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Modern tuberculosis (TB) chemotherapy is widely viewed as a crowning triumph of anti-
infectives research. However, only one new TB drug has entered clinical practice in the past
40 years while drug resistance threatens to further destabilize the pandemic. Here, we review
a brief history of TB drug development, focusing on the evolution of mechanism(s)-of-action
studies and key conceptual barriers to rational, mechanism-based drugs.

History recounts streptomycin and para-
aminosalicylic acid (PAS) among the first

clinical antibiotics developed. Both showed ac-
tivity against Mycobacterium tuberculosis (Mtb)
and were followed in rapid succession by iso-
niazid, pyrazinamide, cycloserine, ethionamide,
ethambutol, and rifampicin, among others
(Barry 2011; Zumla et al. 2013). Together, these
advances transformed tuberculosis (TB) from a
predictably fatal disease to a curable disease.
However, current TB chemotherapies remain
far from optimal. TB remains the leading bacte-
rial cause of deaths worldwide, and drug resis-
tance has emerged as a problem of singular im-
portance (Nathan 2009; Russell et al. 2010;
Raviglione et al. 2012).

Somewhat unexpectedly, efforts to restock
this once celebrated medicine chest have fal-
tered. The causes for this are multifactorial
(IDSA 2004; Payne et al. 2007; Zumla et al.

2014). However, mounting evidence has impli-
cated a growing inadequacy of existing tools and
approaches (Nathan 2004; Nathan et al. 2008).
Although technologically advanced, anti-infec-
tives research remains rooted in the same empir-
ical paradigm that first gave rise to penicillin.
While this paradigm was initially reinforced by
its delivery of all major classes of clinical antibi-
otics, its productivity has since waned. We be-
lieve that this early success fostered an unintend-
ed dissociation between our ability to develop
antibiotics and understanding of their mecha-
nisms. Rational, or mechanism-based, para-
digms have thus lagged behind.

Here, we review existing knowledge of the
mechanisms of current TB drugs and emerging
experimental agents. We focus specificallyon (1)
the frontline agents isoniazid, pyrazinamide,
ethambutol, and rifampicin, because of their
clinical importance and legacy in the history of

Editors: Stefan H.E. Kaufmann, Eric J. Rubin, and Alimuddin Zumla

Additional Perspectives on Tuberculosis available at www.perspectivesinmedicine.org

Copyright # 2015 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a021147

Cite this article as Cold Spring Harb Perspect Med 2015;5:a021147

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



anti-infectives development and (2) bedaqui-
line because of its role as the first new clinically
approved TB drug developed in the past 40 years.
However, rather than providing an exhaustive
recitation of the literature, which has been ex-
tensively cataloged elsewhere (Zhang 2005; Bar-
ry 2011; Zumla et al. 2013), we review key find-
ings that informed our current understanding of
drug mechanisms and the historical contexts in
which they were discovered. By doing so, we
highlight recurrent themes that have guided
past and current TB drug development efforts
and yet unaddressed barriers in the path toward
more rational mechanism-based approaches.

HISTORICAL PERSPECTIVES ON TB DRUG
DEVELOPMENT

Isoniazid (INH)

Isoniazid (INH) (isonicotinic acid hydrazide)
(Fig. 1(1)) is arguably among the most clinically
successful and extensively studied TB drugs ever
developed (Vilcheze and Jacobs 2007). Howev-
er, although once synonymous with TB chemo-
therapy and prophylaxis, INH has paradoxically
become a defining feature of the current multi-

drug-resistant (MDR) and extensively drug-re-
sistant (XDR) epidemic. Historical details of its
discovery and studies around its antimycobac-
terial activities, however, are probably far less
well appreciated.

