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Abstract

We performed a comparative analysis of reduced arterial models. These models are characterized 

by a few parameters that can be uniquely estimated from the limited measurements often available 

in practice. Hence, they offer a means to improve hemodynamic monitoring. We specifically 

describe Windkessel, transmission-line, and recursive difference equation models, show how they 

are related, pinpoint their capabilities and limitations, and review how we have applied them for 

less invasive cardiac output monitoring.

I. Introduction

Mathematical modeling of arterial hemodynamics has been longstanding. Arterial models 

ranging from extremely simple to highly complex have been developed. The simple or 

reduced models help us understand the most crucial facets of the physiology. Further, these 

models are characterized by only a few parameters that can be reliably estimated from the 

limited measurements typically available in practice. Hence, the reduced models afford a 

practical framework for personalized hemodynamic monitoring. Several types of reduced 

arterial models have proven useful in this regard including Windkessel, transmission-line, 

and recursive difference equation models. In this paper, we describe these models, show 

how they are related, pinpoint their capabilities and limitations in representing the arterial 

tree, and give examples of how we have applied them in an attempt to achieve less invasive 

cardiac output (CO) monitoring.

II. Reduced Arterial Models

A. Windkessel Models

Windkessel models fall under the category of lumped-parameter models (i.e., models 

characterized by a finite set of elements). The most popular Windkessel model accounts for 

the total arterial compliance (C) of the large arteries and the total peripheral resistance (R) of 

the small arteries (Fig. 1a). Thus, this model regards the arterial tree as a single reservoir and 

predicts exponential diastolic blood pressure (BP) decays with a time constant equal to τ = 
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RC (Fig. 1b). The model transfer function relating CO (q(t)) to BP (p(t)) (i.e., arterial 

impedance) in the Laplace-domain is as follows:

(1)

Windkessel models with more than two elements have also been proposed to improve 

predictive capacity. For example, the three-element Windkessel model (Fig. 1c) provides 

some improvement in representing the transfer function over the higher frequency regime.

B. Transmission-Line Models

Transmission-line models are within the category of distributed models (i.e., models 

characterized by an infinite set of elements). Hence, these models regard the arterial tree as 

spatially dispersed, infinitesimal reservoirs of different BP levels due to finite pulse wave 

velocity.

A popular transmission-line model is a parallel connection of m ideal, lossless transmission-

lines terminated by three-parameter Windkessels (Fig. 2a). One of multiple interpretations of 

the lines and loads [1] is as follows. Each line represents the wave travel path between the 

central aorta and a peripheral artery. A line of length (xi) accounts for the inertance (L0i) and 

compliance (C0i) of the large arteries. So, it has constant characteristic impedance (Zci= √

(L0i/C0i)) and allows waves to travel with constant pulse transit time (Tdi= √(L0iC0i)). Each 

terminal load represents the arterial bed distal to the peripheral artery. A load accounts for 

the resistance (Ri, Zci) and compliance (Ci) of the small arteries. Hence, it has frequency-

dependent impedance (Zi(ω)) while matching the line impedance at infinite frequency.

Waves traveling on each transmission-line in the forward direction are reflected at the 

terminal load (i.e., the site of impedance mismatch) in the backward direction according to 

the reflection coefficient (Γi(ω)=(Zi(ω)−Zci)/(Zi(ω)+Zci)). The BP and blood flow rate (BF) 

at any point on a line thus arises by adding or subtracting the waves after time shifting to 

account for the pulse transit time. In this way, the model predicts the progressive distortion 

that BP and BF waveforms undergo with increasing distance from the heart (Fig. 2b).

The model transfer functions relating central BP (pc(t)) to peripheral BP (ppi(t)) and pc(t) to 

CO (qc(t)) (i.e., inverse of arterial impedance) in the Laplace-domain are as follows:

(2)

(3)
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While this model may not appear to be reduced, these transfer functions reveal its simplicity. 

That is, the first transfer function is characterized by only three parameters (i.e., RiCi, ZciCi, 

and Tdi), while the second transfer function is represented with eight parameters for the 

popular “T-tube” configuration in which m = 2.

