL-17- or IL-8-produc-
ing T cells can be proinflammatory, whereas
Th2 and T cells producing IL-13 have profibrotic
effects (Chiaramonte et al. 1999), and cells pro-
ducing IL-22 have been reported to have hepa-
toprotective effects (Zenewicz et al. 2007).

Many studies have shown that Treg, Th17,
and Th22 cell frequencies are higher in patients
with chronic hepatitis than in healthy subjects
(Xu et al. 2006; Yang et al. 2007; Zhang et al.
2010). These cells are often enriched in the
intrahepatic environment and express CD161
and CXCR-6 receptors (Billerbeck et al. 2010).
These correlations do not, however, clarify their
role in HBV pathogenesis. Treg cells can sup-
press, in vitro, HBV-specific T-cell functions
(Stoop et al. 2005; Xu et al. 2006), but such an
effect is also observed in patients who are per-
fectly able to control the virus (Franzese et al.
2005). Furthermore, because Treg frequency is
correlated with ALT levels (Xu et al. 2006), Treg
might have an anti-inflammatory effect and not
play any role in HBV persistence.

Th17 cells are detectable at higher frequency
in CHB patients with severe liver damage
(Zhang et al. 2010), but they were also reported,
in HCV infection, to be associated with mild
hepatitis (Billerbeck et al. 2010). Such contro-
versial data can be explained by the inherent

plasticity of T-cell cytokine production. Th17-
producing cells can coexpress IL-22, a cytokine
that should have a prominent hepatoprotective
role (Zenewicz et al. 2007), although, in HBV-
transgenic mice, it was shown that IL-22 has a
proinflammatory effect (Zhang et al. 2011a).
The necessary stimulus to trigger T-cell produc-
tion of IL-17 and IL-22 during HBV infection
has been analyzed, and a report has proposed
that HBsAg, through stimulation of IL-23
from hepatic macrophages and dendritic cells,
might directly activate Th17 cells (Wang et al.
2013). Such data are, however, difficult to rec-
oncile with the fact that HBsAg levels are not
proportional to liver damage or fibrosis, and
many subjects with high levels of HBsAg are ac-
tually protected from hepatic fibrosis (Seto et al.
2012; Martinot-Peignoux et al. 2013). Further-
more, although HBV-specific IL-17-producing
cells were initially reported (Zhang et al. 2010),
more recent data failed to detect IL-17-pro-
ducing HBV-specific T cells in acute and chron-
ic HBV patients, both in the periphery and
the intrahepatic environment (Gehring et al.
2011a). HBV-specific T cells maturing in the
intrahepatic inflammatory environment can,
instead, produce CXCL-8 (IL-8) (Gehring et
al. 2011a), a cytokine that has a proinflamma-
toryeffect (Zimmermann et al. 2011), which can
contribute to the development of liver patholo-
gy through the recruitment of granulocytes (Si-
tia et al. 2002). Thus, with the exception of some
interesting correlative analysis, we are quite far
from a clear understanding of the impact that T
cells with regulatory, proinflammatory, or hep-
atoprotective effects have on HBV infection.

IMMUNOMODULATORY ROLES
OF HBV ANTIGENS

A hallmark of HBV infection is the persistent
production of the soluble form of HBsAg and
e antigen derived from the core protein in ex-
cessive amounts over whole virions. Persistent
exposure to circulating HBsAg has been sug-
gested to impair the frequency and function
of myeloid (van der Molen et al. 2004; Op den
Brouw et al. 2009), plasmacytoid (Xu et al. 2009;
Woltman et al. 2011; Shi et al. 2012), and mono-
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cyte-derived dendritic cells (Beckebaum et al.
2003) by modulating TLR-2 surface expression
(Visvanathan et al. 2007) and interfering with
TLR-mediated cytokine production (Wu et al.
2009). It is believed that soluble viral antigens
can inhibit antigen-presenting function, alter-
ing their ability to produce cytokines, and
inhibit the induction of HBV-specific T cells
(Martinet et al. 2012). However, it is somehow
difficult to understand why these defects are
limited to HBV infection. In fact, we would ex-
pect that CHB patients are susceptible to bacte-
rial and other opportunistic infections. Howev-
er, to our knowledge, there have been no reports
of increased incidences of bacterial infections or
vaccine unresponsiveness in HBsAgþ children.
In contrast, reports have shown that, in patients
with malaria, HBsAg positivity is associated
with lower parasitemia (Andrade et al. 2011),
or episodes of cerebral malaria, that is, a path-
ological manifestation indicative of a height-
ened Th1 response against the parasite (Oakley
et al. 2013). To add to the confusion, a recent
report has suggested that HBsAg, instead of
having suppressive role, might directly induce
a heightened Th17 response through activation
of IL-23 on macrophages (Wang et al. 2013).