INH was first synthesized in 1912. However,
its antitubercular activity was only later discov-
ered en route to the synthesis of amithiozone or
thioacetazone (p-acetaminobenzaldehyde thio-
semicarbazone), a pyridine-based thiosemicar-
bazone that was being developed in an effort to
improve on the tuberculostatic activity of sulfa-
thiazole, first reported by Domagk (Fox 1952;
Long 1958). Whereas amithiozone was found to
be tuberculostatic in vitro and therapeutically
abandoned due to untoward gastrointestinal,
allergic, and hematologic toxicities in patients,
INH was found to be vastly superior to all other
antitubercular compounds tested in vitro and in
animals at the time, including closely related
nicotinic acid and hydrazine derivatives (Fig.
1). In addition to its potency, INH was found
to exhibit remarkable selectivity for mycobacte-
ria, with activity against strains resistant to strep-
tomycin, PAS, and amithiozone (Long 1958).

Numerous in vitro studies soon showed that
INH exhibited activity against Mtb only when
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Figure 1. Antitubercular compounds.
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replicating and that this activity was preceded
by a highly reproducible, although still unex-
plained, delay of approximately a generation
and a half (1–4 d duration). During this period
(the initial 16–24 h of exposure), it was noted
that INH-susceptible bacilli accumulated 14C-
labeled INH that could not be washed away
while resistant or dead bacilli did not, and this
fixation was accompanied by a loss of its acid
fastness and morphologic changes such as sur-
face wrinkling and bulging (vide supra).

Concurrent studies by Chorine (1945) ser-
endipitously reported that the structurally re-
lated pyridine, nicotinamide, exhibited activity
against Mtb in vitro and in infected guinea pigs,
prompting a litany of studies examining the
potential antimetabolic activity of INH (Cho-
rine 1945; Fox 1952; Long 1958; Vilcheze and
Jacobs 2007). These studies revealed reductions
in NAD levels in INH-treated bacilli but failed
to deliver evidence of its direct misincorpora-
tion into NAD, whereas the more closely related
species nicotinic acid was found to exhibit only
weak in vitro activity and no activity in guinea
pigs. Notwithstanding, INH was found to in-
duce numerous changes in the biochemical
composition and activity of Mtb. These includ-
ed selective effects on its extractable lipids, ac-
cumulations of soluble disaccharide trehalose
and hexose phosphates, and reductions in respi-
ratory activity. Pope further showed that the
activity of INH could be antagonized by the ad-
dition of pyridoxine (a precursor of the pyri-
doxal phosphate cofactor required for many
decarboxylation and transamination reactions)
and the a-ketoacids, a-ketoglutarate and pyru-
vate. Although still unexplained, this antago-
nism was particularly remarkable as pyridoxine
also appeared to paradoxically resensitize resis-
tant strains to INH (Boone and Woodward 1953;
Pope 1953, 1956; Long 1958).

Serendipity aside, progress toward a func-
tional understanding of the mechanism of ac-
tion of INH was catalyzed by INH-resistant iso-
lates that were recovered in vitro and in vivo,
either following treatment of experimentally in-
fected animals or from the sputum of TB pa-
tients, almost immediately after the discovery of
INH itself. Work by Middlebrook specifically

showed that most INH resistance was accompa-
nied by defects in catalase activity (Middlebrook
1954). Saroja and Gopinathan subsequently
showed that INH sensitivity could be restored
on transfer of a genetic locus from an INH-
sensitive strain of Mycobacterium smegmatis
encoding a catalase-like activity (manifest, at
the time, as resistance to hydrogen peroxide)
(Saroja and Gopinathan 1973). Together, these
findings introduced the concept that INH might
function as a prodrug. Work by Zhang and col-
leagues later extended these findings to Mtb,
with the discovery of the katG-encoded cata-
lase-peroxidase, which was found to harbor
point mutations and deletions in INH-resistant
clinical isolates and shown to be sufficient to
restore INH susceptibility in resistant strains.
Follow-up biochemical studies showed that
KatG activates INH by conversion to a range of
chemically reactive intermediates, including
an isonicotinoyl radical (Johnsson and Schultz
1994; Wilming and Johnsson 1999; Lei et al.
2000), first hypothesized by Winder (1960). Of
interest, INH was biochemically also shown to
be a potent inhibitor of KatG (Marcinkeviciene
et al. 1995).