C. Recursive Difference Equation Models

Recursive difference equation models lie under the category of black-box models (i.e., 

models characterized by parameters without any physical meaning). Black-box models thus 

assume little about the arterial tree.

Recursive difference equation models regard the present value of the output of a system to 

be determined by values of the input and past values of the output. The most popular model 

is linear with constant parameters as follow:

(4)

Here, n is discrete-time, x[n] and y[n] are the input and output of a system, {ak, bk} are sets 

of parameters that define the system transfer function (as shown in Eq. (5)), and p and q 

determine the number of these parameters (model order). The non-physical parameters can 

only be ascertained by fitting a measured input to a measured output. The number of 

parameters that can be estimated is restricted by the number of frequency components in the 

measurements. Since these components are limited in practice, this model can only be 

characterized by relatively few parameters. The model thus predicts the system output by 

design.

Due to its black-box nature, this model is general and could conceivably represent any sub-

system of the arterial network. For example, the system could represent the arterial 

impedance whose input and output are CO and BP.

The model transfer function relating the input to output in the Z-domain is as follows:

(5)

Hence, the only assumption of the model transfer function is that it takes on pole-zero form 

in the Z-domain.

III. Model Relationships

The reduced arterial models may appear distinct, but they are related to each other. We show 

these relationships below.
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To relate the transmission-line model (Fig. 2a) to the Windkessel model (Fig. 1a), we let the 

frequency ω in the former model decrease towards zero. Since large artery characteristic 

impedance (Zci= √(L0i/C0i)) is usually in the range of 0.1 mmHg-sec/ml, the inductors in the 

line short before the line capacitors open. Further, assuming small artery compliance (Ci) is 

much less than large artery compliance (C0i), the load capacitor opens before the line 

capacitors. So, at low frequencies, each line becomes a single capacitor with compliance C0i, 

while each load becomes a single resistor with resistance Zci+Ri. The parallel connection of 

all m of these RC circuits is another RC circuit with resistance  and 

compliance . Thus, the transmission-line model reduces to the Windkessel 

model as the frequency decreases.

To relate the transmission-line model to the recursive difference equation model (Eq. (5)), 

we transform the transfer functions of the former model (Eqs. (2) and (3)) to the Z-domain 

as follows:

(6)

(7)

where fs is the sampling frequency. Thus, the Z-domain transfer functions of the 

transmission-line model are of pole-zero form but with parameters that have physical 

meaning. The recursive difference equation model can thus be viewed as a generalization of 

the transmission-line model.

Since recursive difference equation models can capture the behavior of transmission-line 

models, the former models with input and output of CO and BP may likewise reduce to the 

Windkessel model as the frequency declines. Also, note that the Z-domain transfer function 

of the Windkessel model (Fig. 1a) can be easily shown to be of first-order pole-zero form.

IV. Model Capabilities and Limitations

The reduced arterial models have different capabilities and limitations in terms of what 

aspects of arterial hemodynamics they can and cannot represent. We elaborate below.

Windkessel models account for the reservoir (i.e., volume storage) behavior of the arterial 

tree. On the other hand, by assuming a single reservoir or, equivalently, infinite pulse wave 

velocity, these models cannot mimic the differences in BP and BF that occur between 

various sites in the arterial tree (Fig. 2b). However, as implied above, the Windkessel model 

(Fig. 1a) is a good representation of the arterial tree at low frequencies. At such frequencies, 

the wavelengths of the traveling waves are long (i.e., wavelength equals pulse wave velocity 

divided by frequency) relative to the dimension of the arterial tree such that BP and BF at its 

various sites converge to the same levels (i.e., it becomes one reservoir).
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Windkessel models are also a good representation of the central BP waveform as evidenced 

by the exponential diastolic decays often apparent in this waveform (Figs. 1b and 2b). 