A caveat of the studies that have suggested
an immunomodulatory role of HBV antigens,
is that they have been often performed in vitro
with proteins expressed in Escherichia coli or
yeast, or purified from the sera of CHB patients.
Despite the high level of purity of these prepa-
rations, contaminants from bacteria or enzymes
cannot be ruled out. For example, the phenom-
ena of lipopolysaccharide (LPS)-induced toler-
ance of antigen-presenting cells following stim-
ulation with TLR agonists may have influenced
the outcome of some experiments (Rodrick et
al. 1992; Granowitz et al. 1993). Moreover, it
is important to consider that, in CHB patients
with chronic liver disease, the presence of high
doses of circulating antigens is often linked
with immunosuppressive cytokines (IL-10)
(Das et al. 2012) or liver enzymes (i.e., argi-
nase), known to alter the function of different
components of cellular immunity (Das et al.
2008; Sandalova et al. 2012). In a study per-
formed with CHB patients with mild or absent

liver inflammation but high HBsAg levels, the
frequency and T-cell stimulatory activity of cir-
culating professional antigen-presenting cells
(monocytes, dendritic cells, and B cells) were
not altered (Gehring et al. 2013). In contrast,
another study reported alteration of dendritic
cell (DC) function ex vivo in CHB infection
corresponding with HBsAg and HBeAg levels,
but also with high levels of CXCL-10, a chemo-
kine associated with liver-inflammatory events
causing increased arginase/IL-10 levels (Marti-
net et al. 2012). It is, therefore, plausible that
these different results are caused by the differ-
ence in suppressive cytokines or enzymes in the
circulation of patients with liver-inflammatory
diseases, and not by differences in HBsAg levels.

The hypothesis that circulating HBsAg and
HBeAg can suppress the T-cell response to viral
proteins is also difficult to envisage. Such a hy-
pothesis would be plausible if antigen-specific
T-cell responses against the HBV polymerase, a
HBV protein produced at very low levels, would
remain intact in CHB. This is not the case be-
cause HBV-specific T-cell responses against the
HBV polymerase are rarely detected ex vivo in
patients with CHB (Webster et al. 2004; Boni
et al. 2007), and, overall, the magnitude of
HBV-specific T-cell response in CHB patients
is inversely correlated with levels of HBV repli-
cation (HBV DNA) (Webster et al. 2004; Boni
et al. 2007), and not with the quantity of circu-
lating antigens. It is, therefore, likely that the
persistent viral antigen presentation in the in-
fected liver is the cause of the exhaustion or
deletion of HBV-specific T cells. This notion
is supported by studies demonstrating that in-
trahepatic recognition of viral antigen triggers
T-cell dysfunction, which is associated with the
inability to produce antiviral cytokines and the
up-regulation of inhibitory receptors (Fisicaro
et al. 2012).

IMMUNOLOGICAL-BASED TREATMENTS
OF CHRONIC HBV INFECTION

How can we use our knowledge of HBV im-
munity to develop better therapeutic strate-
gies against HBV? The limited activation of
the innate immune system during primary
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and chronic HBV infections has stimulated
therapeutic strategies to specifically target this
system. Because IFN-a can clear HBV-infected
hepatocytes at high doses (Ji et al. 2012), in-
creasing intrahepatic IFN-a levels could be
clinically beneficial. In addition, exogenous
TLR-mediated activation can suppress HBV
replication in HBV-transgenic mice (Isogawa
et al. 2005) and in HBV-transfected HepG2
and Huh7 cells (Guo et al. 2009). Production
of intrahepatic antiviral cytokines (IFN-a, IFN-
g), through oral administration of TLR ago-
nists, has also shown efficacy in HBV-infected
woodchucks (Menne et al. 2011) and chimpan-
zees (Lanford et al. 2013). Thus, to maximize
intrahepatic innate immune function, strategies
to specifically deliver antiviral cytokines to the
infected liver or to target activation of intrahe-
patic Kupffer and NK cells have been proposed.
The discovery of peptides able to specifically
bind to hepatocytes (Petersen et al. 2008) and
the production of antibodies with HBV-infect-
ed cell specificity (Sastry et al. 2011) could be
used to target cytokines and/or TLR agonist to
the HBV-infected liver.