Adopting a similar approach, Jacobs and
colleagues isolated and genetically characterized
mutants of M. smegmatis resistant to INH and
ethionamide (a closely related analog) but ex-
hibiting wild-type levels of catalase activity and
susceptibility to other antitubercular com-
pounds (Banerjee et al. 1994). These studies
identified a gene named inhA, that showed
.40% identity to proteins involved in fatty
acid biosynthesis in Escherichia coli and Salmo-
nella typhimurium. These mutants were found
to harbor a missense mutation (S94A) that con-
ferred an order of magnitude increase in resis-
tance but could be corrected on allelic exchange
with a wild-type copy of the inhA gene. High-
level resistance could conversely be achieved by
overexpressing the wild-type inhA gene on a
multicopy plasmid. Biochemical studies showed
that InhA was a NADH-dependent enoyl-ACP
(acyl carrier protein) reductase of the fatty acid
synthase type II (FASII) system (Dessen et al.
1995; Quemard et al. 1995; Marrakchi et al.
2000), involved in mycolic acid biosynthesis.
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Moreover, these studies showed that INH could
inhibit InhA activity in cell-free lysates but that
this inhibition was reduced in inhA mutant
strains.

Using methods of specialized genetic trans-
duction, Jacobs et al. finally showed that the
S94A mutation was sufficient to confer coresist-
ance to both the phenotypic and mycolic acid
inhibitory activities of INH and ETH at clinical-
ly relevant levels of INH (Vilcheze et al. 2006).
Together, these findings helped elucidate the
significance of (1) decades-long observations
reporting INH’s effects on acid-fastness (Barclay
et al. 1954; Koch-Weser et al. 1955), which was
later found to be caused by the unique dye-bind-
ing properties of the mycolic acids covalently
linked to the 50-hydroxyl groups of the arabino-
galactan polymer of the mycobacterial cell wall
(McNeil et al. 1991); (2) the demonstration that
isoniazid inhibited the synthesis of mycolic acids
in Mtb (Winder and Collins 1970; Winder et al.
1970) and its correlation with viability (Ta-
kayama et al. 1972); and (3) the specific inhibi-
tory effect of isoniazid on the synthesis of satu-
rated fatty acids greater than 26 carbons (Wang
and Takayama 1972; Takayama et al. 1975; Da-
vidson and Takayama 1979).

Building on this work, structural studies of
the orthologous enoyl reductase of E. coli re-
vealed the presence of a covalent NAD inhibitor
species tightly bound to the same proposed re-
gion associated with INH resistance in InhA
(Baldock et al. 1996). These studies paved the
way for the unifying discovery by Rozwarski
et al. (1998) that INH did not bind directly to
InhA but, instead, as a covalent adduct with
NAD. This INH-NAD species was shown to
act as a potent, long residence time inhibitor
of InhA (Lei et al. 2000; Nguyen et al. 2002;
Rawat et al. 2003; Vilcheze et al. 2006). The
current working model of the INH mechanism
thus proposes that INH is a prodrug activated
by the catalase-peroxidase KatG which gives rise
to a diverse array of INH-derived radicals and
adducts, some of which are capable of killing
Mtb by potently inhibiting its ability to synthe-
size mycolic acids. The identities, quantities,
andextent towhichadditional INH-derivedspe-
cies produced by KatG may also synergize with

and/or contribute to the remarkable whole-cell
potency of INH itself, however, remains to be
elucidated.