Noordergraaf provides the following explanation [2]. Forward and backward waves in the 

aorta have large phasic differences due to the long and varying distances between the aorta 

and the main reflection sites at the arterial terminations. So, waves with short wavelengths 

tend to cancel each other out. But, waves with longer wavelengths constructively add. The 

key point again is that the arterial tree acts more like a single reservoir with increasing 

wavelengths. We add to this explanation by noting that waves with short wavelengths 

constructively add in the periphery due to the close proximity to the arterial terminations. 

Thus, exponential diastolic decays are obscured in peripheral BP waveforms (Fig. 2b).

In sum, Windkessel models are representative of central but not peripheral BP waveforms 

and low frequency BP variations regardless of their site of measurement.

Transmission-line models assume finite pulse wave velocity and thus account for high 

frequency wave reflection. Further, they reduce to the Windkessel model (Fig. 1a) at low 

frequencies. So, these models are representative of central and peripheral BP waveforms. 

Thus, by accounting for both reservoir and finite pulse wave velocity behaviors, 

transmission-line models may be considered as unifying arterial models. In other words, two 

different models to account for these behaviors [3]are unnecessary.

However, the transmission-line model (Fig. 2a) ignores elastic and geometric tapering and 

multi-level branching. As we discussed in [1], these assumptions can be defended to some 

degree as follows. As Noordergraaf stated, the arterial terminations are often the main 

reflection sites. One reason is that they offer the largest impedance mismatch, as the radius 

of the arterioles is much smaller than that of the proximal arteries. Another reason is that 

vessel tapering tends to be offset by vessel branching in the forward direction such that 

relative impedance matching is obtained. On the other hand, backward waves are expected 

to experience strong re-reflections as they return towards the heart due to necessarily 

significant impedance mismatch in this direction. Further, the multiple reflected waves that 

return from the periphery actually interact in the aorta due to multi-level branching.

Recursive difference equation models can likewise account for reservoir and finite pulse 

wave velocity behaviors, so these models may also be regarded as unifying models. Further, 

the models are not physically based and thus make few assumptions about the arterial tree. 

Note that at the same time, the pole-zero form of the recursive difference equation model 

(Eq. (5)) can be considered to be justified by the physical transmission-line model (Fig. 2a). 

However, the trade-off is that their parameters carry no physical meaning.

V. Less Invasive Co Monitoring Applications

Due to their simplicity, these arterial models can often be identified (i.e., their parameters 

can be uniquely estimated) from the limited information in the waveforms measured in a 

patient monitoring setting (e.g., the ICU). The parameter estimates can provide value above 

and beyond the measured waveforms about a patient’s hemodynamic status. Many 

investigators have employed these models for this purpose. For example, we have used them 

as a basis for estimating relative CO change from a peripheral BP waveform in order to 
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achieve continuous and minimally or non-invasive invasive CO tracking [4, 5]. We review 

these efforts below.

High frequency wave reflection profoundly impacts the shape of peripheral BP waveforms 

and thus constitutes a serious challenge in CO estimation (Fig. 2b). We conceived two 

techniques to overcome the confounding wave reflection.

The idea of the first technique is to bypass the confounding wave reflection by exploiting the 

fact that the Windkessel model dominates at low frequencies. So, for example, peripheral 

BP would eventually decay like a pure exponential with τ = RC once the faster wave 

reflection vanishes.

The technique thus estimates the pure exponential decay that would eventually result if the 

heart suddenly stopped beating by analyzing a peripheral BP waveform over many beats 

(Fig. 3a). First, the BP response to a single heartbeat is estimated (h(t) in Fig. 3a). Then, τ is 

determined from the tail end of h(t) once the faster wave reflection dissipates (Fig. 3a). 

Finally, assuming constant C, proportional CO is computed as the ratio of mean BP (MAP) 

and τ.

To estimate the single heartbeat BP response, an impulse train (x(t)) is formed in which each 

impulse is located at the foot of the BP waveform (y(t)) and is scaled by the ensuing pulse 

pressure (PP). Then, the impulse response (h(t), time-domain version of transfer function) is 

estimated, which when convolved with x(t), optimally fits y(t). By definition, h(t) represents 

the BP response to a single heartbeat.