The clear dichotomy between the immune
response present in acute, resolved versus chron-
ic persistently HBV-infected patients leads to
therapeutic strategies designed to boost HBV-
specific immunity in CHB patients. Because an-
tigen persistence in the liver seems to be a major
factor driving the HBV-specific CD4 and CD8
T-cell defects, the suppression of HBV antigen
production can lead to a functional reconstitu-
tion of antiviral T-cell responses (Wherry and
Ahmed 2004; Wherry et al. 2005). Unfortunate-
ly, T cells chronically exposed to antigen carry
permanent changes in their differentiation pro-
gram as a permanent “epigenetic signature.”
Results obtained with mice infected with lym-
phochoriomeningitis virus (LCMV) showed
that adoptive transfer of dysfunctional virus-
specific CD8 cells from a chronically infected
to a naı̈ve uninfected MHC-compatible animal
is not sufficient to restore T-cell memory mat-
uration (Wherry et al. 2004). These experimen-
tal data were confirmed by recent studies in pa-
tients who control HBV after treatment in
whom T cells, even after complete control of

virus replication, never fully recover their T-
cell functionality (Boni et al. 2012).

If antigen reduction is not sufficient to ob-
tain a robust functional recovery, additional
strategies, such as blocking inhibitory pathways,
new aggressive vaccination regimens, and exper-
imental gene therapy strategies, have been pro-
posed (Fig. 3). Blocking inhibitory pathways
associated with T-cell exhaustion has shown
therapeutic efficacy in cancer patients (Armand
et al. 2013). Interfering with these pathways
achieves partial functional recovery of HBV-
specific T cells from CHB patients in vitro, but
we still lack in vivo data evaluating the efficacy
of this approach in CHB patients (Maini and
Schurich 2010).

Vaccine therapy aims, instead, to induce
functionally efficient HBV-specific T cells on
the background of virus-specific T-cell exhaus-
tion. Several strategies have been tested in clin-
ical trials with disappointing results. Often,
vaccine therapy did not induce HBV-specific
T-cell response or, when such response was
boosted, it did not have a therapeutic effect
(Mancini-Bourgine et al. 2004, 2006). Most of
these data were derived, however, from trials
in which classical HBsAg-based prophylactic
vaccines were used (Couillin et al. 1999; Pol
et al. 2001; Yalcin et al. 2003). Alternative strat-
egies or refinements of current vaccine therapies
have, therefore, been tested. A proper design of
antigens for therapeutic vaccination might be
important. The T-cell response against HBcAg
is crucial for the resolution of an infection,
but therapeutic HBV vaccines designed to date
have mostly relied on HBV envelope proteins.
The use of core or polymerase antigen might
be advisable because core-specific T-cell re-
sponses were induced in chronically HBV-in-
fected chimpanzees successfully treated with a
therapeutic vaccine (Sallberg et al. 1998).

A further step toward a refinement of vac-
cine therapy is supported by the demonstra-
tion that a DNA prime-adenovirus boost vac-
cine with HBcAg in combination with antiviral
treatment can stimulate a robust T-cell response
in the woodchuck model of CHB (Kosinska et
al. 2013). New data are indeed emerging that
reduction of viral replication can induce im-
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munological alterations in CHB patients (Tan
et al. 2014), which goes beyond the transient
reconstitution of HBV-specific T-cell response
detected early after nucleoside analog therapy
(Boni et al. 2003) and alter, instead, the inflam-
matory microenvironment of the liver. Further
strategies have associated the use of vaccines
with modulators of T-cell fitness. A triple com-
bination therapy with antiviral treatment, ther-
apeutic DNA vaccination, and PD-L1 antibody

treatment potently suppressed viral replication
and led to production of anti-WHsAg antibod-
ies in woodchucks (Liu et al. 2014).