Pyrazinamide (PZA)

As previously described, pyrazinamide (PZA)
(Fig. 1(2)) emerged as an outgrowth of research
conducted by Vital Chorine who discovered the
ability of subcutaneous nicotinamide to pro-
long survival of Mtb-infected guinea pigs (Cho-
rine 1945). Motivated by this finding, PZA
emerged from Lederle Laboratories of Ameri-
can Cynamid as the most active pyrazine analog
of nicotinamide tested in mice (Malone et al.
1952). Somewhat unexpectedly, however, PZA
was found to lack activity under typical in vitro
culture conditions, instead requiring incuba-
tion at an acidic pH (e.g., 5.5) similar to that
associated with active inflammation (McDer-
mott and Tompsett 1954). However, even under
such conditions, PZA showed only bacterio-
static activity with minimum growth inhibitory
concentrations (MIC) ranging from 6 to 50 mg
mL21 and minimal bactericidal concentrations
(MBC) of .1000 mg mL21 (Zhang and Mitch-
ison 2003). This dissociation was further em-
phasized by the subsequent discovery of PZA’s
unique treatment shortening (or sterilizing) ac-
tivity in animals and patients at achieved serum
concentrations generally at or below its in vitro
MICs (Ellard 1969). Studies of PZA’s mecha-
nism(s) of action have thus been hindered by
fundamental limitations in the ability to faith-
fully model its therapeutic activities in vitro.

Limitations notwithstanding, studies of
PZA’s mechanism(s) of action, like INH, were
driven by the in vitro characterization of PZA-
resistant strains. McDermott and colleagues
showed that, like INH, PZA is a prodrug but
activated by an amidase, later found to be en-
coded by the gene pncA, whose ortholog in the
closely related and naturally PZA-resistant vac-
cine strain Mycobacterium bovis BCG (Bacillus
Calmette–Guérin) was found to harbor an in-
activating missense mutation (Konno et al. 1967;
Scorpio and Zhang 1996). Moreover, transfor-
mation of BCG or pncA-defective Mtb strains
was shown to restore or confer in vitro suscept-
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ibility to PZA (Scorpio et al. 1997; Zhang et al.
1999; Boshoff and Mizrahi 2000). Curiously,
mutations associated with PZA resistance apart
from those mapping to pncA have been only
rarely described, and attempts to isolate mutants
resistant to POA have been unsuccessful. Me-
ticulous biochemical studies by Zhang and
colleagues nonetheless showed that in vitro sus-
ceptibility to PZA was associated with an in-
tracellular accumulation of its activated form,
pyrazinoic acid (POA), as revealed by high rates
of POA efflux and the natural resistance of the
amidase-proficient mycobacterial species, M.
smegmatis (Zhang et al. 1999). This accumula-
tion was associated with a dissipation of myco-
bacterial membrane potential, although the
causal significance of this effect remains unre-
solved (Zhang et al. 2003). More recent affinity-
based studies of POA identified several addi-
tional high-affinity binding targets. Prominent
among these was a subunit of the 30S ribosome,
named RpsA, which plays a critical role in a spe-
cialized process termed trans-translation which
involves the rescue of stalled ribosomes and has
been shown to be critical for stress survival and
virulence of other pathogens (Shi et al. 2011b).
Reflecting the uncertain fidelity of current in
vitro models, however, it remains unclear which,
if any, of the foregoing findings pertain to the
unique sterilizing activity of PZA.

Ethambutol (EMB)

Like PZA, ethambutol (2,20 ethylenediimino-
di-1-butanol) (Fig. 1(3)) was first discovered
at Lederle Laboratories of American Cynamid
and tested immediately in animals following the
discovery of its remarkable stereospecific activ-
ity (Thomas et al. 1961; Shepherd et al. 1966).
Comparison of all stereoisomers specifically
showed that the dextro (S,S) form was 12 times
more active than the meso form, whereas the
levo form was entirely inactive, raising the pos-
sibility of a discrete macromolecular target
(Thomas et al. 1961). However, its small size
and simple structure provided few clues.