The impulse response h(t) is identified via the recursive difference equation model (Eq. (5)). 

The parameter sets {ak, bk}, which define h(t), are estimated, for a fixed model-order, via 

the closed-form linear least squares solution [6]. The model order is determined by 

minimizing the minimum description length criterion over a set of candidate orders [6].

Interestingly, this model assumes that the BP waveform arises as an impulse train convolved 

with a pole-zero system. This system can be thought of as a cascade connection of three 

transfer functions relating: (1) the impulse train to the CO waveform (Qc(z)/X(z)); (2) the 

CO waveform to the central BP waveform (Pc(z)/Qc(z)); and (3) the central BP waveform to 

the peripheral BP waveform (Ppi(z)/Pc(z)). The impulse response of transfer function (1) is 

proportional to one beat of the CO waveform. We have empirically found that it can often be 

represented as a second-order pole-zero system. The transmission-line model (Fig. 2a) 

indicates that that transfer functions (2) and (3) can also be represented as pole-zero systems 

(Eqs. (6) and (7)). Thus, the BP model is essentially justified by the physical model. Note 

that this reasoning parallels the justification of the all-pole model of speech via a physical 

vocal tract model [7].

The idea of the second technique is to attenuate the confounding wave reflection by 

capitalizing on the fact that it hardly impacts the shape of the central BP waveform. So, first, 

the central BP waveform is estimated from a peripheral BP waveform. Then, an exponential 

is fitted to the diastolic decay of the estimated waveform to determine τ (Fig. 1b). Finally, 

proportional CO is computed as MAP divided by τ.
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To estimate the central BP waveform, the transmission-line model (Fig. 2a) is employed. 

First, the transfer function relating the peripheral BP waveform (ppi(t)) to the central BP 

waveform (pc(t)) is defined in terms of three model parameters (inverse of Eq. (7) and Fig. 

3b). These parameters are estimated by exploiting the fact that central aortic BF is negligible 

during diastole. That is, the transfer function relating ppi(t) to the component of the CO 

waveform that reaches the peripheral artery measurement site (qci(t)) is defined in terms of 

the same parameters (Fig. 3b). The common parameters are then estimated by finding the 

BP-to-BF transfer function, which when applied to ppi(t), optimally fits a scaled qci(t) to 

zero during diastole (Fig. 3b). Since the physical parameters are constrained (e.g., 0 < ZciCi 

< RiCi), this optimization is achieved via a numerical search. Finally, the BP-to-BP transfer 

function with the parameter estimates is applied to ppi(t) to estimate pc(t) (Fig. 3b).

Experimental testing of both techniques is described elsewhere (e.g., [4, 5, 8]).

VI. Conclusion

In summary, we have described a set of reduced models of arterial hemodynamics. While 

these models are all related, they have distinct capabilities and limitations. In particular, the 

Windkessel model (Fig. 1a) can represent the central BP waveform and low frequency BP 

variations but cannot account for peripheral BP waveforms. The transmission-line model 

(Fig. 2a) and the recursive difference equation model (Eq. (5)) can represent both central 

and peripheral BP waveforms including low frequency BP variations. However, the former 

model neglects some aspects of the arterial tree, while the latter model does not carry any 

physical meaning. We and others have estimated the relatively few parameters of all of these 

models from limited waveforms to improve hemodynamic monitoring. Thus, each of these 

models is useful, and the proper model choice depends on the particular hemodynamic 

monitoring application at hand.
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Fig. 1. 
(a), (c) Windkessel models of the arterial tree. (b) These models predict exponential diastolic 

blood pressure (BP) decays.
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Fig. 2. 
(a) Transmission-line model of the arterial tree. (b) This model predicts the progressive 

distortion that BP and blood flow rate (BF) waveforms undergo with increasing distance 

from the heart.
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Fig. 3. 
Techniques for estimating relative cardiac output (CO) change from a peripheral BP 

waveform based on (a) recursive difference equation (Eq. (5)) and Windkessel models and 

(b) transmission-line and Windkessel models.
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