An alternative strategy of vaccine therapy in
CHB could be to directly stimulate the patient’s
antigen-presenting cells to efficiently present
the circulating HBV antigens to T cells. Mono-
cytes present in the circulation of CHB patients
internalize HBV antigens and can stimulate ex-
pansion of autologous HBV-specific T cells fol-

IL-12

IL-18

IFN-γ

CD56bright NK

MAIT

HBV-specific
T cells

HBV-specific T-cell
expansion

LSECs

Presentation of HBV
antigens by APCHBV-loaded

monocyte

2. Cytokine/adjuvant

3. CD40 agonist

4. Engineering HBV T cells 5. Vaccine therapy

HBV TCR

TCR-like Ab +
IFN-α

1. Intrahepatic
cytokine delivery

Hepatocytes

Liver sinusoids

Mφ

Figure 3. Different immune-based therapeutic strategies that aim to increase hepatitis B virus (HBV) control: (1)
T-cell receptor-like antibodies conjugated with interferon (IFN)-a, which specifically target HBV-infected
hepatocytes, can increase intrahepatic IFN-a delivery. (2) Toll-like receptors (TLRs) or anti-CD40 agonists
mature HBV-loaded monocytes into monocyte-derived dendritic cells (moDCs) that might stimulate intra-
hepatic HBV-specific T cells. (3) Activation of monocytes/macrophages producing interleukin (IL)-12 and IL-
18 through cytokines and/or TLR agonists can stimulate intrahepatic HBV-specific T cells, mucosal-associated
invariant T (MAIT) cells, or CD56bright natural killer (NK) cells to produce large quantities of IFN-g, which can
suppress HBV replication. (4) New HBV-specific T cells can be engineered through transfer of HBV-specific T-
cell receptors to reconstitute functional HBV-specific immunity. (5) Vaccine therapy performed in combination
with antiviral treatment and/or combining with immunomodulation methods, such as PD-1/PD-L1 blockade,
might induce antiviral T-cell responses. APC, antigen-presenting cell; LSECs, liver sinusoidal endothelial cells;
TCR, T-cell receptor.
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lowing maturation with inflammatory stimuli
(Gehring et al. 2013). These data support the
possibility that multiple injections of adju-
vants alone could induce an inflammatory en-
vironment capable of activating intrahepatic
HBV-specific T cells. This hypothesis is sup-
ported by studies in mice demonstrating that
intrahepatic stimulation of myeloid cells with
a TLR agonist results in expansion of virus-spe-
cific CTLs (Huang et al. 2013). Moreover, ago-
nistic activation of myeloid dendritic cells with
CD40L can rescue naı̈ve CD8 T cells, primed
in the liver by recognition of HBV antigens ex-
pressed in hepatocytes and suppressed by PD-1
signaling (Isogawa et al. 2013). The possibility
that vaccine therapy for CHB could be per-
formed using adjuvants alone is also supported
by the virological results obtained in a trial
performed with HBsAg-anti-HB immunogenic
complex (IC) vaccine in CHB patients. Here,
multiple injections of alum alone were suffi-
cient to trigger a significant virological response
in 21% of the treated patients (Xu et al. 2013).

However, more radical approaches could be
needed to circumvent HBV-specific T-cell dele-
tion in patients with high viral loads, in which
HBV-specific T cells are often not only func-
tionally altered, but completely undetectable.
Engineering HBV-specific T cells through trans-
fer of HBV-specific T-cell receptors (Gehring
et al. 2011b; Koh et al. 2013) or HBV-specific
chimeric antigen receptors (CARs) (Krebs et al.
2013) showed encouraging results in vitro and
in animal models. The concept of adoptively
transferring a functionally efficient HBV-spe-
cific immune system is not new in HBV. CHB
patients receiving bone marrow transplants
from HBV-immune donors were cured. Like-
wise, transplantation of an HBV-infected liver
into a recipient who previously recovered from
HBV infection resulted in viral control (Loggi
et al. 2009). Thus, gene therapy approaches
might have great potential, but safety concerns,
cost, and ethical issues related to viral vector use
need to be addressed.

A radically different perspective in CHB is to
consider it a necroinflammatory disease rather
than a viral disease. Recent data in HBV trans-
genic mice clearly indicate that suppressing in-

trahepatic CTL activity in the liver using anti-
platelet therapy can prevent HCC, the real life-
threatening complication of CHB infection.
Platelets promote the accumulation of CD8 T
cells in the liver and antiplatelet therapy blocks
this process, reducing hepatocellular injury and
fibrosis (Sitia et al. 2012).

In conclusion, characterization of the im-
munological profiles present during acute and
chronic HBV infections support the rationale to
boost antiviral immunity to achieve control of
HBV replication. However, further understand-
ing of the relationship of HBV with host immu-
nity is necessary to clearly understand whether
HBV therapy should focus toward virus or in-
flammation control.
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