Early biochemical studies nonetheless
showed that ethambutol (EMB) was rapidly
taken up by both replicating and nonreplicating

mycobacteria but active only against replicat-
ing bacilli, where it was found to impair glycerol
metabolism as well as RNA synthesis (Forbes
et al. 1962, 1965; Kuck et al. 1963). Subsequent
biochemical studies (isotopic-labeling studies
and analysis of cellular sugar content) showed
that EMB induced an almost immediate accu-
mulation of the major intermediate of arabino-
galactan biosynthesis, b-D-arabinofuranosyl-1-
monophosphodecaprenol, followed by the se-
quential accumulation of trehalose mono- and
dimycolates and inhibition of mycolic acid in-
corporation into the cell wall (Takayama et al.
1979; Kilburn et al. 1981; Takayama and Kil-
burn 1989; Mikusova et al. 1995; Blanchard
1996; Goude et al. 2009). These findings sug-
gested that the primary inhibitory effect of EMB
lay at the polymerization of the mycobacterial
cell wall arabinan.

As for the case with INH and PZA, this pre-
diction was genetically confirmed with the in
vitro generation of EMB-resistant strains and
characterization of EMB-resistant clinical iso-
lates, both of which were found to map to a
cluster of genes (embCAB) associated with ara-
binogalactan biosynthesis (Belanger et al. 1996;
Telenti et al. 1997). Curiously, however, evidence
of a specific molecular target remains lacking as
even the most common mutations associated
with EMB resistance (such as EmbB306) have
been also found in clinically susceptible isolates,
whereas both EmbB and EmbC encoded arabi-
nosyltransferases are predicted integral mem-
brane proteins that have proven refractory to
biochemical study (Safi et al. 2008; Srivastava
et al. 2009; Shi et al. 2011a; Guerrero et al. 2013).
Studies of EMB resistance have proven similarly
challenging to interpret in that high-level resis-
tance, which had been traditionally used as a
marker of potential primary targets, was only
observed in the setting of multiple mutations
(Safi et al. 2013).

Primary target aside, early work by Peets
and colleagues showed that the growth inhibi-
tory activity of, and recovery from, EMB treat-
ment could be specifically ameliorated (and
often accompanied by MIC shifts of as much
as 16-fold) by addition of either the polyamine
spermidine or magnesium (but not amino ac-
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ids, nucleotides, Zn, or Mn) (Forbes et al. 1965).
More precise understanding of both its primary
and downstream effects thus awaits further in-
vestigation.

Rifampicin

Rifampicin (Fig. 1(4)) is a semisynthetic deriv-
ative of a natural product ansamycin, which was
originally discovered as an antimicrobial activ-
ity in the conditioned media of the soil bacte-
rium Nocardia mediterranei termed rifamycins
(named after a popular French movie about
jewel heists). Remarkably, the only component
of this extract (termed rifamycin B) that could
be isolated in pure crystalline form was a minor
(5%210%) species with comparatively weak
activity that was serendipitously noted to gain
activity on incubation in oxygenated aqueous
solution. Detailed chemical studies soon showed
that this activation was due to a reversible oxi-
dation of a “quinonoid-like” core followed by
hydrolytic loss of a glycolic acid moiety, giving
rise to the far more active rifamycins S and SV
(the latter of which was found to show potent
activity against Mtb). The discovery of this
structure-activity relationship (SAR) provided
the first evidence for a potentially specific bio-
logic mode of action that, in conjunction with
the poor bioavailability of rifamycin SV, moti-
vated a heroic chemical campaign to develop a
more potent and orally bioavailable compound.
These efforts culminated in the introduction
of rifampicin in the 1960s with detailed knowl-
edge of key molecular determinants of its ac-
tivity (e.g., ansa chain C21 and C23 hydroxyl
groups and C1 and C8 phenols among others)
(Sensi 1983; Marriner et al. 2011).

Armed with this knowledge, concurrent
studies of protein and nucleic acid biosynthesis
revealed that rifampicin specifically inhibited
RNA synthesis and, with the identification of
RNA polymerase, its molecular mode of inhi-
bition (Wehrli and Staehelin 1971). The study
of rifampicin-resistant mutants later confirmed
that this inhibition, in fact, accounted for its
antitubercular activity as .96% of all resistance
mutations could be mapped to an 81-nucleo-
tide region in the coding sequence of the b sub-

unit of RNA polymerase responsible for rifam-
picin binding (Levin and Hatfull 1993; Telenti
et al. 1993).

Bedaquiline (BDQ)

Apart from being the only clinical drug to be
approved for the treatment of TB in .40 yr,
bedaquiline (BDQ) (previously known as
TMC207 and R207910) (Fig. 1(5)) is also the
first FDA-approved drug to have been devel-
oped in the modern era of molecular sciences
(Cohen 2013). BDQ was discovered in a high-
throughput phenotypic screen for compounds
active against the saprophytic mycobacteria,
M. smegmatis, and subsequently shown to dem-
onstrate activity against M. bovis BCG and Mtb
(Andries et al. 2005). Early SAR studies of close-
ly related congeners revealed its activity was
stereoselective, such that the (R,S) stereoisomer
was the most potent with MICs against Mtb
ranging from 4 to 70 ng/mL, whereas the
(S,R) isomer exhibited MICs of 0.35–8.8 mg/
mL (Andries et al. 2005; Koul et al. 2007). This
stereoselectivity suggested the existence of a
specific binding target. Remarkably, BDQ was
also discovered to also show activity against
hypoxic, nonreplicating Mtb (Rao et al. 2008).
Apart from its potency, BDQ was also found to
show an unusually slow time-dependent killing
such that only bacteriostatic activity was ob-
served during the first 3–4 d but was then fol-
lowed by a bactericidal phase with a 4 log10 re-
duction in measurable colony-forming units by
day 14 (Koul et al. 2014).

Insight into the functional target of BDQ
first emerged with the generation of resistant
mutants followed by whole-genome resequenc-
ing. These studies identified mutations in the
atpE gene encoding the membrane bound c
subunit of F0ATP synthase, which were inde-
pendently confirmed through comparative se-
quence analyses of naturally BDQ-susceptible
and -resistant mycobacteria, and BDQ-selected
resistant Mtb strains (Andries et al. 2005; Hui-
tric et al. 2007, 2010). Interestingly, sequence
comparisons to the orthologous mitochondrial
ATP synthase revealed an alanine-to-methio-
nine substitution at position 63 that was hy-
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pothesized to explain the apparent 20,000-fold
selectivity of binding to the Mtb over mamma-
lian enzyme (Haagsma et al. 2009). Biochemical
studies nonetheless showed accompanying re-
ductions in bacterial ATP levels, lending or-
thogonal evidence for the role of ATP synthase
in its mechanism (Andries et al. 2005; Koul et al.
2007, 2014; Rao et al. 2008). Affinity purifica-
tion-based efforts to identify binding partners
(using an amine analog of BDQ immobilized to
a sepharose resin) resulted in the identification
of a and b subunits of ATP synthase from the
total membrane fraction of M. smegmatis, al-
though the c subunit was not recovered, perhaps
because of its high hydrophobicity (Koul et al.
2007). Interestingly, however, a recent study of
resistant mutants from clinical isolates showed
that �38% of mutations were unrelated to the
ATP synthase operon (Huitric et al. 2010). Thus,
although the available data suggests that BDQ
targets ATP synthase, it is possible that addi-
tional targets remain to be identified.

RETROSPECTIVE VIEWS ON
MECHANISM-BASED STUDIES
AND CONCLUSIONS

Looking back, it is interesting to note that as the
tools used to develop and study antibiotics have
steadily increased in scale and precision, our
understanding of their mechanisms has some-
what paradoxically shrunken in scope. Indeed,
early studies of antibiotic mechanisms largely
consisted in broad phenotypic and biochemical
characterizations of antimicrobial activity. The
advent of genetic tools and approaches, how-
ever, fostered a systematic shift toward organ-
ism-wide, but gene-specific, views of drug ac-
tivity. This shift was largely driven by the
successful use of drug resistance as a functional
“loss-of-function” window into the targets and
mechanisms of INH (InhA), rifampicin (RNA
polymerase b subunit), and BDQ (ATP syn-
thase). This same experimental shift, however,
was also accompanied by a limited appreciation
of the only partial intersection between drug
activity and resistance, and operational shift to-
ward more empirical definitions of drug targets
and mechanisms based on the genes and/or

functions whose dysregulation affected activity.
Although functionally powerful for its genome-
wide scope, this shift had the unintended con-
sequence of conceptually constraining drug ac-
tivity to a single best target and mechanism of
action because of its experimental proclivity to
select for and focus on isolated genes and/or
proteins.

Defined by their ability to suppress or kill
bacteria, most antibiotics act through the inhi-
bition of biochemical networks, and elicit mal-
adaptive phenotypes that, although experimen-
tally simple to assay, are no less complex than
their adaptive physiologic counterparts. Their
mechanisms of action are thus likely, if not cer-
tain, to be mediated through an equally com-
plex array of factors, whose identities, quantita-
tive contributions, and interactions have only
been partially elucidated.

Looking ahead, it is encouraging to see
growing recognition of the complexity of anti-
biotic action and the advent of new level tech-
nologies and disciplines to help respond to this
challenge. One current area of potential prom-
ise is the rapidly emerging field of metabolo-
mics. Metabolomics is the youngest of systems-
level disciplines, defined as the global study of
metabolites in a biological system under a given
set of conditions (Saghatelian and Cravatt 2005;
van der Werf et al. 2005, 2007; Patti et al. 2012).
Because metabolites are the biochemical fuel
of all physiologic processes, metabolomic ap-
proaches offer a global biochemical window into
the physiologic composition and state of a given
cell. From a pharmacologic point of view, me-
tabolomic readouts offer direct biochemical in-
sights into the intrabacterial “pharmacokinetic”
fates and “pharmacodynamic” actions of a giv-
en compound within Mtb (de Carvalho et al.
2010, 2011; Pethe et al. 2010; Chakraborty et al.
2013). Although technologically advanced, cur-
rent antibiotic development efforts rest heavily,
if not exclusively, on the use of indirect bacter-
iologic or genetic readouts or in vitro measure-
ments of enzyme activity as the primary mea-
sures of compound activity. Although valuable,
these same tools and readouts have left critical
ambiguities. For example, in elucidating the
structure-activity relationship of a given com-
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pound, it is difficult, if not impossible, to deter-
mine the extent to which the activity of a given
compound is mediated by its ability to accu-
mulate within a bacterial cell, its biochemical
affinity for a specific target, and/or its biotrans-
formation into one or more bioactive spe-
cies. Direct biochemical readouts of a com-
pound’s intrabacterial “pharmacokinetic” fates
and “pharmacodynamic” actions thus represent
a major unmet scientific need of direct phar-
macologic relevance. In a recent study, Chakra-
borty and colleagues reported one such appli-
cation of metabolomic technologies using PAS,
a close structural analog and competitive in
vitro inhibitor of the folate biosynthetic en-
zyme dihydropteroate synthase (DHPS) (Chak-
raborty et al. 2013). Using this platform, the
investigators showed that, contrary to long-
standing inferences, PAS inhibited Mtb by func-
tioning as a replacement substrate, rather than
inhibitor, that, in turn, gave rise to dysfunc-
tional folate analogs. In contrast, far more po-
tent sulfonamide-based competitive inhibitors
of Mtb’s DHPS (sulfamethoxazole, sulfanilia-
mide,anddiaminodiphenylsulfone)wereshown
to lack growth-inhibitory activity because of
their rapid intrabacterial inactivation, rather
than failure to penetrate its notoriously thick
and hydrophobic envelope. These studies thus
not only showed the highly unpredictable
intrabacterial fates of two well-studied anti-
biotics, but more importantly revised our fun-
damental understanding of their accompanying
activities (or lack thereof ). Metabolomics not
withstanding, it remains important to recognize
that no one approach is likely to prove sufficient
to predictably determine the target and/or
mechanism of any antibiotic. It is thus likely
that rational mechanism-based drug devel-
opment will emerge only with a continued ex-
pansion and integration of systems-level ap-
proaches.
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